
HAL Id: hal-01098507
https://inria.hal.science/hal-01098507

Preprint submitted on 8 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A VERTEX-CENTERED LINEARITY-PRESERVING
DISCRETIZATION OF DIFFUSION PROBLEMS ON

POLYGONAL MESHES
Jiming Wu, Zhiming Gao, Zhihuan Dai

To cite this version:
Jiming Wu, Zhiming Gao, Zhihuan Dai. A VERTEX-CENTERED LINEARITY-PRESERVING DIS-
CRETIZATION OF DIFFUSION PROBLEMS ON POLYGONAL MESHES. 2015. �hal-01098507�

https://inria.hal.science/hal-01098507
https://hal.archives-ouvertes.fr


A VERTEX-CENTERED LINEARITY-PRESERVING1

DISCRETIZATION OF DIFFUSION PROBLEMS ON POLYGONAL2

MESHES∗
3

JIMING WU∗, ZHIMING GAO∗† , AND ZIHUAN DAI∗4

Abstract. This paper introduces a vertex-centered linearity-preserving finite volume scheme for5

the heterogeneous anisotropic diffusion equations on general polygonal meshes. The unknowns of this6

scheme are purely the values at the mesh vertices, and no auxiliary unknowns are utilized. The scheme7

is locally conservative with respect to the dual mesh, captures exactly the linear solutions, leads to a8

symmetric positive definite matrix, and yields a nine-point stencil on structured quadrilateral meshes.9

The coercivity of the scheme is rigorously analyzed on arbitrary mesh size under some weak geometry10

assumptions. Also the relation with the finite volume element method is discussed. Finally some11

numerical tests show the optimal convergence rates for the discrete solution and flux on various mesh12

types and for various diffusion tensors.13

Key words. diffusion equation, vertex-centered scheme, linearity-preserving14

AMS subject classifications. 65M08, 35R05, 76S0515

1. Introduction. We consider the anisotropic steady-state diffusion problem16

−div(Λ∇u) = f in Ω,(1.1)

u = gD onΓD,(1.2)

−Λ∇u · n = gN onΓN ,(1.3)

where Ω is a bounded connected polygonal domain in R2, n denotes the exterior unit17

normal vector along the domain boundary ∂Ω = Γ̄D ∪ Γ̄N , Λ is a 2× 2 symmetric dif-18

fusion tensor, uniformly bounded above and below, i.e., there exist positive constants19

κ and κ, such that20

(1.4) κ∥v∥2 ≤ vTΛv ≤ κ∥v∥2, ∀v ∈ R2,

f , gD and gN denote the source term, the Dirichlet and flux boundary data, respec-21

tively. Anisotropic diffusion problem of this type arises in a wide range of scientific22

fields such as oil reservoir simulations, plasma physics, semiconductor modeling and23

so on. In accurate simulation of diffusion processes in these applications, finite vol-24

ume (FV) method is among the most commonly used ones due to its simplicity, local25

conservation and some other good numerical properties.26
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In recent decades, numerous efforts have been devoted to the construction of27

efficient FV schemes, which can be roughly classified as cell-centered schemes, hybrid28

schemes, mixed schemes, nonlinear positivity-preserving schemes and so on. The29

reader is referred to [14, 9] for some recent developments. All these FV schemes have30

cell-centered unknowns and some other possible ones defined on cell boundaries, and31

most of them satisfy the local conservation condition (continuity of the flux), which is32

very important in some practical applications such as radiation hydrodynamics. Cell-33

centered schemes have only one unknown for each cell and in this respect, they are34

more attractive than the hybrid or mixed ones. However, cell-centered schemes usually35

result in asymmetric linear systems and as a result, their coercivity and convergence36

analysis are quite difficult to obtain.37

By comparison with cell-centered FV schemes, vertex-centered schemes have38

drawn less attention. A vertex-centered or nodal scheme based on mimetic method39

with a low-order accuracy was proposed in [2]. Its extensions to 2D and 3D cases with40

arbitrary order of accuracy were studied in [7] and [18], respectively. In these works,41

the lower-order methods reduce to the standard P1 finite element method (FEM) in42

the case of simplicial meshes. The virtual element method[6] has been proposed re-43

cently which can be viewed as a further development of the nodal mimetic method,44

reformulating in a pure finite element framework of the two methods in [7] and [2].45

In [11], a similar low-order vertex-centered scheme was suggested in terms of gra-46

dient schemes. Actually, all these methods can be considered as various extensions47

of Galerkin finite element method where the test function space coincides with the48

trial function space and as a result, symmetric and positive definite linear systems49

can be expected. However, the local conservation property is either lost or cannot be50

understood in the same sense as that of cell-centered schemes.51

Another type of vertex-centered FV schemes comes from the finite volume element52

method (FVEM)[13, 4, 23] (sometimes called as generalized difference method[16] or53

box method[1]), which can be viewed as a certain Petrov-Galerkin finite element54

method and thus are mainly valid for triangular or quadrilateral meshes. The trial55

function space of FVEM is the same as that in FEM while the test function space56

consists of piecewise constant functions with respect to the so-called dual mesh, an57

adjoint mesh constructed from the original primary mesh. Generally speaking, FVEM58

are simple and locally conservative, however, they usually exhibit a different nature59

when compared with their counterparts in FEM having the same trial function space.60

