P. Aisen, S. Andrieu, and C. Sampaio, Report of the task force on designing clinical trials in early (predementia) AD, Neurology, vol.76, issue.3, pp.280-286, 2011.
DOI : 10.1212/WNL.0b013e318207b1b9

Z. Khachaturian, R. Petersen, and S. Gauthier, A roadmap for the prevention of dementia: The inaugural Leon Thal Symposium, Alzheimer's & Dementia, vol.4, issue.3, pp.156-163, 2008.
DOI : 10.1016/j.jalz.2008.03.005

H. Hampel and S. Lista, Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement, The journal of nutrition, health & aging, vol.337, issue.1, pp.54-63, 2013.
DOI : 10.1126/science.337.6096.790

H. Hampel and K. Broich, Enrichment of MCI and early Alzheimer???s disease treatment trials using neurochemical & imaging candidate biomarkers, The Journal of Nutrition, Health and Aging, vol.35, issue.Suppl1, pp.373-375, 2009.
DOI : 10.1007/s12603-009-0048-3

B. Vellas, H. Hampel, and M. Rougé-bugat, Alzheimer's disease therapeutic trials

E. Task, Force report on recruitment, retention, and methodology, J Nutr Health Aging, vol.16, pp.339-345, 2012.

. Group and . Bdw, Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin Pharmacol Ther, vol.69, pp.89-95, 2001.

L. Wu, P. Rosa-neto, and S. Gauthier, Use of Biomarkers in Clinical Trials of Alzheimer Disease, Molecular Diagnosis & Therapy, vol.14, issue.9, pp.313-325, 2011.
DOI : 10.1017/S1461145711000459

B. Vellas, P. Aisen, and C. Sampaio, Prevention trials in Alzheimer's disease: An EU-US task force report, Progress in Neurobiology, vol.95, issue.4, pp.594-600, 2011.
DOI : 10.1016/j.pneurobio.2011.08.014

B. Vellas, M. Pahor, and T. Manini, Designing pharmaceutical trials for sarcopenia in frail older adults: EU/US task force recommendations, The journal of nutrition, health & aging, vol.1, issue.7, pp.612-618, 2013.
DOI : 10.1007/s12603-011-0049-x

H. Hampel, S. Lista, and Z. Khachaturian, Development of biomarkers to chart all

H. Hampel, S. Lista, and S. Teipel, Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: a long-range point of view beyond, 2020.

S. Teipel, O. Sabri, and M. Grothe, Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer's disease Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia, J Alzheimers Dis Trends Neurosci, vol.3334, pp.430-442, 2011.

K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, Cerebrospinal fluid and plasma biomarkers in Alzheimer disease, Nature Reviews Neurology, vol.359, issue.3, pp.131-144, 2010.
DOI : 10.1016/j.bbadis.2004.09.008

H. Hampel, Y. Shen, and D. Walsh, Biological markers of amyloid ??-related mechanisms in Alzheimer's disease, Experimental Neurology, vol.223, issue.2, pp.334-346, 2010.
DOI : 10.1016/j.expneurol.2009.09.024

H. Hampel, K. Blennow, L. Shaw, Y. Hoessler, H. Zetterberg et al., Total and phosphorylated tau protein as biological markers of Alzheimer???s disease, Experimental Gerontology, vol.45, issue.1, pp.30-40, 2010.
DOI : 10.1016/j.exger.2009.10.010

K. Henriksen, O. Bryant, S. Hampel, and H. , The future of blood-based biomarkers for

H. Hampel, R. Frank, and K. Broich, Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives, Nature Reviews Drug Discovery, vol.61, issue.7, pp.560-574, 2010.
DOI : 10.1038/jcbfm.1988.104

S. Lista, F. Faltraco, D. Prvulovic, and H. Hampel, Blood and plasma-based proteomic biomarker research in Alzheimer's disease, Progress in Neurobiology, vol.101, issue.102, pp.1-17, 2013.
DOI : 10.1016/j.pneurobio.2012.06.007

L. Bertram and H. Hampel, The role of genetics for biomarker development in neurodegeneration, Progress in Neurobiology, vol.95, issue.4, pp.501-504, 2011.
DOI : 10.1016/j.pneurobio.2011.09.011

T. Zetzsche, D. Rujescu, J. Hardy, and H. Hampel, Advances and perspectives from genetic research: development of biological markers in Alzheimer???s disease, Expert Review of Molecular Diagnostics, vol.15, issue.5, pp.667-690, 2010.
DOI : 10.1111/j.1755-5949.2009.00104.x

S. Lista, F. Garaci, and M. Ewers, CSF A??1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.3
DOI : 10.1016/j.jalz.2013.04.506

K. Broich and M. Weiergräber, Biomarkers in clinical trials for neurodegenerative diseases: regulatory perspectives and requirements Advances in the prevention of, Alzheimers Dement Prog Neurobiol, vol.1095, issue.24, pp.381-392498, 2011.

G. Mckhann, D. Knopman, and H. Chertkow, The diagnosis of dementia due to

M. Albert, S. Dekosky, and D. Dickson, The diagnosis of mild cognitive impairment due to Alzheimer???s disease: Recommendations from the National Institute on Aging-Alzheimer???s Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's & Dementia, vol.7, issue.3, pp.270-279, 2011.
DOI : 10.1016/j.jalz.2011.03.008

B. Dubois, H. Feldman, and C. Jacova, Advancing research diagnostic criteria for

S. Mills, J. Mallmann, and A. Santacruz, Alzheimer's disease: the IWG-2 criteria Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial, Lancet Neurol Rev Neurol (Paris), vol.13169, issue.28, pp.614-629737, 2013.

R. Sperling, M. Donohue, and P. Aisen, The A4 Trial: Anti-Amyloid Treatment of

R. Sperling, D. Rentz, and K. Johnson, The A4 Study: Stopping AD Before Symptoms Begin? Testing the right target and right drug at the right stage, Science Translational Medicine Sci Transl Med Sperling RA, vol.63, pp.111-143, 2011.

