The horoboundary and isometry group of Thurston's Lipschitz metric

Cormac Walsh 1, 2
1 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We show that the horofunction boundary of Teichmüller space with Thurston's Lipschitz metric is the same as the Thurston boundary. We use this to determine the isometry group of the Lipschitz metric, apart from in some exceptional cases. We also show that the Teichmüller spaces of different surfaces, when endowed with this metric, are not isometric, again with some possible exceptions of low genus.
Type de document :
Chapitre d'ouvrage
Athanase Papadopoulos. Handbook of Teichmüller Theory, Volume IV, 19, European Mathematical Society, pp.838, 2014, IRMA Lectures in Mathematics and Theoretical Physics, 978-3-03719-117-0
Liste complète des métadonnées

https://hal.inria.fr/hal-01098838
Contributeur : Cormac Walsh <>
Soumis le : lundi 29 décembre 2014 - 19:35:19
Dernière modification le : jeudi 10 mai 2018 - 02:05:53

Lien texte intégral

Identifiants

  • HAL Id : hal-01098838, version 1
  • ARXIV : 1006.2158

Collections

Citation

Cormac Walsh. The horoboundary and isometry group of Thurston's Lipschitz metric. Athanase Papadopoulos. Handbook of Teichmüller Theory, Volume IV, 19, European Mathematical Society, pp.838, 2014, IRMA Lectures in Mathematics and Theoretical Physics, 978-3-03719-117-0. 〈hal-01098838〉

Partager

Métriques

Consultations de la notice

190