For example, FVEM with trial function space of P1 type (P1−FVEM for short) on61

triangular meshes cannot have the standard O(h2) convergence rate in the L2 norm62

when the source function only belongs to L2 [15, 16, 5, 8], and optimal L2 error63

estimates cannot be obtained directly by Aubin-Nitsche’s duality technique[20]. Some64

higher order FVEM on quadrilateral meshes have recently been suggested [21, 28],65

which are not pure vertex-centered schemes, involving some other unknowns defined66

on the cell boundaries or inside the cells. Moreover, on quadrilateral meshes, FVEM is67
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valid only on h1+γ−parallelogram meshes with γ > 0, at least it seems so theoretically.68

The vertex-centered FV scheme proposed in this paper seems to be more related69

to the low-order FVEM, since its construction is based on the same primary and dual70

mesh in FVEM. However, the derivation of the scheme is performed along a different71

line of thought, i.e., the linearity-preserving approach developed in some exiting cell-72

centered or hybrid FV schemes[25, 27, 24, 26] where the concept of trial function73

space is not involved. The primary mesh here consists of arbitrary polygonal grids,74

instead of being confined to triangular or quadrilateral ones. Moreover, the symmetry75

and positive definiteness of the new scheme is always expected, which is not shared76

by FVEM except for some cases on triangular meshes. In summary, the new scheme77

has the following characteristics:78

• It has only vertex-centered unknowns;79

• It has a local stencil, a nine-point one on structured quadrilateral meshes;80

• It is applicable to arbitrary polygonal grids, which may have concave cells or81

degenerate ones with hanging nodes;82

• It allows heterogeneous full diffusion tensors;83

• It reduces to a P1-FVEM scheme on triangular meshes;84

• It is locally conservative with respect to the dual mesh;85

• It leads to symmetric and positive definite linear systems;86

• It satisfies the linearity-preserving property in the sense that the scheme87

captures the exact solution if the diffusion tensor is piecewise constant and88

the solution is piecewise linear with respect to the primary mesh;89

• It has approximately second-order accuracy on general meshes in case that90

the diffusion tensor is taken to be anisotropic and/or discontinuous.91

More interesting is that the new scheme possesses simultaneously the three proper-92

ties: the local conservation, the symmetry and positive definiteness, and the linearity-93

preserving, which is rarely seen in existing cell-centered or vertex-centered FV schemes.94

The rest of the paper is organized as follows. In section 2, we describe the95

general construction algorithm for the new scheme, leaving the key ingredient, i.e.,96

the construction of cell matrix to section 3. In section 4 we discuss the issues of the97

symmetry and coercivity. Numerical experiments are carried out in section 5 and98

some conclusions are given in the last section.99

2. A new vertex-centered linearity-preserving scheme.100

2.1. The primary and dual meshes. The construction of the primary and101

dual meshes is almost the same as that in FVEM. Suppose that Ω is partitioned into102

a number of non-overlapped polygonal cells that form the so-called primary mesh, see103

the mesh with solid line segments in Figure 2.1. The vertices of Ω and the possible joint104

points of ΓD and ΓN must be included in the set of primary vertices. For a primary105

cell, its cell center is defined at any point in the cell. Each primary cell is further106

partitioned into several quadrilateral subcells by connecting the cell center with the107

edge midpoints, see the dashed line segments in Figure 2.1. All subcells sharing a108
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same vertex of the primary mesh constitute a cell of the dual mesh. Throughout this109

paper, we shall always assume that110

(H1) Each cell in the primary mesh is star-shaped with respect to its cell center.111

By this assumption, the dual mesh makes sense.112

2.2. The primary unknowns. At each vertex of the primary mesh in Ω∪ΓN ,113

we define a single primary unknown, see the solid points in Figure 2.1. A finite volume114

equation will be constructed associated with each primary unknown. Note that the115

primary vertices on Γ̄D have no primary unknowns. Contrary to the cell-centered116

linearity-preserving FV schemes studied before, here we do not need to introduce any117

auxiliary unknowns so that there is no interpolation algorithm.118

ΓD

ΓD

Fig. 2.1. The primary mesh (solid line), dual mesh (dashed line) and the boundary ΓD (red line).

2.3. The flux discretization. From now on, all the derivations are conducted119

under the following assumptions:120

1. The solution is smooth inside each primary cell and continuous on the whole121

domain Ω̄, while the diffusion tensor is constant on each primary cell.122

2. The possible discontinuities of the solution gradient and the diffusion tensor123

are only allowed to appear on the edges of the primary mesh.124

3. The normal component of the flux F = −Λ∇u is continuous across all interior125

edges of the dual mesh.126

Obviously, the first and the second assumptions are standard and the same as those127

for cell-centered schemes. However, the last assumption is different from that of a128

cell-centered scheme, where the flux is assumed to be continuous across all interior129

edges of the primary mesh.130

As shown in Figure 2.2, we introduce some notations.131

• K, a generic primary cell with nK edges whose cell center, measure and132

diameter are denoted as xK , |K| and hK , respectively.133

• M, the set of primary cells in Ω̄ and h = maxK∈M hK denotes the mesh size.134

• EK , the set of edges in K.135
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• σ, a generic edge of K with measure denoted as |σ|, also the local numbering136

