
HAL Id: hal-01098979
https://inria.hal.science/hal-01098979

Submitted on 30 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Best Nest Regular Path Queries
Pierre Bourhis, Markus Krötzsch, Sebastian Rudolph

To cite this version:
Pierre Bourhis, Markus Krötzsch, Sebastian Rudolph. How to Best Nest Regular Path Queries.
Informal Proceedings of the 27th International Workshop on Description Logics, Jul 2014, Vienne,
Austria. �hal-01098979�

https://inria.hal.science/hal-01098979
https://hal.archives-ouvertes.fr

How to Best Nest Regular Path Queries

Pierre Bourhis1,2, Markus Krötzsch3, and Sebastian Rudolph3

1 CNRS LIFL University of Lille 1, France
2 INRIA Lille Nord Europe, France

3 TU Dresden, Germany

Abstract. Regular path queries (RPQs) define query patterns in terms of regu-
lar expressions and are therefore well-suited to query for paths over roles in DL.
RPQs can be extended to 2-way RPQs (with converse), CRPQs (with conjunc-
tions), or PRPQs (arbitrary positive Boolean combinations), all of which have
been explored in DL research. Another natural extension of any query language is
nesting, where query predicates can be defined in terms of subqueries. In this pa-
per, we discuss several ways of introducing nesting to PRPQs, and show that they
lead to increasingly expressive query languages: CN2RPQs, which were stud-
ied in the context of DLs recently; nested P2RPQs; and positive queries with
transitive closure on binary predicates. The latter is one of the most expressive
languages for which query answering can still be decided over DL knowledge
bases. We present initial complexity results that show query answering to be non-
elementary in the worst case, with an exponential increase for each level of nest-
ing of the transitive closure operator.

1 Introduction

Regular path queries (RPQs) are an important query formalism that has influenced many
practical query languages, including SPARQL and XPath, and that has also played a
prominent role in DL research [4,5,2]. Indeed, the ability of RPQs to navigate along
paths in directed graphs makes them a most natural candidate for querying DL knowl-
edge bases.

It is therefore no surprise that the landscape of RPQ-based query languages has
been expanding significantly in recent years. The use of regular expressions in query
languages was first considered in the 1990’s in the context of semi-structured databases
[7], but related logical constructs like transitive closure have been studied much earlier
[8]. Later extensions introduced inverse roles to obtain two-way regular path queries
[3], the general use of conjunction and disjunction [5], and certain test operators that
were inspired by XPath [10].

A closely related notion of nested RPQs has also been studied for DLs very re-
cently [1]. Generally speaking, query nesting is the process of using an n-ary subquery
instead of an n-ary predicate symbol within a query, with the obvious semantics. How-
ever, the impact of this extension in terms of complexity and expressiveness may vary
significantly depending on the query language under consideration and the exact form
of nested queries. Nested RPQs employ a form of unary subqueries.

Surprisingly, it seems that the natural extension of conjunctive RPQs with binary

subqueries has not been studied so far. Another closely related formalism is positive

first-order logic with transitive closure. How do these languages compare in terms of
expressiveness? Can any of them be decided over DL knowledge bases? At which com-
plexity? These questions seem to be largely unanswered today.

Our results shed some light on these issues. We study three forms of nested queries:
CN2RPQ (nested test expressions), P2RPQ+ (nested binary queries), and PFO+TC1

(transitive closure with one input and output variable) and show these query languages
to form a hierarchy of increasing expressiveness. DL query answering is decidable even
for the most expressive language PFO+TC1. We establish tight complexity bounds for
query answering for various DLs, including SHIQ, SHOQ, and SHOI, showing a
multi-exponential behavior that depends on the nesting depth of the query.

2 DLs and Positive Regular Path Queries

Readers who are not familiar with DLs might wish to consult an introductory text first
[9]. All DLs we consider are fragments of SROIQ. We assume a fixed signature con-
sisting of sets NI of individual names, NC of concept names, and NR of role names. The
set R of roles is {R,R− | R ∈ NR}; the set C of concept expressions depends on the DL
considered. In queries, we use variables from a countably infinite set V.