E. Reiman, J. Langbaum, P. Tariot, K. Welsh-bohmer, and D. Burns, The Alzheimer's Prevention Initiative, Alzheimer's & Dementia, vol.8, issue.4, pp.3-14841, 2010.
DOI : 10.1016/j.jalz.2012.05.1136

E. Reiman, J. Langbaum, and A. Fleisher, The Alzheimer's Prevention Initiative, Alzheimer's & Dementia, vol.8, issue.4, 2011.
DOI : 10.1016/j.jalz.2012.05.1136

S. Norton, F. Matthews, D. Barnes, K. Yaffe, and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, The Lancet Neurology, vol.13, issue.8, pp.788-794, 2014.
DOI : 10.1016/S1474-4422(14)70136-X

M. Kivipelto, T. Ngandu, T. Laatikainen, B. Winblad, H. Soininen et al., Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study, The Lancet Neurology, vol.5, issue.9, pp.735-741, 2006.
DOI : 10.1016/S1474-4422(06)70537-3

M. Senjem, J. Gunter, M. Shiung, R. Petersen, C. Jack et al., Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease, Neuroimage Neuroimage, vol.2614, issue.39, pp.600-608298, 2001.

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/978-3-642-70644-8_2

A. Delacourte, J. David, and N. Sergeant, The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease, Neurology, vol.52, issue.6, pp.1158-1165, 1999.
DOI : 10.1212/WNL.52.6.1158

J. Whitwell, S. Przybelski, and S. Weigand, 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease, Brain, vol.130, issue.7, pp.1777-1786, 2007.
DOI : 10.1093/brain/awm112

J. Whitwell, K. Josephs, and M. Murray, MRI correlates of neurofibrillary tangle pathology at autopsy: A voxel-based morphometry study, Neurology, vol.71, issue.10, pp.743-749, 2008.
DOI : 10.1212/01.wnl.0000324924.91351.7d

K. Josephs, J. Whitwell, and D. Knopman, Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype TDP-43 is a key player in the clinical features associated with Alzheimer's disease Beta-amyloid burden is not associated with rates of brain atrophy, Neurology Acta Neuropathol Ann Neurol, vol.7063, issue.46, pp.1850-1857204, 2008.

C. Jack, J. Lowe, V. Senjem, and M. , 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment, Brain, vol.131, issue.3, pp.665-680, 2008.
DOI : 10.1093/brain/awm336

P. Scheltens, D. Leys, and F. Barkhof, Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates., Journal of Neurology, Neurosurgery & Psychiatry, vol.55, issue.10, pp.967-972, 1992.
DOI : 10.1136/jnnp.55.10.967

B. Dickerson, A. Bakkour, and D. Salat, The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals, Cerebral Cortex, vol.19, issue.3, pp.497-510, 2009.
DOI : 10.1093/cercor/bhn113

P. Vemuri, J. Gunter, and M. Senjem, Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease, Neuroimage Neurology, vol.3942, issue.51, pp.1186-1197183, 1992.

C. Jack, J. Albert, M. Knopman, and D. , Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's, Association, vol.7, pp.257-262, 2011.

G. Frisoni and C. Jack, Harmonization of magnetic resonance-based manual hippocampal segmentation: A mandatory step for wide clinical use, Alzheimer's & Dementia, vol.7, issue.2, pp.171-174, 2011.
DOI : 10.1016/j.jalz.2010.06.007

C. Jack, J. Barkhof, F. Bernstein, and M. , Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer???s disease, Alzheimer's & Dementia, vol.7, issue.4, pp.474-485, 2011.
DOI : 10.1016/j.jalz.2011.04.007

J. Lee, S. Kim, and G. Kim, Volumetry for Detection of Alzheimer's Disease in a Memory Clinic Setting Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B, J Alzheimers Dis Neurology, vol.5777, pp.18-25, 2011.

G. Frisoni and W. Jagust, Subcortical vascular dementia exists!, Neurology, vol.77, issue.1, pp.12-13, 2011.
DOI : 10.1212/WNL.0b013e318221ad59

C. Jack, J. Petersen, R. Xu, and Y. , Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment The cortical signature of prodromal AD: regional thinning predicts mild AD dementia, Neurology Neurology, vol.5272, pp.1397-14031048, 1999.

R. Desikan, H. Cabral, and F. Settecase, Automated MRI measures predict progression to Alzheimer's disease, Neurobiology of Aging, vol.31, issue.8, pp.1364-1374, 2010.
DOI : 10.1016/j.neurobiolaging.2010.04.023

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902697/pdf

S. Landau, D. Harvey, and C. Madison, Comparing predictors of conversion and decline in mild cognitive impairment, Neurology, vol.75, issue.3, pp.230-238, 2010.
DOI : 10.1212/WNL.0b013e3181e8e8b8

L. Apostolova, L. Mosconi, and P. Thompson, Subregional hippocampal atrophy predicts Alzheimer's dementia in the cognitively normal, Neurobiology of Aging, vol.31, issue.7, pp.1077-1088, 2010.
DOI : 10.1016/j.neurobiolaging.2008.08.008

P. Visser, P. Scheltens, and F. Verhey, Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment Correlation between rates of brain atrophy and cognitive decline in AD Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects, J Neurol Neurology Arch Neurol, vol.2465257, issue.65, pp.477-4851687, 1999.

C. Jack, J. Petersen, R. Grundman, and M. , Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease, Neurobiol Aging Neurology, vol.2964, issue.68, pp.1285-12951563, 2005.

R. Sperling, S. Salloway, and D. Brooks, Amyloid-related imaging abnormalities in patients with Alzheimer's disease treated with bapineuzumab: a retrospective analysis, The Lancet Neurology, vol.11, issue.3, pp.241-249, 2012.
DOI : 10.1016/S1474-4422(12)70015-7

R. Sperling, C. Jack, J. Black, and S. , Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer???s Association Research Roundtable Workgroup, Alzheimer's & Dementia, vol.7, issue.4, pp.367-385, 2011.
DOI : 10.1016/j.jalz.2011.05.2351

N. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann et al., Neurophysiological investigation of the basis of the fMRI signal Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients, Nature Neurology, vol.41261, issue.72, pp.150-157500, 2001.