of edges in EK , depending on the context.137

• xν and xν+ , two generic vertices of the primary mesh, also the two endpoints138

of σ.139

• xσ, the midpoint of σ.140

• K∗
ν , a generic dual cell associated with xν whose outward unit normal along141

the cell boundary is denoted as n∗
ν .142

• σ∗
K , a generic dual edge connecting xK and xσ.143

• n∗
K,σ, a unit vector normal to σ∗

K whose direction is fixed once and for all.144

• uν , uν+ , the primary unknowns defined at xν and xν+ , respectively.145

• ΛK , the constant restriction of Λ on K.146

• FK,σ∗ , the discrete counterpart or approximation of
∫
σ∗
K
(−ΛK∇u) · n∗

K,σds.147

In addition, for σ ∈ EK , we assume that its endpoint xν is always pointed anticlock-148

wisely to the other one xν+ . We also assume that all nK unit vectors n∗
K,σ(σ ∈ EK)149

inside K are ordered clockwise (see Figure 2.2). As a result, n∗
K,σ ·n∗

ν may be either 1150

or −1. Throughout, the hollow letters A,F,U, · · · will be used to denote rectangular151

matrices with a number of columns greater than one while the bold ones F ,x,n, · · ·152

will represent vectors or matrices with only one column.153

xν
xσ

xK

σ

σ
∗

K

xν+

xν−

K

K
∗

ν

n
∗

K,σ

n
∗

ν

Fig. 2.2. Notations for the flux discretization.

Now we are ready to describe the construction of the flux approximation FK,σ∗ .154

First, we put all FK,σ∗ , σ ∈ EK in the same group and manipulate them together,155

instead of treating them one by one. Note that the flux approximations for the156

same dual cell may belong to different groups. Secondly, we seek the following local157

algebraic relation related to primary cell K,158

(2.1) FK = AKδUK ,
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where AK is the so-called cell matrix of size nK × nK , FK = (FK,σ∗ , σ ∈ EK)T159

and δUK = (uν+ − uν , σ ∈ EK)T are two vectors of size nK , containing all the160

flux approximations in the same group and the successive differences of the primary161

unknowns on ∂K, respectively. Here we take for example the triangle cell K in162

Figure 2.2 to illustrate (2.1). For any discrete algorithm for FK,σ∗ , we can always163

expect the algebraic expression164

(2.2) FK,σ∗ = cuν + c+uν+ + c−uν− .

If this formula is required to be exact for constant solutions, then we have c+c++c− =

0, leading to the following new expression

FK,σ∗ = c+(uν+ − uν) + 0× (uν− − uν+)− c−(uν − uν−),

or equivalently the matrix form (2.1). Surely, for a specific discretization procedure,165

AK may not be unique since the sum of the entries of δUK is zero. However, FK,σ∗ ,166

as the linear combination of the primary unknowns shown in (2.2), remains the same.167

Finally, we establish the so-called linearity-preserving criterion for the construc-168

tion of the cell matrix AK . Let FK and XK be two nK×2 matrices defined respectively169

by170

(2.3) FK =
(
−|σ∗

K |ΛKn∗
K,σ, σ ∈ EK

)T
, XK = (xν+ − xν , σ ∈ EK)

T
.

We recall that, in the linearity-preserving method, all derivations are required to be171

exact whenever the solution is piecewise linear and the diffusion tensor is piecewise172

constant with respect to the primary mesh. By direct calculation, we find that (2.1)173

satisfies this linearity-preserving criterion if and only if174

(2.4) FK = AKXK .

How to construct AK such that (2.4) is fulfilled is another issue and will be addressed175

in section 3.176

2.4. The final vertex-centered scheme. For an vertex xν ∈ Ω∪ ΓN , let Mν177

(resp. Eν) be the set of primary cells (resp. edges) sharing xν . The finite volume178

equation associated with primary unknown uν is constructed as follows179

(2.5)
∑

K∈Mν

∑
σ∈EK∩Eν

(
n∗

K,σ · n∗
ν

)
FK,σ∗ = |K∗

ν |fK∗
ν
−
∫
∂K∗

ν

gNds,

where FK,σ∗ is given by (2.1), |K∗
ν | denotes the measure of the dual cell K∗

ν and

fK∗
ν
=

1

|K∗
ν |

∑
K∈Mν

∫
K∗

ν∩K

f(x) dx.
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3. Construction of the cell matrix AK . We have seen that cell matrix AK180

plays an important role in the new vertex-centered scheme and different cell matrices181

will result in different schemes. In this section, we shall make use of the special182

structure of 2D polygonal meshes to construct a symmetric and positive definite cell183

matrix AK such that the linearity-preserving criterion (2.4) is satisfied.184

Lemma 3.1. For the two matrices FK and XK defined in (2.3), we have185

(3.1) FT
KXK = |K|ΛK .