Definition 1. A regular expression over an alphabet Σ is a term constructed from ele-

ments of Σ, binary operators · (concatenation) and | (alternative), and the unary opera-

tor ∗ (Kleene star). A two-way regular path query (2RPQ) over a DL signature is of the

form E(s, t), with E a regular expression over R ∪ C, and s and t terms in V ∪ NI.
4

A positive Boolean formula is one that uses only the operators ∧ and ∨. A positive
two-way regular path query (P2RPQ) is an expression ∃y.ϕ[x, y], where ϕ[x, y] is a

positive Boolean formula over 2RPQs. All variables in ϕ occur in x ∪ y, with free

variables x disjoint from bound variables y. A query without free variables is Boolean.

The semantics of queries for a DL interpretation I is defined as follows: Roles
R describe binary relations RI, while concepts C describe binary relations {〈δ, δ〉 | δ ∈
CI}. The semantics of regular expressions is defined inductively as follows: (E1 ·E2)I ≔
EI1 ◦EI2 ; (E1 | E2)I ≔ EI1 ∪EI2 ; (E∗1)I ≔ id∪EI1 ∪ (EI1 ◦EI1)∪ . . ., where ◦ is relational
composition and id denotes the identity relation on the domain of I.

A variable assignment Z for I is a mapping V → ∆I. For a variable x, we set
xI,Z ≔ Z(x); for an individual name c ∈ NI, we set cI,Z ≔ cI. A 2RPQ E(s, t)
evaluates to true underZ and I if 〈sI,Z, tI,Z〉 ∈ EI. A P2RPQ ∃y.ϕ[x, y] is satisfied by
Z and I if there is a variable assignment Z′ that agrees with Z on all variables other
than possibly y, such that ϕ evaluates to true under I andZ′.

3 Three Ways of Nesting P2RPQs

Next, we consider three different approaches of extending P2RPQs with nesting. Since
the query predicates used in P2RPQs are binary, the canonical way to define nested
P2RPQs uses binary P2RPQ as subqueries.

4 Some works use C? instead of C [1]. We avoid this notation since ? is often used to denote the
optional operator in regular expressions.

Definition 2. A 1-nested P2RPQ is a P2RPQ. A (k+1)-nested P2RPQ is a P2RPQ with

regular expressions that may use binary k-nested P2RPQs in addition to DL roles and

concepts. The query language of k-nested P2RPQs is denoted P2RPQk, and the query

language of arbitrarily nested P2RPQs is denoted P2RPQ+.

Example 1. The following P2RPQ2 uses a subquery ψ[x, y] = R(x, y)∧L(x, y) to match
an arbitrarily long chain of parallel R and L relationships:

ϕ[u, v] = ψ[x, y]∗(u, v) = (R(x, y) ∧ L(x, y))[x, y]∗(u, v) (1)

Note that the explicit [x, y] is necessary, since the formula R(x, y) ∧ L(x, y) alone could
also define a binary relation where y represents the first argument and x represents the
second. It follows that P2RPQ+ does not require inverse roles in regular expressions:
instead of R− we can always use a subquery R(x, y)[y, x] in regular expressions. Like-
wise, the operators · and | in regular expressions can be replaced by the use of ∧ and
∨, respectively, in subqueries. Therefore, the Kleene star is the only relevant feature in
regular expressions of P2RPQ+s, and one could simplify the definition accordingly.

Bienvenu et al. recently considered another notion of nested 2RPQs, which uses
existential test operators as known from the XML query language XPath [1]. Indeed,
in the absence of conjunction and disjunction, nested 2RPQs would not be any different
from 2RPQs when defined as above. Instead, existential test operators 〈E〉merely check
if there is a path matching the regular expression E starting at the current element.