S. Johnson, T. Schmitz, and C. Moritz, Activation of brain regions vulnerable to

R. Sperling, J. Bates, and E. Chua, fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease, Journal of Neurology, Neurosurgery & Psychiatry, vol.74, issue.1, pp.44-50, 2003.
DOI : 10.1136/jnnp.74.1.44

A. Hamalainen, M. Pihlajamaki, and H. Tanila, Increased fMRI responses during encoding in mild cognitive impairment, Neurobiology of Aging, vol.28, issue.12, pp.1889-1903, 2007.
DOI : 10.1016/j.neurobiolaging.2006.08.008

B. Dickerson, D. Salat, and D. Greve, Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD, Neurology, vol.65, issue.3, pp.404-411, 2005.
DOI : 10.1212/01.wnl.0000171450.97464.49

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335677/pdf

H. Lim, R. Juh, and C. Pae, Altered Verbal Working Memory Process in Patients with Alzheimer???s Disease, Neuropsychobiology, vol.57, issue.4, pp.181-187, 2008.
DOI : 10.1159/000147471

A. Bokde, M. Karmann, and C. Born, Altered Brain Activation During a Verbal Working Memory Task in Subjects with Amnestic Mild Cognitive Impairment, Journal of Alzheimer's Disease, vol.21, issue.1, pp.103-118, 2010.
DOI : 10.3233/JAD-2010-091054

J. Olichney, J. Taylor, and S. Chan, fMRI responses to words repeated in a congruous semantic context are abnormal in mild Alzheimer's disease, Neuropsychologia, vol.48, issue.9, pp.2476-2487, 2010.
DOI : 10.1016/j.neuropsychologia.2010.04.021

A. Bokde, P. Lopez-bayo, and T. Meindl, Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment, Brain, vol.129, issue.5, pp.1113-1124, 2006.
DOI : 10.1093/brain/awl051

S. Forster, A. Vaitl, and S. Teipel, Functional Representation of Olfactory Impairment in Early Alzheimer's Disease, Journal of Alzheimer's Disease, vol.22, issue.2, pp.581-591, 2010.
DOI : 10.3233/JAD-2010-091549

R. Buckner, J. Sepulcre, and T. Talukdar, Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease, Journal of Neuroscience, vol.29, issue.6
DOI : 10.1523/JNEUROSCI.5062-08.2009

M. Greicius, G. Srivastava, A. Reiss, and V. Menon, Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.4637-4642, 2004.
DOI : 10.1016/S0197-4580(98)00022-0

URL : http://www.pnas.org/content/101/13/4637.full.pdf

C. Sorg, V. Riedl, and M. Muhlau, Selective changes of resting-state networks in individuals at risk for Alzheimer's disease, Proceedings of the National Academy of Sciences, vol.28, issue.11, pp.18760-18765, 2007.
DOI : 10.1002/hbm.20359

T. Gili, M. Cercignani, and L. Serra, Regional brain atrophy and functional disconnection across Alzheimer's disease evolution, Journal of Neurology, Neurosurgery & Psychiatry, vol.82, issue.1, pp.58-66, 2011.
DOI : 10.1136/jnnp.2009.199935

URL : http://jnnp.bmj.com/content/early/2010/07/16/jnnp.2009.199935.full.pdf

R. Sperling, P. Laviolette, O. Keefe, and K. , Amyloid deposition is associated with impaired default network function in older persons without dementia Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden, Neuron Brain, vol.63134, pp.178-1881635, 2009.

D. Maillet and M. Rajah, Age-related differences in brain activity in the subsequent memory paradigm: A meta-analysis, Neuroscience & Biobehavioral Reviews, vol.45
DOI : 10.1016/j.neubiorev.2014.06.006

S. Bookheimer, M. Strojwas, and M. Cohen, Patterns of Brain Activation in People at Risk for Alzheimer's Disease, New England Journal of Medicine, vol.343, issue.7, pp.450-456, 2000.
DOI : 10.1056/NEJM200008173430701

D. Le-bihan, Imagerie de diffusion in-vivo par résonance magnétique nucléaire

M. Mielke, O. Okonkwo, and K. Oishi, Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer???s disease, Alzheimer's & Dementia, vol.8, issue.2, pp.105-113, 2012.
DOI : 10.1016/j.jalz.2011.05.2416

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305232/pdf

G. Douaud, R. Menke, and A. Gass, Brain Microstructure Reveals Early Abnormalities more than Two Years prior to Clinical Progression from Mild Cognitive Impairment to Alzheimer's Disease, Journal of Neuroscience, vol.33, issue.5, pp.2147-2155, 2013.
DOI : 10.1523/JNEUROSCI.4437-12.2013

P. Selnes, D. Aarsland, and A. Bjornerud, Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment, J Alzheimers Dis, vol.33, pp.723-736, 2013.

S. Haller, D. Nguyen, and C. Rodriguez, Individual Prediction of Cognitive Decline in Mild Cognitive Impairment Using Support Vector Machine-Based Analysis of Diffusion Tensor Imaging Data, Journal of Alzheimer's Disease, vol.22, issue.1, pp.315-327, 2010.
DOI : 10.3233/JAD-2010-100840

S. Teipel, S. Reuter, and B. Stieltjes, Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study, Psychiatry Research: Neuroimaging, vol.194, issue.3, pp.363-371, 2011.
DOI : 10.1016/j.pscychresns.2011.05.012

T. Kirste and S. J. Teipel, Prediction of prodromal AD in MCI subjects using multicenter DTI and MRI data and multiple kernels SVM: an EDSD study, Alzheimer's & Dementia, vol.10, p.40, 2014.