186

Proof. We start the argumentation by introducing the following formula (see, e.g.,187

(2.17) in [10] or equivalently (3.7) in [27]):188

(3.2)
∑
σ∈EK

|σ|(xσ − xK)nT
K,σ = |K|I2,

where nK,σ denotes the unit vector normal to σ outward from K and I2 the 2 × 2

identity matrix. Define

R =

(
0 1

−1 0

)
.

Then, it follows from (3.2) that∑
σ∈EK

|σ|ΛKR(xσ − xK)nT
K,σRT = |K|ΛKRRT .

Noticing R(xσ − xK) = |σ∗
K |n∗

K,σ and |σ|RnK,σ = −(xν+ − xν), we arrive at

−
∑
σ∈EK

|σ∗
K |ΛKn∗

K,σ(xν+ − xν)
T = |K|ΛK ,

which leads to (3.1) and concludes the proof.189

Based on (3.1) and inspired by [3, 24, 26], we suggest that190

(3.3) AK =
1

|K|
FKΛ−1

K FT
K + γKCKCT

K with CK = IK − 1

|K|
FKΛ−1

K XT
K ,

or equivalently,191

(3.4) AK =
1

|K|
F̃KΛK F̃T

K + γKCKCT
K with CK = IK − 1

|K|
F̃KXT

K ,

where IK is an nK × nK identity matrix,192

(3.5) F̃K =
(
−|σ∗

K |n∗
K,σ, σ ∈ EK

)T
,

and γK is a positive parameter. In practical computation, we choose193

(3.6) γK =
1

100
trace

(
1

|K|
FKΛ−1

K FT
K

)
.
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Theorem 3.2. The cell matrix AK , defined by (3.3), satisfies (2.4) and is sym-194

metric and positive definite.195

Proof. (2.4) can be directly verified by (3.1) and (3.3). Obviously, AK is sym-196

metric and semi-positive definite. Suppose that there exists a vector v ∈ RnK , such197

that vTAKv equals to the zero vector 0. Then, from (3.3), we have198

(3.7) FT
Kv = 0 and CT

Kv = v − 1

|K|
XKΛ−1

K FT
Kv = 0,

which implies v = 0 and completes the proof.199

4. Symmetry and coercivity.200

4.1. General results. We first introduce two assumptions.201

(H2) There exists a positive constant α, independent of mesh size h, such that202

(4.1) |K| ≥ αh2
K , ∀K ∈ M.

(H3) For the matrix CK defined by (3.3), there exists a positive constant λ, inde-203

pendent of h, such that204

(4.2) ∥CT
KCKv∥2 ≥ λ∥CKv∥2, ∀v ∈ RnK , ∀K ∈ M,

where ∥ · ∥ denotes the Euclidean vector norm.205

Secondly, we define a discrete H1 norm | · |1,M, given by206

(4.3) |uh|1,M =

{ ∑
K∈M

∑
σ∈EK

(uν+ − uν)
2

}1/2

=

{ ∑
K∈M

∥δUK∥2
}1/2

,

where uh denotes the discrete function whose nodal value at primary vertex xν is uν .207

Lemma 4.1. For the two matrices XK and F̃K defined respectively in (2.3) and208

(3.5), we have209

(4.4) ∥XKv∥ ≤
√
nK hK∥v∥, ∥F̃Kv∥ ≤

√
nK hK∥v∥, ∀v ∈ R2, ∀K ∈ M.

210

Proof. For v ∈ R2, we have by Cauchy inequality that

∥XKv∥2 =
∑
σ∈EK

(
(xν+ − xν)

T
v
)2

≤
∑
σ∈EK

∥xν+ − xν∥2∥v∥2 ≤ nKh2
K∥v∥2,

which verifies the first part of (4.4). The second part can be proved analogously.211

Lemma 4.2. For the matrix CK defined by (3.3), its column vectors span the null212

space of XT
K .213
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Proof. By (3.3) and (3.1), it is easy to check that XT
KCK = O where O denotes

a generic zero matrix. Since rank (XK) = 2, we only need to prove that rank (CK) ≥
nK − 2. Using the definition of CK once again, we have

rank (IK) ≤ rank (CK) + rank

(
1

|K|
FKΛ−1

K XT
K

)
≤ rank (CK) + rank

(
Λ−1
K

)
,

which implies rank (CK) ≥ nK − 2 and concludes the proof.214

Lemma 4.3. Under assumptions (H2) and (H3), we have215

(4.5) vTAKv ≥ ϱK∥v∥2, ∀v ∈ RnK , ∀K ∈ M.

where AK is defined by (3.3) or (3.4) and ϱK is a positive constant, given by216

(4.6) ϱK =
γKλ α2 κ

nK(2nKκ+ γKα λ)
.

217

Proof. For v ∈ RnK , by Lemma 4.2, there exist v1 ∈ R2 and v2 ∈ RnK , such that218

219

(4.7) v = XKv1 + CKv2 and ∥v∥2 = ∥XKv1∥2 + ∥CKv2∥2.

