J. Baladron, D. Fasoli, O. Faugeras, and J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons, The Journal of Mathematical Neuroscience, vol.2, issue.1, p.10, 2012.
DOI : 10.1186/2190-8567-2-10

URL : https://hal.archives-ouvertes.fr/inserm-00732288

A. Sznitman, Topics in propagation of chaos Ecole d'eté de probabilités de Saint Flour XIX, 1989.

H. Mckean, Propagation of chaos for a class of non-linear parabolic equations In: 1967 stochastic differential equations (Lecture series in differential equations, session 7, Catholic Univ.). Arlington: Air Force Office Sci, Res, pp.41-57, 1967.

M. Scheutzow, Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations, Journal of the Australian Mathematical Society, vol.2, issue.02, pp.246-56, 1987.
DOI : 10.1007/BF00334195

J. Touboul, Propagation of chaos in neural fields, The Annals of Applied Probability, vol.24, issue.3, pp.1298-328, 2014.
DOI : 10.1214/13-AAP950

URL : https://hal.archives-ouvertes.fr/hal-00942210

G. Wainrib, Randomness in neurons: a multiscale probabilistic analysis [dissertation] École Polytechnique, 2010.

E. Luçon and W. Stannat, Mean field limit for disordered diffusions with singular interactions, The Annals of Applied Probability, vol.24, issue.5, pp.1946-93, 2014.
DOI : 10.1214/13-AAP968

I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, 1988.

P. Protter, Stochastic integration and differential equations, Stochastic modelling and applied probability, 2005.

S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean?Vlasov and Boltzmann models, Probabilistic models for nonlinear partial differential equations, 1996.

A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods and Applications, vol.11, issue.4, pp.355-84, 2005.
DOI : 10.1515/156939605777438569