Definition 3. Nested regular expressions are regular expressions that are constructed

using regular expression operators and an additional unary operator 〈·〉. A nested two-
way regular path query (N2RPQ) over a DL signature is of the form E(s, t), with E a

nested regular expression over R ∪ C, and s and t terms in V ∪ NI. The semantics of

nested regular expressions under a DL interpretation I is defined by setting 〈E〉I ≔

{〈δ, δ〉 | 〈δ, δ′〉 ∈ EI for some δ′}, and defining the semantics of the remaining operators

as before. A conjunctive N2RPQ (CN2RPQ) is of the form ∃y.ϕ[x, y], where ϕ is a

conjunction of N2RPQs, with the obvious semantics.

Example 2. The CN2RPQ ϕ[x, y] = (R · 〈L∗ ·C〉)∗ matches an arbitrarily long R-chain
in which each element other than the first can reach an element in C by some L-chain.

Comparing CN2RPQs to P2RPQ+s, we observe that test expressions 〈E〉 can be re-
placed by an 2RPQ (E ·E−)(x, x), where E− is the “inverse” of E. Since (E ·E−)(x, x) is
not a binary query, we cannot nest it into regular expressions directly. Therefore, if 〈E〉
is part of a regular expression, we need to transform part of this expression into a pos-
itive query, replacing · and | by ∧ and ∨, respectively. In particular, the expressiveness
of ∨ is needed for capturing CN2RPQs in this way.

Example 3. The generic way of expressing the query in Example 2 as a P2RPQ+ is
ψ[u, v]∗(x, y) where ψ = R(u, v)∧(L∗ ·C ·(L−)∗)(v, v). An alternative formulation replaces
ψ by ψ′ = ∃w.R(u, v) ∧ (L∗ ·C)(v,w).

Although P2RPQ+ subsumes the expressiveness of CN2RPQ, the change from 2RPQ

to N2RPQ already leads to an exponential increase in worst-case query answering com-
plexity over some DLs [1].

One might ask if the restriction to binary subqueries in P2RPQ+ is really necessary.
While the Kleene star operates on binary relations, one could allow such relations to be
“parametrised” by additional variables. This idea is closely related to the extension of
first-order logic with transitive closure [8]. We therefore abandon ∗ as our last remaining
regular expression operator to replace it by a restricted form of transitive closure.

Definition 4. Consider lists of variables x and y (not necessarily disjoint) of equal

length ℓ, and a formula ϕ where all variables of x and y occur as free variables. The

transitive closure of ϕ from x to y is the formula TCx,y.ϕ. A first-order interpretation I

and a variable assignment Z satisfy TCx,y.ϕ, written I,Z |= TCx,y.ϕ, if either Z(x) =
Z(y) or there are variable assignmentsZ1, . . . ,Zn, such that

– Zi(z) = Z(z) for all z < x ∪ y and i ∈ {1, . . . , n},
– I,Zi |= ϕ for all i ∈ {1, . . . , n},
– Z1(x) = Z(x),
– Zi(y) = Zi+1(x) for all i ∈ {1, . . . , n − 1},
– Zn(y) = Z(y).

Throughout this paper, we restrict to first-order formulae over a DL signature. Positive
first-order logic with transitive closure (PFO+TC) is first-order logic with operators ∃,

∧, ∨, and TC. Positive first-order logic with unary transitive closure (PFO+TC1) is the

fragment of PFO+TC where the variable lists in transitive closure are of length ℓ = 1.

We use PFO+TC1k for the fragment of PFO+TC1 where TC is nested at most k times.

It is easy to see that PFO+TC1 can express C2RPQ+ queries. Moreover, queries of
this type are still decidable for many DLs (see Section 6). In contrast, PFO+TC queries
are undecidable for most DLs. This can be shown by reduction from the Post Corre-
spondence Problem, using a transitive closure with two input and two output variables.

Example 4. The following PFO+TC1 matches an arbitrarily long R-chain in which each
element other than the first can reach the same element (represented by z) by an L-chain:

ϕ[x, y] = ∃z.TCx,y.
(

R(x, y) ∧ TCy,z.L(y, z)
)

(2)

We are using a simplified notation here. For example, the subquery TCy,z.L(y, z) in (2)
would more accurately be expressed as (TCu,v.L(u, v)[u, v])(y, z). The translation be-
tween both versions is not ambiguous, so we prefer the more compact one.