Note that (3.1) implies F̃T
KXK = |K|I2. Then, from (1.4), (3.4) and (H3),220

(4.8)

vTAKv ≥ κ
|K|∥F̃

T
Kv∥2 + γK∥CT

Kv∥2

= κ
|K|∥|K|v1 + F̃T

KCKv2∥2 + γK∥CT
KCKv2∥2

≥ κ|K|(1− ε)∥v1∥2 + κ
|K| (1−

1
ε )∥F̃

T
KCKv2∥2 + γKλ ∥CKv2∥2,

where 0 < ε < 1. From (4.4) and (H2), we have

κ|K|∥v1∥2 ≥ αh2
Kκ ∥v1∥2 ≥ α κ

nK
∥XKv1∥2

and

κ

|K|
∥F̃T

KCKv2∥2 ≤ κnKh2
K

|K|
∥CKv2∥2 ≤ κnK

α
∥CKv2∥2.

Substituting these estimates into (4.8), we reach

vTAKv ≥ (1− ε)
α κ

nK
∥XKv1∥2 +

(
1− 1

ε

)
κnK

α
∥CKv2∥2 + γKλ ∥CKv2∥2.

Finally, by choosing ε = 2nKκ/(2nKκ+ γKα λ) and by (4.7), we arrive at (4.5) with

ϱK = min

{
1

2
γKλ,

γKλ α2 κ

nK(2nKκ+ γKα λ)

}
=

γKλ α2 κ

nK(2nKκ+ γKα λ)
.

221

Theorem 4.4. For the scheme defined by (2.5), (2.1) and (3.3), we have222
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(i) (Symmetry) The resulting linear system is symmetric;223

(ii) (Coercivity)Under assumptions (H2), (H3) and gD = 0,224

(4.9)
∑
xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗

K,σ · n∗
ν

)
uνFK,σ∗ ≥

(
min
K∈M

ϱK

)
|uh|21,M.

Proof. Since the symmetry of the resulting linear system does not depend on

the concrete value of gD, so we can always proceed the argumentation by assuming

gD = 0. Multiplying (2.5) with uν , summing over all the dual cells possessing primary

unknowns and shifting the summation to primary cells, we have∑
xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗

K,σ · n∗
ν

)
uνFK,σ∗ =

∑
K∈M

∑
σ∈EK

(uν+ − uν)FK,σ∗

=
∑

K∈M

F T
KδUK ,

where we have used(
n∗

K,σ · n∗
ν

)
uν +

(
n∗

K,σ · n∗
ν+

)
uν+ =

(
n∗

K,σ · n∗
ν+

)
(uν+ − uν) = uν+ − uν

and uν = 0 (resp. uν+ = 0) if xν ∈ ΓD (resp. xν+ ∈ ΓD). Using (2.1), we obtain225

(4.10)
∑
xν∈Ω

∑
K∈Mν

∑
σ∈EK∩Eν

(
n∗

K,σ · n∗
ν

)
uνFK,σ∗ =

∑
K∈M

(δUK)TAT
KδUK .

Thus the symmetry of the linear system comes from the symmetry of cell matrix AK ,226

and by Lemma 4.3, we obtain (4.9).227

4.2. The case of triangular meshes. We have seen from the previous subsec-

tion that assumptions (H2) and (H3) play important roles in the coercivity analysis.

For triangular meshes, (H2) is a little weaker than the standard regular assumption

in finite element method. As for (H3), if the cell center is chosen to be the barycenter,

then by direct computation we find that

CK =
1

3

 1 1 1

1 1 1

1 1 1

 ,

which implies (H3) with λ = 1. Through some straightforward but tedious calcu-228

lations (see Appendix), we find that the new vertex-centered scheme reduces to the229

P1−FVEM. Therefore, the result in this section can serve as an alternative coercivity230

analysis for P1−FVEM.231

4.3. The case of quadrilateral meshes. For general quadrilateral meshes, we232

have the following result.233

Theorem 4.5. Assume that K is a convex or concave quadrilateral. If the center234

of K is chosen to be the geometric center, then (H3) holds with λ = 1.235
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Proof. Denote the four vertices of K by xν ,xν+ ,xν++ and xν− , which are ordered236

anticlockwisely. Set237

(4.11) a = xν+ − xν , b = xν− − xν , c = xν + xν++ − xν− − xν+ .

We have the following formula238

(4.12)
(
2bT + cT

)
RT (2a+ c) = 2

(
xT
ν++ − xT

ν

)
RT (xν+ − xν−) = 4|K|.

By assumption, the cell center of K is defined by

xK =
1

4
(xν + xν+ + xν++ + xν−) .

Then, from (3.4), we have239

(4.13) CK = IK − 1

4|K|


2bT + cT

−2aT − cT

−2bT − cT

2aT + cT

RT
(

a b+ c −a− c −b
)

and further,240

(4.14) CK =
1

2


2− t t− 1 2− t t− 1

s 1− s s 1− s

t 1− t t 1− t

−s s+ 1 −s s+ 1

 ,

where

t =
1

2|K|
(
2bT + cT

)
RTa, s =

1

2|K|
(
2aT + cT

)
RTa.