M. Nowrangi, C. Lyketsos, and J. Leoutsakos, Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer???s disease, Alzheimer's & Dementia, vol.9, issue.5, pp.519-528, 2013.
DOI : 10.1016/j.jalz.2012.05.2186

S. Teipel, T. Meindl, and M. Wagner, Longitudinal Changes in Fiber Tract Integrity in Healthy Aging and Mild Cognitive Impairment: A DTI Follow-Up Study, Journal of Alzheimer's Disease, vol.22, issue.2, pp.507-522, 2010.
DOI : 10.3233/JAD-2010-100234

Y. Likitjaroen, T. Meindl, and U. Friese, Longitudinal changes of fractional anisotropy in Alzheimer???s disease patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded study, European Archives of Psychiatry and Clinical Neuroscience, vol.68, issue.Suppl 1, pp.341-350, 2012.
DOI : 10.1212/01.wnl.0000250326.77323.01

M. Catani, F. Acqua, and M. De-schotten, A revised limbic system model for memory, emotion and behaviour. Neuroscience and biobehavioral reviews, 2013.

N. Geschwind, DISCONNEXION SYNDROMES IN ANIMALS AND MAN, Brain, vol.88, issue.2, pp.237-294, 1965.
DOI : 10.1093/brain/88.2.237

N. Geschwind, DISCONNEXION SYNDROMES IN ANIMALS AND MAN, Brain, vol.88, issue.3, pp.585-644, 1965.
DOI : 10.1093/brain/88.3.585

M. Catani, M. Mesulam, and E. Jakobsen, A novel frontal pathway underlies verbal fluency in primary progressive aphasia, Brain, vol.136, issue.8, pp.2619-2628, 2013.
DOI : 10.1093/brain/awt163

G. Frisoni, Alzheimer's Disease Neuroimaging Initiative in Europe, Alzheimer's & Dementia, vol.6, issue.3, pp.280-285, 2010.
DOI : 10.1016/j.jalz.2010.03.005

E. Cavedo, A. Redolfi, and F. Angeloni, The Italian Alzheimer's Disease Neuroimaging Initiative (I-ADNI): Validation of Structural MR Imaging, J Alzheimers Dis, 2014.

M. Carrillo, L. Bain, G. Frisoni, and M. Weiner, Worldwide Alzheimer's disease neuroimaging initiative Alzheimer's & dementia : the journal of the Alzheimer's, Association, vol.8, pp.337-342, 2012.

S. Landau, C. Breault, and A. Joshi, Amyloid-?? Imaging with Pittsburgh Compound B and Florbetapir: Comparing Radiotracers and Quantification Methods, Journal of Nuclear Medicine, vol.54, issue.1, pp.70-77, 2013.
DOI : 10.2967/jnumed.112.109009

URL : http://jnm.snmjournals.org/content/54/1/70.full.pdf

C. Clark, M. Pontecorvo, and T. Beach, Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-?? plaques: a prospective cohort study, The Lancet Neurology, vol.11, issue.8, pp.669-678, 2012.
DOI : 10.1016/S1474-4422(12)70142-4

D. Chien, A. Szardenings, and S. Bahri, Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808, J Alzheimers Dis, vol.38, pp.171-184, 2014.

V. Villemagne, S. Furumoto, and M. Fodero-tavoletti, In vivo evaluation of a novel tau imaging tracer for Alzheimer???s disease, European Journal of Nuclear Medicine and Molecular Imaging, vol.40, issue.1, pp.816-826, 2014.
DOI : 10.1007/s00259-012-2261-2

N. Bohnen, D. Djang, K. Herholz, Y. Anzai, and S. Minoshima, Effectiveness and Safety of 18F-FDG PET in the Evaluation of Dementia: A Review of the Recent Literature, Journal of Nuclear Medicine, vol.53, issue.1, pp.59-71, 2012.
DOI : 10.2967/jnumed.111.096578

K. Herholz, H. Boecker, I. Nemeth, and G. Dunn, FDG PET in dementia multicenter studies and clinical trials, Clinical and Translational Imaging, vol.104, issue.47, pp.261-270, 2013.
DOI : 10.1073/pnas.0708803104

J. Shaffer, J. Petrella, and F. Sheldon, Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers, Radiology, vol.266, issue.2, 2012.
DOI : 10.1148/radiol.12120010

R. Petersen, P. Aisen, and B. Boeve, Mild cognitive impairment due to Alzheimer disease in the community, Annals of Neurology, vol.74, pp.199-208, 2013.

M. Yokokura, N. Mori, and S. Yagi, In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer???s disease, European Journal of Nuclear Medicine and Molecular Imaging, vol.132, issue.2, pp.343-351, 2011.
DOI : 10.1093/brain/awp148

A. Schuitemaker, M. Kropholler, and R. Boellaard, Microglial activation in Alzheimer's disease: an (R)-[11C]PK11195 positron emission tomography study, Neurobiology of Aging, vol.34, issue.1, pp.128-136, 2013.
DOI : 10.1016/j.neurobiolaging.2012.04.021

C. Wiley, B. Lopresti, and S. Venneti, Carbon 11???Labeled Pittsburgh Compound B and Carbon 11???Labeled (R)-PK11195 Positron Emission Tomographic Imaging in Alzheimer Disease, Archives of Neurology, vol.66, issue.1, pp.60-67, 2009.
DOI : 10.1001/archneurol.2008.511

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666881/pdf

S. Venneti, B. Lopresti, and C. Wiley, Molecular imaging of microglia/macrophages in the brain, Glia, vol.27, issue.1, pp.10-23, 2013.
DOI : 10.1089/neu.2009.1196

S. Chua, M. Kassiou, and L. Ittner, The translocator protein as a drug target in Alzheimer???s disease, Expert Review of Neurotherapeutics, vol.33, issue.20, pp.439-448, 2014.
DOI : 10.1523/JNEUROSCI.1350-13.2013

W. Kreisl, C. Lyoo, and M. Mcgwier, In vivo radioligand binding to translocator protein correlates with severity of Alzheimer???s disease, Brain, vol.136, issue.7, p.17, 2013.
DOI : 10.1093/brain/awt145

D. Owen, A. Yeo, and R. Gunn, An 18-kDa Translocator Protein (TSPO) Polymorphism Explains Differences in Binding Affinity of the PET Radioligand PBR28, Journal of Cerebral Blood Flow & Metabolism, vol.76, issue.11, pp.1-5, 2012.
DOI : 10.1086/429864