It should be noted that Definition 4 is strictly more general than the one that has
traditionally been considered when studying transitive closure [8], since we allow for-
mulae in the scope of TC to contain free variables that are not used in the transitive
closure. Example 4 illustrates a case where this actually adds expressiveness, and we
exploit this in Theorem 3 below.

4 Expressiveness of Nested Path Queries

From the observations in the previous section, we can already order the query lan-
guages by their relative expressiveness: 2RPQ ⊆ CN2RPQ ⊆ P2RPQ+ ⊆ PFO+TC1 ⊆

PFO+TC. In this section, we ask which of these inclusions are strict. This is not obvious,
since nesting does not generally increase expressive power, even if it is not trivially ex-
pressible in a query language. For example, unions of conjunctive queries (UCQs) can
express nested UCQs, but possibly at the cost of an exponential increase in size. Such ef-
fects may also lead to an increase in worst-case query or combined complexity without
any corresponding increase in expressiveness.

Formally, we compare the expressiveness of Boolean queries, i.e., queries without
free variables. Any such query characterizes a set of interpretations that satisfy the
query. A query language A is (strictly) more expressive than a query language B if A

can characterize (strictly) more sets of models than B. It is easy to extend this definition
to non-Boolean queries, but since we already showed the non-strict inclusions by direct
translations, we do not need to consider this complication.

Hence our main tool to study expressiveness are general properties of the models
that match a query. Since we consider positive queries, the matches of which are pre-
served under homomorphisms of interpretations, we may focus on subsets of models.

Definition 5. Consider interpretations I = 〈·I, ∆I〉 and J = 〈·J , ∆J 〉. A mapping

η : ∆I → ∆J is a homomorphism if for all c ∈ NI, η(cI) = cJ ; for all A ∈ NC, δ ∈ AI

implies η(δ) ∈ AJ ; for all R ∈ NR, 〈δ, δ′〉 ∈ RI implies 〈η(δ), η(δ′)〉 ∈ RJ .

A set of interpretations I is a covering of a Boolean query ϕ if, for all models I,

I |= ϕ iff there is a homomorphism from an interpretation I to I.

Intuitively speaking, a covering of a query represents every situation in which the
query can match. There are situations where a minimal covering (i.e., a covering not
properly containing another covering) does not exist. For example, for any ℓ ≥ 0, the
query ∃x.R∗(x, x) is covered by the set of interpretations that describe R-loops of length
greater than ℓ, none of which is minimal. The example illustrates that coverings nev-
ertheless can reveal interesting structural properties of query matches. We use this to
prove the next theorem.

Bienvenu et al. already note that CN2RPQs can be rewritten as C2RPQ by encoding
test expressions in TBox axioms using intersection, existentials, and inverse roles [1].
For DLs that lack existentials or inverses, however, test expressions increase expres-
siveness, which does not follow from known complexity results.

Theorem 1. For DLs that lack either existential quantifiers or inverse roles, CN2RPQ

is strictly more expressive than C2RPQ.

Proof. The in-degree of an element in an interpretation is the number of other elements
that have a binary relation towards it. Every Boolean C2RPQ with n variables has a
covering of interpretations that each contain at most n elements of in-degree greater
than 2. Indeed, every RPQ has a covering of linear interpretations (with all elements of
degree at most 2), and a conjunctive query over such structures introduces only at most
n “joint points” of higher degree. These observations hold since concepts of the form
∃R−.C cannot occur in the query.

On the other hand, the CN2RPQ in Example 2 (considered as a Boolean query)
only admits coverings with an unbounded number of elements with degree 3. Hence,
no Boolean C2RPQ can characterize this set of models. ⊓⊔

CN2RPQs in turn are limited by the fact that test expressions can only describe tree-
like structures, but not loops. This is not a restriction when using them in XML query
languages, which operate on trees anyway, but it limits there expressiveness on arbitrary
(finite) structures, as described by DL ABoxes. To formalize this, we count the number
of distinct paths between two elements in a model.