Let v = (v1, v2, v3, v4)
T and w = s2 + (t− 1)2. By direct calculations, we have

∥CT
KCKv∥2 − ∥CKv∥2 =

1

2
(2w2 + w) (v1 + v3 − v2 − v4)

2 ≥ 0,

which implies (H3) with λ = 1.241

Thanks to Theorem 4.5, the coercivity of the present scheme can be established242

on quadrilateral meshes with arbitrary mesh size only under assumptions (H1) and243

(H2). We remark that the coercivity of Q1−FVEM requires also (H1), (H2) and244

some other additional assumptions, such as the mesh should be an h1+γ−parallelogram245

one with γ > 0 and the mesh size h should be small enough[17, 28].246

5. Numerical Examples. The new vertex-centered linearity-preserving scheme247

is denoted as VLPS for short. We study several numerical tests to demonstrate that248

VLPS satisfies the nice features mentioned in the introduction.249

Let us define the following mesh-dependent norms for the solution vector U =

{uν ,xν ∈ Ω} and a vector F of edge-based fluxes on the dual mesh:

|||U |||2 =
∑
xν∈Ω

|K∗
ν ||uν |2, |||F |||2 =

∑
K∈M

∑
σ∈EK

Sσ|FK,σ∗ |2,
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where Sσ is an area associated with σ (for example, Sσ = |K|n−1
K ). We now give the

following discrete relative erorrs

Eu =
|||U −U ex|||

|||U ex|||
, Eq =

|||F − F ex|||
|||F ex|||

,

where U ex and F ex denote the exact solutions and fluxes, and F ex can be evaluated250

by the mid-point rule.251

The rate of convergence Rα (α = u, q) is obtained by a least squares fit on the

ones computed on each two successive meshes by the following formula

log[Eα(h2)/Eα(h1)]

log(h2/h1)
,

where h1, h2 denote the mesh sizes of the two successive meshes, and Eα(h1), Eα(h2)252

the corresponding discrete errors.253

(a) Mesh1: triangular mesh (b) Mesh2: Kershaw mesh (c) Mesh3: skewed quadri-

lateral mesh

(d) Mesh4: random mesh (e) Mesh5: locally refined

mesh

(f) Mesh6: polygonal mesh

Fig. 5.1. Six mesh types used in the numerical tests.

5.1. Continuous solutions. In this section, we study the convergence of VLPS254

for problems with a smooth solution on the domain Ω = (0, 1)2, and use a sequence255

of six mesh types shown in Figure 5.1.256

To begin with, we consider the constant diffusion tensor and the exact solution257

u = 1 − 2x − 3y. On the coarsest meshes of six mesh types, relative errors of the258

solution and flux are given in Table 5.1. We find that the new scheme VLPS is always259
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linearity-preserving, with the solution and flux errors in the L2-norm of the order of260

machine precision.261

Table 5.1

Relative errors of the solution and flux on the coarsest meshes.

Error Mesh1 Mesh2 Mesh3 Mesh4 Mesh5 Mesh6

Eu 3.73E-16 1.49E-15 2.17E-15 2.48E-16 2.77E-16 1.32E-15

Eq 1.31E-15 6.40E-15 2.28E-14 1.11E-15 7.50E-16 3.50E-15

Secondly, we consider a test on the fifth conference on discretization schemes for

anisotropic diffusion problems on general grids [14] (FVCA V for short). We consider

the problem (1.1)–(1.2) and Ω = [0, 1]2. A homogeneous anisotropic tensor and the

exact solution are given below:

Λ =

(
1.5 0.5

0.5 1.5

)
, u(x, y) = sin((1− x)(1− y)) + (1− x)3(1− y)2.

The convergence rates for the discrete L2-norm of solution errors and flux errors262

are graphically depicted in Figure 5.2–Figure 5.3 as log-log plots of the errors versus263

the square root of the number of unknowns nunkw, and the inverse of mesh size h264

on six mesh types. The actual convergence orders are reflected by the slopes of the265

experimental error curves. Three figures show a second order convergence rate with266

respect to the solution errors and first order convergence rate with respect to the flux267

errors on six mesh types. Note that when computing the errors with respect to nunkw,268

convergence rates remain the same as expected but the relative position varies.269

sqrt(nunkw)

E
u

2 2.5 3 3.5 4 4.5 5 5.5 6

-10

-8

-6

-4

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
2nd order

(a) solution

sqrt(nunkw)

E
q

2 2.5 3 3.5 4 4.5 5 5.5 6

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5
Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
1st order

(b) flux

Fig. 5.2. L2 errors of the solution and its flux versus nunkw on Mesh1–Mesh6.

In addition, we also give the numerical results on the uniform trapezoidal meshes270

Mesh7 which are composed of elements of right-angled trapezoids, and the ratios of271

lengths of two bases of all trapezoidal elements ratio are fixed (see Figure 5.4 with272

ratio=1:19). The meshes do not satisfy the nearly parallelogram condition when273

the mesh size decreases, and the standard Q1−conforming quadrilateral finite volume274
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h

E
u

1 1.5 2 2.5 3 3.5 4 4.5 5

-10

-8

-6

-4

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
2nd order

(a) solution

h

E
q

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2
Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
1st order

(b) flux

Fig. 5.3. L2 errors of the solution and its flux versus mesh size h on Mesh1–Mesh6.

method or finite element method performs not optimal [12]. Table 5.2–Table 5.3 show275

the optimal convergence of the scheme VLPS on the uniform trapezoidal meshes Mesh7276

with ratio=1:19 and 1:199, respectively.277

Fig. 5.4. Three samples of family of the uniform trapezoidal meshes Mesh7 with ratio=1:19.