S. Carter, M. Scholl, and O. Almkvist, Evidence for Astrocytosis in Prodromal Alzheimer Disease Provided by 11C-Deuterium-L-Deprenyl: A Multitracer PET Paradigm Combining 11C-Pittsburgh Compound B and 18F-FDG, Journal of Nuclear Medicine, vol.53, issue.1, pp.37-46, 2012.
DOI : 10.2967/jnumed.110.087031

A. Horti, H. Kuwabara, D. Holt, R. Dannals, and D. Wong, Recent PET radioligands with optimal brain kinetics for imaging nicotinic acetylcholine receptors, Journal of Labelled Compounds and Radiopharmaceuticals, vol.62, issue.3-4, pp.159-166, 2013.
DOI : 10.1002/syn.20480

R. Bateman, C. Xiong, and T. Benzinger, Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease, New England Journal of Medicine, vol.367, issue.9, pp.795-804, 2012.
DOI : 10.1056/NEJMoa1202753

C. Jack, J. Knopman, D. Jagust, and W. , Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, The Lancet Neurology, vol.12, issue.2, pp.207-216, 2013.
DOI : 10.1016/S1474-4422(12)70291-0

C. Jack, J. Vemuri, P. Wiste, and H. , Shapes of the Trajectories of 5 Major Biomarkers of Alzheimer Disease, Archives of Neurology, vol.69, issue.7, 2012.
DOI : 10.1001/archneurol.2011.3405

P. Alexopoulos, L. Kriett, and B. Haller, Limited agreement between biomarkers of neuronal injury at different stages of Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association, 2014.

K. Kendziorra, H. Wolf, and P. Meyer, Decreased cerebral ??4??2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer???s disease assessed with positron emission tomography, European Journal of Nuclear Medicine and Molecular Imaging, vol.46, issue.3, pp.515-525, 2011.
DOI : 10.1006/nimg.2002.1259

V. Villemagne and N. Okamura, In vivo tau imaging: obstacles and progress. Alzheimer's & dementia : the journal of the Alzheimer's, Association, vol.10, pp.254-264, 2014.

N. Okamura, S. Furumoto, and R. Harada, Novel 18F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease, Journal of Nuclear Medicine, vol.54, issue.8, pp.1420-1427, 2013.
DOI : 10.2967/jnumed.112.117341

D. Chien, S. Bahri, and A. Szardenings, Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807, Journal of Alzheimer's disease : JAD, vol.34, pp.457-468, 2013.

A. Drzezga, H. Barthel, S. Minoshima, and O. Sabri, Potential Clinical Applications of PET/MR Imaging in Neurodegenerative Diseases, Journal of Nuclear Medicine, vol.55, issue.Supplement_2, pp.47-55, 2014.
DOI : 10.2967/jnumed.113.129254

K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, Cerebrospinal fluid and plasma biomarkers in Alzheimer disease, Nature Reviews Neurology, vol.359, issue.3, pp.131-144, 2010.
DOI : 10.1016/j.bbadis.2004.09.008

A. Fagan, C. Xiong, and M. Jasielec, Longitudinal Change in CSF Biomarkers in Autosomal-Dominant Alzheimer's Disease, Science Translational Medicine, vol.53, issue.3, pp.226-230, 2014.
DOI : 10.2307/2533558

N. Mattsson, U. Andreasson, and S. Persson, The Alzheimer???s Association external quality control program for cerebrospinal fluid biomarkers, Alzheimer's & Dementia, vol.7, issue.4, pp.386-395, 2011.
DOI : 10.1016/j.jalz.2011.05.2243

N. Mattsson, U. Andreasson, and S. Persson, CSF biomarker variability in the Alzheimer's Association quality control program, Alzheimer's & Dementia, vol.9, issue.3, pp.251-261, 2013.
DOI : 10.1016/j.jalz.2013.01.010

M. Carrillo, K. Blennow, and H. Soares, Global standardization measurement of cerebral spinal fluid for Alzheimer's disease: An update from the Alzheimer's Association Global Biomarkers Consortium, Alzheimer's & Dementia, vol.9, issue.2, pp.137-140, 2013.
DOI : 10.1016/j.jalz.2012.11.003

A. Leinenbach, J. Pannee, and T. Dulffer, Mass Spectrometry-Based Candidate Reference Measurement Procedure for Quantification of Amyloid-beta in Cerebrospinal Fluid, Clin Chem, 2014.

J. Toledo, S. Xie, J. Trojanowski, and L. Shaw, Longitudinal change in CSF Tau and A?? biomarkers for up to 48??months in ADNI, Acta Neuropathologica, vol.26, issue.4, pp.659-670, 2013.
DOI : 10.1016/j.jalz.2011.09.172

N. Mattsson, P. Insel, and R. Nosheny, CSF protein biomarkers predicting longitudinal reduction of CSF ??-amyloid42 in cognitively healthy elders, Translational Psychiatry, vol.12, issue.8, p.293, 2013.
DOI : 10.2217/bmm.12.42

A. Moghekar, S. Li, and Y. Lu, CSF biomarker changes precede symptom onset of mild cognitive impairment, Neurology, vol.81, issue.20, 2013.
DOI : 10.1212/01.wnl.0000435558.98447.17

H. Zetterberg, M. Pedersen, and K. Lind, Intra-Individual Stability of CSF Biomarkers for Alzheimer's Disease over Two Years, Journal of Alzheimer's Disease, vol.12, issue.3, pp.255-260, 2007.
DOI : 10.3233/JAD-2007-12307

K. Blennow, H. Zetterberg, and L. Minthon, Longitudinal stability of CSF biomarkers in Alzheimer's disease, Neuroscience Letters, vol.419, issue.1, pp.18-22, 2007.
DOI : 10.1016/j.neulet.2007.03.064

N. Mattsson, E. Portelius, and S. Rolstad, Longitudinal measurements of cerebrospinal fluid biomarkers over four years in mild cognitive impairment, Alzheimer's & Dementia, vol.8, issue.4, pp.767-778, 2012.
DOI : 10.1016/j.jalz.2012.05.203