Theorem 2. P2RPQ+ is strictly more expressive than CN2RPQ.

Proof. Consider an interpretation I. A path from δ to δ′ in I is a finite sequence
δ1R1δ2 . . . δn−1Rn−1δn, such that Ri ∈ NR, δ1 = δ, δn = δ′, and 〈δi, δi+1〉 ∈ RI

i
for all

i ∈ {1, . . . , n−1}. A path is simple if the are no i, j with δi = δ j, Ri = R j, and δi+1 = δ j+1.
Every Boolean CN2RPQ with n variables has a covering of finite interpretations

such that, for every δ, δ′, the number of paths from δ to δ′ is bounded by a constant.
Indeed, it is easy to see that every 2RPQ admits a covering of interpretations with at
most one path between any two elements. The number of possible paths in a CN2RPQ

therefore is in direct correspondence with the number of atom-paths between variables
of the query, which is clearly bounded.

On the other hand, the P2RPQ+ in Example 1 (considered as a Boolean query) only
admits coverings that contain structures of the form R(δ1, δ2), L(δ1, δ2), . . . ,R(δn−1, δn),
L(δn−1, δn) for arbitrarily large n. Such a structure admits 2n distinct paths from δ1 to δn.
Hence, no Boolean CN2RPQ can characterize this set of models. ⊓⊔

Nevertheless, P2RPQ+ is still weaker than PFO+TC1. The structural property we
use in this case is the maximal degree of nodes in covering interpretations.

Theorem 3. PFO+TC1 is strictly more expressive than P2RPQ+.

Proof. For every Boolean P2RPQ+, there is a constant d, for which the query admits a
covering of interpretations that each contain only elements of degree at most d. Indeed,
the nesting of queries can lead to an arbitrary number of elements of degree up to d, but
it cannot increase the maximum degree.

On the other hand, the PFO+TC1 in Example 4 (considered as a Boolean query)
only admits coverings with elements of unbounded degree (represented by the variable
z). Hence, no Boolean P2RPQ+ can characterize this set of models. ⊓⊔

5 Hardness of PFO+TC1 Query Answering

We now show the following lower complexity bound for query answering in the DL S:

Theorem 4. Deciding entailment of PFO+TC1k queries over S knowledge bases is

hard for (k + 2)ExpTime.

To show this, we provide direct encodings of Alternating Turing Machines (ATMs)
with a fixed space bound [6], where we assume without loss of generality that every
universal ATM configuration leads to exactly two successor configurations. Moreover,
when considering ATMs with limited space, we assume that it is a legal transition to
move to the left/right at the left/right end of the tape: this will result in the ATM head

Table 1. TBox for the knowledge base in Proposition 1

Run ⊑ ∃firstConf.Conf

Conf ⊑
⊔

q∈Q Stateq ⊓ ∃firstCell.Cell

Cell ⊑
�ℓ

i=1(Bit0i ⊔ Bit1i) ⊓
⊔

σ∈Σ Symbolσ ⊓ (L ⊔ H ⊔ R) ⊓ (LastCell ⊔ ∃nextCell.Cell)

Conf ⊑ LastConf ⊔
⊔δ=〈q,σ,q′ ,σ′ ,d〉

q∈Q∃
∃nextConfδ.Conf ⊔

⊔δ1=〈q,σ,q
′ ,σ′ ,d〉

q∈Q∀ ,δ1,δ2
(∃nextConfδ1 .Conf ⊓ ∃nextConfδ2 .Conf)

staying at the same tape cell. This allows an ATM to detect the limits of a tape. One
application for this is to implement an ATM that, when run on a tape with an arbitrary
space bound s, will count from 0 to 2s and then halt.