Table 5.2

Relative errors on the uniform trapezoidal mesh Mesh7 with ratio=1:19.

nunkw Eu Rate Eq Rate

225 5.58E-4 – 4.30E-2 –

961 1.38E-4 2.01 2.15E-2 1.00

3969 3.46E-5 2.00 1.07E-2 1.00

16129 8.65E-6 2.00 5.36E-3 1.00

65025 2.16E-6 2.00 2.68E-3 1.00

5.2. Discontinuous solutions. We deal with the problem (1.1)–(1.2) on Ω =

[0, 1]2, and choose an heterogeneous medium such that

Λ(x, y) =



(
1 0

0 1

)
, x ≤ 0.5,(

10 3

3 1

)
, x > 0.5.
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Table 5.3

Relative errors on the uniform trapezoidal mesh Mesh7 with ratio=1:199.

nunkw Eu Rate Eq Rate

225 5.49E-4 – 5.93E-2 –

961 1.33E-4 2.04 2.95E-2 1.01

3969 3.31E-5 2.01 1.47E-2 1.00

16129 8.28E-6 2.00 7.33E-3 1.00

65025 2.07E-6 2.00 3.66E-3 1.00

We choose the exact solution

u(x, y) =

{
1− 2y2 + 4xy + 6x+ 2y, x ≤ 0.5,

−2y2 + 1.6xy − 0.6x+ 3.2y + 4.3, x > 0.5.

This test is inspired by a steady numerical test in [19]. Convergence investigation278

is conducted on two mesh types Mesh1 and Mesh2. Table 5.4 and Table 5.5 show279

the numbers of unknowns nunkw, the relative errors of the solution and flux, and the280

convergence rates.281

Table 5.4

Behaviors on the triangular mesh Mesh1.

nunkw Eu Rate Eq Rate

97 4.20E-4 – 3.84E-2 –

417 1.09E-4 1.95 1.91E-2 1.01

1729 2.76E-5 1.98 9.50E-3 1.01

7041 6.95E-6 1.99 4.74E-3 1.00

28417 1.74E-6 2.00 2.37E-3 1.00

Table 5.5

Behaviors on Kershaw mesh Mesh2.

nunkw Eu Rate Eq Rate

225 4.65E-3 – 7.86E-2 –

961 1.13E-3 2.21 3.21E-2 1.40

3969 2.78E-4 2.10 1.61E-2 1.04

16129 6.89E-5 2.05 8.23E-3 0.98

65025 1.72E-5 2.02 4.17E-3 0.99

In the next group of tests, the domain Ω is split into four subdomains Ω = ∪4
i=1Ωi

(see Figure 5.5(a)), and the homogeneous Dirichlet boundary condition is imposed in

this test. The diffusion tensor and exact solution are given by

Λ(x, y) =

(
aix 0

0 aiy

)
, u(x, y) = αi sin(2πx) sin(2πy), for (x, y) ∈ Ωi,
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where the value of coefficients aix, a
i
y and αi can be found in Figure 5.5(a), and the282

diffusion tensor Λ is discontinuous across the lines x = 0.5 and y = 0.5.283

Table 5.6–Table 5.9 present the numerical convergence of the scheme on the uni-284

form triangular mesh (see Figure 5.5(b)), uniform square mesh, locally refined quadri-285

lateral mesh Mesh5 and uniform trapezoidal mesh Mesh7 (see Figure 5.4). We have286

the following results:287

• On the uniform triangular mesh, the convergence rate of solution errors is288

less than h1.7.289

• On the uniform square mesh, Mesh5 and Mesh7, the optimal convergence rates290

for the solution and flux errors are observed.291

a
1

x
= 10

a
1

y
= 0.01

α
1
= 0.1

a
2

x
= 0.1

a
2

y
= 100

α
2
= 10

a
4

x
= 100

a
4

y
= 0.1

α
4
= 0.01

a
3

x
= 0.01

a
3

y
= 10

α
3
= 100

(a) (b)

Fig. 5.5. Coefficients in the definition of diffusion tensor and exact solution (left) and the

uniform triangular mesh (right).

Table 5.6

Behaviors on the uniform triangular mesh.

nunkw Eu Rate Eq Rate

9 1.03E-1 – 5.11E-1 –

49 3.84E-2 1.43 2.63E-1 0.96

225 1.40E-2 1.45 1.32E-1 0.99

961 4.88E-3 1.52 6.66E-2 0.99

3969 1.55E-3 1.65 3.34E-2 0.99

5.3. Heterogeneous rotating anisotropy. Problem (1.1)–(1.2) is defined in

Ω = [0, 1]2 with a rotating anisotropic diffusion tensor:

Λ(x, y) =
1

x2 + y2

(
αx2 + y2 (α− 1)xy

(α− 1)xy x2 + αy2

)
,
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Table 5.7

Behaviors on the uniform square mesh.

nunkw Eu Rate Eq Rate

225 2.69E-2 – 7.08E-2 –

961 6.69E-3 2.01 3.54E-2 1.00

3969 1.68E-3 2.00 1.76E-2 1.00

16129 4.21E-4 2.00 8.84E-3 1.00

65025 1.05E-4 2.00 4.42E-3 1.00

Table 5.8

Behaviors on the locally refined quadrilateral mesh Mesh5.