N. Mattsson, L. Rajendran, and H. Zetterberg, BACE1 Inhibition Induces a Specific Cerebrospinal Fluid ??-Amyloid Pattern That Identifies Drug Effects in the Central Nervous System, PLoS ONE, vol.5, issue.2, p.31084, 2012.
DOI : 10.1371/journal.pone.0031084.s002

L. Lannfelt, K. Blennow, and H. Zetterberg, Safety, efficacy, and biomarker findings of PBT2 in targeting A?? as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, The Lancet Neurology, vol.7, issue.9, pp.779-786, 2008.
DOI : 10.1016/S1474-4422(08)70167-4

P. May, R. Dean, and S. Lowe, Robust Central Reduction of Amyloid-?? in Humans with an Orally Available, Non-Peptidic ??-Secretase Inhibitor, Journal of Neuroscience, vol.31, issue.46, pp.16507-16516, 2011.
DOI : 10.1523/JNEUROSCI.3647-11.2011

E. Portelius, R. Dean, and M. Gustavsson, A novel A?? isoform pattern in CSF reflects ??-secretase inhibition in Alzheimer disease, Alzheimer's Research & Therapy, vol.2, issue.2, p.7, 2010.
DOI : 10.1186/alzrt30

S. Gilman, M. Koller, and R. Black, Clinical effects of A?? immunization (AN1792) in patients with AD in an interrupted trial, Neurology, vol.64, issue.9, pp.1553-1562, 2005.
DOI : 10.1212/01.WNL.0000159740.16984.3C

K. Blennow, H. Zetterberg, and J. Rinne, Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease, Arch Neurol, vol.69, pp.1002-1010, 2012.

E. Karran and J. Hardy, A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease, Annals of Neurology, vol.8, issue.pt 5, 2014.
DOI : 10.1016/j.jalz.2011.09.224

J. Lee, K. Blennow, and N. Andreasen, The Brain Injury Biomarker VLP-1 Is Increased in the Cerebrospinal Fluid of Alzheimer Disease Patients, Clinical Chemistry, vol.54, issue.10, pp.1617-1623, 2008.
DOI : 10.1373/clinchem.2008.104497

C. Rosen, N. Mattsson, and P. Johansson, Discriminatory Analysis of Biochip-Derived Protein Patterns in CSF and Plasma in Neurodegenerative Diseases, Frontiers Aging Neuroscience, vol.3, 2011.
DOI : 10.3389/fnagi.2011.00001

A. Thorsell, M. Bjerke, and J. Gobom, Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease, Brain Research, vol.1362, pp.13-22, 2010.
DOI : 10.1016/j.brainres.2010.09.073

R. Perrin, R. Craig-schapiro, and J. Malone, Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease, PLoS ONE, vol.5, issue.1, p.16032, 2011.
DOI : 10.1371/journal.pone.0016032.s002

A. Armstrong, N. Mattsson, and H. Appelqvist, Lysosomal Network Proteins as Potential Novel CSF Biomarkers for Alzheimer???s Disease, NeuroMolecular Medicine, vol.7, issue.1, 2013.
DOI : 10.1021/pr070501k

URL : https://link.springer.com/content/pdf/10.1007%2Fs12017-013-8269-3.pdf

H. Soares and S. Lovestone, Biomarker utility in Alzheimer's disease clinical trials. Drug Discovery Today: Therapeutic Strategies, 2014.
DOI : 10.1016/j.ddstr.2013.09.002

S. Kiddle, M. Sattlecker, and P. Proitsi, Candidate blood proteome markers of

O. Bryant, S. , X. G. Barber, and R. , A serum protein-based algorithm for the detection of Alzheimer disease, Archives of Neurology, vol.67, pp.1077-1081, 2010.

P. Grammas, Validation of a serum screen for Alzheimer's disease across assay platforms, species and tissues. Journal of Alzheimer's disease : JAD 2014

K. Taddei, T. Taddei, B. Trounson, D. Aimes, C. Masters et al., Blood-based protein biomarkers for the diagnosis of Alzheimer's disease, Arch Neurol, 2012.

S. Burnham, N. Faux, and W. Wilson, A blood-based predictor for neocortical A?? burden in Alzheimer???s disease: results from the AIBL study, Molecular Psychiatry, vol.21, issue.4, pp.519-526, 2014.
DOI : 10.1016/S1474-4422(09)70299-6

M. Thambisetty, R. Tripaldi, and J. Riddoch-contreras, Proteome-Based Plasma Markers of Brain Amyloid-?? Deposition in Non-Demented Older Individuals, Journal of Alzheimer's Disease, vol.22, issue.4, pp.1099-1109, 2010.
DOI : 10.3233/JAD-2010-101350

A. Hye, J. Riddoch-contreras, and A. Baird, Plasma proteins predict conversion to dementia from prodromal disease. Alzheimer's and Dementia, 2014.
DOI : 10.1016/j.jalz.2014.05.1749

URL : https://doi.org/10.1016/j.jalz.2014.05.1749

D. Llano, V. Devanarayan, and A. Simon, Evaluation of Plasma Proteomic Data for Alzheimer Disease State Classification and for the Prediction of Progression From Mild Cognitive Impairment to Alzheimer Disease, Alzheimer Disease & Associated Disorders, vol.27, issue.3, pp.233-243, 2013.
DOI : 10.1097/WAD.0b013e31826d597a

M. Mapstone, A. Cheema, and M. Fiandaca, Plasma phospholipids identify antecedent memory impairment in older adults, Nature Medicine, vol.33, issue.4, pp.415-418, 2014.
DOI : 10.18637/jss.v033.i01

F. Song, A. Poljak, and J. Crawford, Plasma Apolipoprotein Levels Are Associated with Cognitive Status and Decline in a Community Cohort of Older Individuals, PLoS ONE, vol.33, issue.6, 2012.
DOI : 10.1371/journal.pone.0034078.s015

S. Swaminathan, S. Risacher, and K. Yoder, Association of plasma and cortical amyloid beta is modulated by APOE ?4 status. Alzheimer's and Dementia, pp.9-18, 2014.