We can also use this to transform any given ATMM into an ATMM′ that performs
the computation of M while counting the required steps in space s. The counter can
be written on the tape using an extended alphabet that encodes a symbol of M and
a counter digit in each symbol. M′ performs one transition of M, stores the current
tape symbol, marks the current tape position, increments the tape counter, returns to the
original tape position, restores its original content, and enters the next state ofM. Using
this technique, we can construct an ATM that enters an existential state without legal
transitions (rejecting state) as soon as more than ks steps are executed (for any k ≥ 2).
Since this construction is polynomial in the size of M and k, we can assume without
loss of generality that all of our space-bounded ATMs halt, i.e., do not admit infinite
runs. In this case, every valid run is accepting, which greatly simplifies our encoding.

Before looking at the general case, we illustrate our approach by reducing the ac-
ceptance of an ExpSpace ATM to PFO+TC11 query answering over S knowledge bases.

Proposition 1. For any ATMM, there is an S knowledge base KB and a PFO+TC10

Q[x], such thatM accepts the empty input in exponential space iff KB 6|= ∃x.Q[x].

KB consists of the TBox shown in Table 1 and the RBox axioms firstCell ⊑ cellConf,
nextCell ⊑ cellConf, and Trans(cellConf). Typical models of KB are tree structures that
resemble the runs of an ATM, with the concepts Conf and Cell representing configura-
tions and tape cells, respectively. Concepts L, H, and R specify, for each cell, if the head
is to its left, on top of it, or to its right. Cells are marked by addresses of ℓ bits.

These intuitions may not be followed by all models. The query Q is used to filter
erroneous encodings. First, we define queries that detect when the address has not been
incremented correctly from one cell to the next. Together with suitable starting end
ending conditions, this already yields queries that ensure that all tapes have exactly 2ℓ

cells. We then define a query SameCell[x, y] ≔
∧ℓ

i=1(Bit0i(x) ∧ Bit0i(y)) ∨ (Bit1i(x) ∧
Bit1i(y)) that relates tape cells with the same address. This can be used to express other
conditions for correct ATM runs, starting with the requirement that L, H, and R are used
consistently. Transitions are verified using queries

nextConfδ(y, y
′) ∧ Stateq(y) ∧ cellConf(z, y) ∧ H(z) ∧ Symbolσ(z) ∧

Stateq′ (y
′) ∧ cellConf(z′, y′) ∧ Symbolσ′ (z

′) ∧ SameCell(z′, z)

for every transition δ = 〈q1, σ1, q2, σ2, d〉 where q1 , q, σ1 , σ, q2 , q′, or σ2 , σ
′.

Proposition 1 merely shows that answering positive Boolean queries over S is hard
for 2ExpTime. For higher complexities, we use nesting to encode “higher-level” ATMs
with longer tapes. The general setup is as in Proposition 1, but the tape of an ATM on
level i+1 is obtained as the sequence of configurations of a deterministic TM of level i.

As explained above, there is a deterministic TMMcount that, when run on a tape of
space s, will count from 0 to 2s in binary and then halt.Mcount can be small (constant
size). The computation will necessarily take s′ > 2s steps to complete, so the accepting
runs form a chain of s′ configurations. Thus, using the construction of Proposition 1,
we obtain a knowledge base KB0 and a query Q0 such that, for every interpretation I
with I |= KB0 and I 6|= ∃x.Q0(x), every ǫ ∈ RunI is the start of such a chain that is
exactly of length s′.

We can therefore axiomatize an ATM M′ that runs in space s′ > 2s ∈ O(2(2n))
by using the axioms in Table 1, replacing Cell (of Table 1) by Run (of KB0), firstCell

by firstConf, nextCell by nextConf, etc. and using fresh vocabulary symbols instead of
firstConf, nextConf, etc. RBox axioms are created in the same way following the earlier
construction. Let KB′ denote the resulting knowledge base.