nunkw Eu Rate Eq Rate

33 3.10E-1 – 3.29E-1 –

145 7.52E-2 2.04 1.50E-1 1.14

609 1.87E-2 2.01 7.24E-2 1.05

2497 4.71E-3 1.99 3.58E-2 1.02

10113 1.19E-3 1.99 1.78E-2 1.01

Table 5.9

Behaviors on the uniform trapezoidal mesh Mesh7.

nunkw Eu Rate Eq Rate

225 4.21E-2 – 1.81E-1 –

961 1.06E-2 1.99 9.27E-2 0.97

3969 2.68E-3 1.98 4.67E-2 0.99

16129 6.80E-4 1.98 2.34E-2 1.00

65025 1.72E-4 1.99 1.17E-2 1.00

where α characterizes the level of anisotropy. We consider the smooth exact solution292

u(x, y) = sin(πx) sin(πy). This test is inspired from Le Potier’s work[22], and we use293

families of the uniform square mesh and the triangular mesh Mesh1 with 5 mesh levels294

in this test.295

For various anisotropy α = 1, 10−3 and 10−6, plots of the rate of convergence on296

both two meshes are depicted in Figure 5.6. We observe that the new scheme VLPS297

delivers the optimal rate of convergence in the L2−norm of the solution errors and298

flux errors.299

6. Conclusion. In this article, we have presented a symmetric vertex-centered300

linearity-preserving finite volume scheme (VLPS) for two dimensional diffusion prob-301

lems. The discretization takes into account the general polygonal meshes and arbi-302

trary heterogeneous anisotropic diffusion tensors. VLPS is proved to be symmetric303

and coercive under general assumptions. Many numerical tests using meshes with304
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u
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-6
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Square mesh ( α =10-3)
Square mesh ( α =10-6)
Mesh1 (α =100)
Mesh1 (α =10-3)
Mesh1 (α =10-6)
2nd order

(a) solution

h

E
q
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-4
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-3

-2.5
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-1.5

-1 Square mesh ( α =100)
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1st order

(b) flux

Fig. 5.6. L2 errors of the solution and flux versus mesh size h on the uniform square mesh

and triangular mesh Mesh1 with α = 1, 10−3 and 10−6.

right-angled trapezoidal elements, severely distorted elements and nonmatching ele-305

ments and arbitrary (continuous or discontinuous) anisotropic diffusion tensors show306

the robustness of the scheme.307

Appendix. We show that the new vertex-centered scheme reduces to the P1−FVEM308

on triangular meshes. Still take the triangle cell K in Figure 2.2 for exposition. By309

the definition of δUK , we get310

(6.1) δUK = TKUK ,

where UK = (uν , uν+ , uν−)T and

TK =

 −1 1 0

0 −1 1

1 0 −1

 .

Now, on the one hand, by (2.3) and through straightforward calculations, we have

XK F̃T
KTK = |K|TK , CT

KTK = O.

It follows from (2.1), (3.4) and (6.1) that

FK,σ∗ = (1, 0, 0)AKTKUK =
1

|K|
(1, 0, 0) F̃KΛK F̃T

KTKUK

and further,

FK,σ∗ =
1

|K|
(xσ − xK)TRTΛK (R(xσ− − xσ),R(xσ − xσ+),R(xσ+ − xσ−))UK ,

where xσ+ = (xν+ +xν−)/2 and xσ− = (xν− +xν)/2. Then, we arrive at (2.2) with311

(6.2)

c = 1
|K| (xσ − xK)

T RTΛKR (xσ− − xσ) ,

c+ = 1
|K| (xσ − xK)

T RTΛKR (xσ − xσ+) ,

c− = 1
|K| (xσ − xK)

T RTΛKR (xσ+ − xσ−) .
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On the other hand, for P1−FVEM, the discrete flux across σ∗
K is given by

FK,σ∗ =

∫
σ∗
K

(−ΛK∇ũh) · n∗
K,σds

with

ũh = uνϕν + uν+ϕν+ + uν−ϕν−

where ϕν , ϕν+ and ϕν− denote the P1 basis functions at xν ,xν+ and xν− , respectively.

By straightforward calculations, we have

∇ϕν =
−1

2|K|
R (xν− − xν+) , ∇ϕν =

−1

2|K|
R (xν − xν−) , ∇ϕν =

−1

2|K|
R (xν+ − xν) .

Noting once again that |σ∗
K |nK,σ∗ = R(xσ − xK), we reach (2.2) with312

(6.3)

c = 1
2|K| (xσ − xK)

T RTΛKR (xν− − xν+) ,

c+ = 1
2|K| (xσ − xK)

T RTΛKR (xν − xν−) ,

c− = 1
2|K| (xσ − xK)

T RTΛKR (xν+ − xν) .

By recalling the definitions of xσ,xσ+ and xσ− , we find that (6.2) is equivalent to313

(6.3). Hence, on triangular grids, the present vertex-centered scheme is identical to314

P1− FVEM in the sense of yielding the same discrete flux expression.315
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