D. Crenshaw, W. Gottschalk, and M. Lutz, Using Genetics to Enable Studies on the Prevention of Alzheimer???s Disease, Clinical Pharmacology & Therapeutics, vol.6, issue.2, pp.177-185, 2013.
DOI : 10.1016/j.jalz.2006.04.011

M. Thambisetty, Y. An, and A. Kinsey, Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment, NeuroImage, vol.59, issue.1, pp.212-217, 2012.
DOI : 10.1016/j.neuroimage.2011.07.056

H. Snyder, M. Carrillo, and F. Grodstein, Developing novel blood-based biomarkers for Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's, Association, vol.10, pp.109-114, 2014.

R. Umek, M. Weiner, P. Grammas, H. Posner, and R. Martins, Guidelines for the standardization fo preanalytic variables for blood-based biomarker studies in Alzheimer's disease

L. Bertram, M. Mcqueen, K. Mullin, D. Blacker, and R. Tanzi, Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database, Nature Genetics, vol.14, issue.1, pp.17-23, 2007.
DOI : 10.1136/bmj.315.7109.629

J. Lambert, C. Ibrahim-verbaas, and D. Harold, Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nature Genetics, vol.9, issue.12, pp.1452-1458, 2013.
DOI : 10.1093/bioinformatics/btq419

J. Goldman, S. Hahn, and J. Catania, Genetic counseling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors, Genetics in Medicine, vol.6, issue.6, pp.597-605, 2011.
DOI : 10.1097/01.GIM.0000132688.55591.77

E. Karran and J. Hardy, Antiamyloid Therapy for Alzheimer's Disease ??? Are We on the Right Road?, New England Journal of Medicine, vol.370, issue.4, pp.377-378, 2014.
DOI : 10.1056/NEJMe1313943

O. Kraff, A. Fischer, A. Nagel, C. Mönninghoff, and M. Ladd, MRI at 7 tesla and above: Demonstrated and potential capabilities, Journal of Magnetic Resonance Imaging, vol.269, issue.1, 2014.
DOI : 10.1148/radiol.13130757

M. Rössler, R. Zarski, J. Bohl, and T. Ohm, Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer's disease, Acta Neuropathologica, vol.103, issue.4, pp.363-369, 2002.
DOI : 10.1007/s00401-001-0475-7

L. Joie, R. Perrotin, A. De-la-sayette, and V. , Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia, NeuroImage: Clinical, vol.3, pp.155-162, 2013.
DOI : 10.1016/j.nicl.2013.08.007

S. Mueller, N. Schuff, K. Yaffe, C. Madison, B. Miller et al., Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer's disease, Human Brain Mapping, vol.11, issue.9, pp.1339-1347, 2010.
DOI : 10.1212/WNL.54.9.1760

C. Boutet, M. Chupin, S. Lehéricy, L. Marrakchi-kacem, S. Epelbaum et al., Detection of volume loss in hippocampal layers in Alzheimer's disease using 7??T MRI: A feasibility study, NeuroImage: Clinical, vol.5, pp.341-348
DOI : 10.1016/j.nicl.2014.07.011

G. Kerchner, D. Berdnik, and J. Shen, APOE ??4 worsens hippocampal CA1 apical neuropil atrophy and episodic memory, Neurology, vol.82, issue.8, pp.691-697, 2014.
DOI : 10.1212/WNL.0000000000000154

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945665/pdf

G. Kerchner, C. Hess, and K. Hammond-rosenbluth, Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI, Neurology, vol.75, issue.15, pp.1381-1387, 2010.
DOI : 10.1212/WNL.0b013e3181f736a1

S. Lee, M. Falangola, R. Nixon, K. Duff, and J. Helpern, Visualization of ?-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR microscopy without contrast reagents, Magnetic Resonance in Medicine, vol.24, issue.3, pp.538-544, 2004.
DOI : 10.2214/ajr.147.1.103

S. Teipel, E. Kaza, and S. Hadlich, Automated detection of beta-amyloid???related cortical and subcortical signal changes in a transgenic model of Alzheimer's disease using high-field MRI, Alzheimer's & Dementia, vol.7, issue.4, pp.221-237, 2011.
DOI : 10.1016/j.jalz.2011.05.023

A. Bertrand, A. Pasquier, and A. Petiet, Micro-MRI Study of Cerebral Aging: Ex Vivo Detection of Hippocampal Subfield Reorganization, Microhemorrhages and Amyloid Plaques in Mouse Lemur Primates, PLoS ONE, vol.27, issue.2, p.56593, 2013.
DOI : 10.1371/journal.pone.0056593.g002

URL : https://hal.archives-ouvertes.fr/hal-01407046

M. Conijn, M. Geerlings, and G. Biessels, Cerebral Microbleeds on MR Imaging: Comparison between 1.5 and 7T, American Journal of Neuroradiology, vol.32, issue.6, pp.1043-1049, 2011.
DOI : 10.3174/ajnr.A2450

URL : http://www.ajnr.org/content/ajnr/32/6/1043.full.pdf

J. Theysohn, O. Kraff, and S. Maderwald, 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia, Journal of Magnetic Resonance Imaging, vol.17, issue.Pt 8, pp.782-791, 2011.
DOI : 10.1111/j.1552-6569.2006.00070.x

S. Van-rooden, J. Goos, and A. Van-opstal, Increased Number of Microinfarcts in Alzheimer Disease at 7-T MR Imaging, Radiology, vol.270, issue.1, pp.205-211, 2014.
DOI : 10.1148/radiol.13130743

S. Van-veluw, S. Heringa, and H. Kuijf, Cerebral cortical microinfarcts at 7Tesla MRI in patients with early Alzheimer's disease, J Alzheimers Dis, vol.39, pp.163-167, 2014.

F. Lopes-da-silva, EEG and MEG: Relevance to Neuroscience, Neuron, vol.80, issue.5, pp.1112-1128, 2013.
DOI : 10.1016/j.neuron.2013.10.017

A. Keil, S. Debener, and G. Gratton, Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography, Psychophysiology, vol.119, issue.1
DOI : 10.1037/a0017552

URL : http://onlinelibrary.wiley.com/doi/10.1111/psyp.12147/pdf

M. Hogan, G. Swanwick, J. Kaiser, M. Rowan, and B. Lawlor, Memory-related EEG power and coherence reductions in mild Alzheimer's disease, International Journal of Psychophysiology, vol.49, issue.2, pp.147-163, 2003.
DOI : 10.1016/S0167-8760(03)00118-1

V. Drago, C. Babiloni, and D. Bartrés-faz, Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage, J Alzheimers Dis, vol.26, issue.3, pp.159-199, 2011.