Together with Q0[x], KB′ describes models that resemble runs of M′, one tapes
of a fixed length, but possibly violating some other conditions. It remains to define
additional queries to check for invalid runs. The key for doing this is a SameCell′[x, y]
query that relates the cells of the same address across tapes. This is difficult now since
the tapes are very large. For brevity, we use an auxiliary query SameContent′[v,w] to
check if two tape cells have the exact same annotations for M′ (clearly, this is just a
simple positive Boolean query). We now can define SameCell′[x, y] as follows:

∃v′.firstCell′(x, v) ∧ firstCell′(y,w) ∧ SameContent′(v,w) ∧

TCv,v′ .∃u, u′.
(

SameCell(v, u) ∧ nextCell′(v, v′) ∧ nextCell′(u, u′) ∧

SameContent′(v′, u′) ∧ cellConf(u, y)
)

∧ LastCell′(v′)

Note how this query nests the SameCell query of the previous level, thus leading to an
increase in nesting depth. The queries required to check for invalid runs ofM′ are now
expressed as before, using SameCell′ where required.

This construction can be repeated, leading to an exponential increase in tape length
for every additional nesting level. Note that the subquery SameCell occurs exactly once
in SameContent′, making sure that there is only a linear increase in query size during
nesting. Using Proposition 1 as an induction base, we thus obtain Theorem 4.

6 Deciding Entailment for PFO+TC1

In this section, we outline how to answer PFO+TC1 queries over knowledge bases
in DLs with certain model-theoretic properties. This generalizes known results for
P2RPQs [5], and we build on and extend the according line of argumentation.

We consider DLs exhibiting a quasi-forest hom-cover property (QFHC), which
states that, for any model I of some knowledge base KB, there exists a homomor-
phism from I into some model I′ of KB that has a specific shape, called quasi-forest.
The most expressive DLs known to have this property areZIQ,ZOQ, andZOI [5].

Definition 6 ([5]). A model I of a knowledge base KB is a quasi-forest model if:

– the domain ∆I of I is a forest with bounded branching k, i.e., a prefix-closed subset

of Roots × {1, . . . , k}∗ for some finite set Roots

– Roots = {aI | a individual name in KB},
– for all δ, δ′ ∈ ∆I satisfying 〈δ, δ′〉 ∈ RI for some role name R ∈ NR, either (i)

{δ, δ′} ∩ Roots , ∅, or (ii) δ = δ′, or (iii) δ is a child of δ′, or (iv) δ′ is a child of δ.

The following property is then an easy consequence of the fact that the set of models
of each PFO+TC formula is closed under homomorphisms.

Property 1. Let KB be a knowledge base in any DL satisfying the QFHC property and
let q be a PFO+TC formula. KB does not entail q iff there exists a quasi-forest model I
of KB not satisfying q.

Finally, we recall from [5] that for each KB there is an encoding tree of quasi-forest
interpretations of branching degree ≤ k over the vocabulary of KB into infinite trees of
fixed rank k over some finite alphabet Λ in a way that allows one to define a one-way

nondeterministic parity tree automaton (1NTA)AKB of size double exponential in KB
recognizing exactly the trees t = tree(I) that encode quasi-forest models I of KB. As
tree is injective, we will write tree−1(t) to refer to I, presuming its existence.

We now describe how to build, for a PFO+TC1 formula using as unary (binary)
predicates only concept names (roles) occurring in KB, a 1NTA AKB,q that recognizes
all trees corresponding to quasi-forest interpretations into which q has a match.

First, we show how to build the tree-automaton for conjunctive queries, then for
positive queries, and then for a query of the form TCx,y.ϕ(x, y, z) for a positive query ϕ.
Finally, we generalize the construction by induction on the nesting of TC operators.

Let q be a conjunctive query with a set of free variables X. In a first step, we want to
recognize trees representing quasi-forest interpretations I that have been enriched by
the information stemming from a variable assignment Z : X → ∆I. To this end, let Λq

be the finite alphabet equal to Λ × 2X .
Let t be a tree over Λq. Intuitively, if a node n of t is labeled by 〈α, S 〉 with S ⊆ X,

then all variables from S are mapped to n by Z. Because each node of some quasi-
forest interpretation I corresponds to exactly one node of tree(I), there shall not exist
two nodes in t labeled with two tags both containing the same variable x. In other words,
the S -labels of all tree nodes have to be pairwise disjoint. Moreover, every variable has
to occur in some label. Given a tree t over Λq satisfying these conditions, we let Zt

denote the variable assignment mapping every x ∈ X to the individual δ ∈ ∆I for which
the label of the tree node corresponding to δ contains x. We let ΠΛ(t) denote the tree
obtained by projecting the labels of t to Λ.