C. Babiloni, F. Vecchio, and R. Lizio, Resting state cortical rhythms in mild cognitive impairment and Alzheimer's disease: electroencephalographic evidence, J Alzheimers Dis, vol.26, issue.3, pp.201-214, 2011.

C. Stam, B. Jones, and I. Manshanden, Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer's disease, NeuroImage, vol.32, issue.3, pp.1335-1344, 2006.
DOI : 10.1016/j.neuroimage.2006.05.033

C. Stam, T. Montez, and B. Jones, Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease, Clinical Neurophysiology, vol.116, issue.3, pp.708-715, 2005.
DOI : 10.1016/j.clinph.2004.09.022

S. Lee, Y. Park, D. Kim, and C. Im, Global synchronization index as a biological correlate of cognitive decline in Alzheimer's disease, Neuroscience Research, vol.66, issue.4, pp.333-339, 2010.
DOI : 10.1016/j.neures.2009.12.004

K. Hansen, Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage, Front Aging Neurosci, vol.5, p.58, 2013.

E. Zamrini, F. Maestu, and E. Pekkonen, Magnetoencephalography as a Putative Biomarker for Alzheimer's Disease, International Journal of Alzheimer's Disease, vol.5, issue.3-4, p.280289, 2011.
DOI : 10.1023/B:MACH.0000035475.85309.1b

N. Kozauer and R. Katz, Regulatory Innovation and Drug Development for Early-Stage Alzheimer's Disease, New England Journal of Medicine, vol.368, issue.13, pp.1169-1171, 2013.
DOI : 10.1056/NEJMp1302513

K. Broich, M. Weiergräber, and H. Hampel, Regulatory requirements on clinical trials in Alzheimer's Disease Alzheimer' Disease ? Modernizing Concept, Biological Diagnosis and Therapy: Karger, pp.168-178

B. Dubois, H. Feldman, and C. Jacova, Revising the definition of Alzheimer's disease: a new lexicon, The Lancet Neurology, vol.9, issue.11, pp.1118-1127, 2010.
DOI : 10.1016/S1474-4422(10)70223-4

J. Morris, K. Blennow, and L. Froelich, Harmonized diagnostic criteria for Alzheimer's disease: recommendations, Journal of Internal Medicine, vol.6, issue.3, pp.204-213, 2014.
DOI : 10.2217/bmm.12.42

H. Hampel and . Cm, Alzheimer's Disease ? Modernizing Concept, Biological Diagnosis and Therapy, Adv Biol Psychiatry Basel, Karger, vol.28, 2012.

E. Giacobini and G. Gold, Alzheimer disease therapy???moving from amyloid-?? to tau, Nature Reviews Neurology, vol.8, issue.12, pp.677-686, 2013.
DOI : 10.1016/S0006-291X(84)80190-4

H. Feldman, M. Haas, and S. Gandy, Alzheimer's disease research and development: a call for a new research roadmap, Annals of the New York Academy of Sciences, vol.1313, issue.9, pp.1-16, 2014.
DOI : 10.1111/nyas.12417

A. Noel-storr, L. Flicker, and C. Ritchie, Systematic review of the body of evidence for the use of biomarkers in the diagnosis of dementia, Alzheimer's & Dementia, vol.9, issue.3, pp.96-105, 2013.
DOI : 10.1016/j.jalz.2012.01.014

N. Mattsson, U. Andreasson, and S. Persson, CSF biomarker variability in the Alzheimer's Association quality control program, Alzheimer's & Dementia, vol.9, issue.3, pp.251-261, 2013.
DOI : 10.1016/j.jalz.2013.01.010

N. Asaeawo, Workgroup on NAPA's scientific agenda for a national initiative on Alzheimer's disease, Alzheimers Dement, vol.8, pp.357-371, 2012.

M. Asawio, Report on National Alzheimer's Plan Milestones -FY', 2014.

P. Fowler, J. Whitwell, L. Jeffrey, J. Young, K. Smith et al., Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487 The five-five, ten-ten plan for Alzheimer's disease, Mutat Res Neurobiol Aging, vol.70213, issue.224, pp.171-174197, 1992.

Z. Khachaturian, Prospects For Preventing Alzheimer's Disease. Testimony for a Hearing on Alzheimer's Disease Research Senate Committee on Labor & Human Resources Washington, 1997.

Z. Khachaturian, J. Camí, and S. Andrieu, Creating a transatlantic research enterprise for preventing Alzheimer's disease, Alzheimer's & Dementia, vol.5, issue.4, pp.361-366, 2009.
DOI : 10.1016/j.jalz.2009.05.158

I. Carrié, G. Van-kan, and S. Gillette-guyonnet, Recruitment strategies for preventive trials. The MAPT study (Multidomain Alzheimer Preventive Trial), The journal of nutrition, health & aging, vol.12, issue.12, pp.355-359, 2012.
DOI : 10.1016/j.jamda.2011.06.013

O. Forlenza, B. Diniz, M. Radanovic, F. Santos, L. Talib et al., Diseasemodifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. The British journal of psychiatry : the journal of mental science, pp.351-356, 2011.

S. Craft, L. Baker, and T. Montine, Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment, Archives of Neurology, vol.69, issue.1, pp.29-38, 2012.
DOI : 10.1001/archneurol.2011.233

URL : http://archneur.jamanetwork.com/data/journals/neur/22527/nct110002_29_38.pdf

H. Feldman, S. Ferris, and B. Winblad, Effect of rivastigmine on delay to diagnosis of Alzheimer's disease from mild cognitive impairment: the InDDEx study, The Lancet Neurology, vol.6, issue.6, pp.501-512, 2007.
DOI : 10.1016/S1474-4422(07)70109-6