Property 2. Consider KB and a conjunctive query q with a set of free variables X. There
exists a 1NTA AKB,q such that t is accepted by AKB,q iff Zt exists and q is satisfied by
tree−1ΠΛ(t) and Zt. The size of the states of AKB,q is exponential in q. The length of
the parity condition ofAKB,q is bounded by a constant.

This is a well-known classical construction presented in previous papers (e.g. [5]).
We can lift this result to arbitrary positive queries without further blow-up:

Corollary 1. Consider KB and a positive query q with a set of free variables X. There

exists a 1NTA AKB,q such that t is accepted by AKB,q iff Zt exists and q is satisfied by

tree−1ΠΛ(t) andZt. The size of the set of statesAKB,q is exponential in q. The length of

the parity condition ofAKB,q is bounded by a constant.

Every positive query q can be decomposed into a union of conjunctive queries
∨

i≤n qi such that each qi is polynomial in q and n is exponential in q. For each qi,
we build a 1NTA Aqi

using Property 2. The 1NTA associated with
∨

i≤k qi is equal to
∪i≤kAqi

. The size of ∪i≤kAqi
is the sum of the size of each qi. Since n is exponential in

q and eachAqi
is exponential in qi (i.e., in q)A∨

i≤n qi
is exponential in q.

Next, toward the construction of an automaton recognizing the transitive closure of
some query, we need as an intermediate building block an automaton running on a tree,
whereZ is given via labeling (as above) for all but one variable. The node n associated
to the “missing variable” is pinpointed by letting the automaton start at n (instead of
letting it start at the root, as usual). In order for this automaton to access nodes above n,
it has to be a two-way alternating tree automaton (2ATA).

Property 3. Let KB be a knowledge base and let q be a query with a set of free variables
X. Let q represented by some 1NTA AKB,q as described above. Let x ∈ X and let
X′ = X \ {x}. Then there exists a 2ATA AKB,q,x such that AKB,q,x accepts a Λ × 2X′ -
labeled tree t when starting from n iff Zt exists and q is satisfied by tree−1ΠΛ(t) and
Zt ∪ {x 7→ tree−1(n)}. The size of AKB,q,x is linear in the size of AKB,q. The length of
the parity condition ofAKB,q,x is bounded by a constant.

We can constructAKB,q,x by modifying the 1NTAAKB,q. If t is accepted byAKB,q,
there exists exactly one node labeled with a tag containing x. If we start from this node
and guess the state q that AKB,q has in an accepting run on t, we need to verify that (i)
the subtree tn rooted at n admits a partial run ofAKB,q starting in state q and that (ii) the
tree t without the subtree tn admits a run of AKB,q such that n is associated to q. We can
check (i) with a 1NTA and (ii) with a 2APA starting from n.

Finally, we build the 2ATA for a formula TCx,y.ϕ(x, y, z).

Property 4. Let q = TCx,y.ϕ(x, y, z) be a query where ϕ is represented by some 2ATA
AKB,ϕ,x as described above. Then there exists a 2ATA AKB,q such that AKB,q accepts a
Λ × 2X-labeled tree t iff Zt exists and q is satisfied by tree−1ΠΛ(t). The size of the set
of states of AKB,q is linear in the size of AKB,ϕ,x. The length of the parity condition of
AKB,q is bounded by a constant.

AKB,q,x can be obtained from AKB,ϕ,x by simple modifications: AKB,q traverses the
tree top-down until reaching the node with the label containing x and then starts to run
AKB,ϕ,x; whenever AKB,ϕ,x requires to read a label containing y, we allow it to return to
an initial state instead.

The construction for general nested PFO+TC1s is done by induction over the nesting
of the TC operators. We thereby assume w.l.o.g. all considered PFO+TC1s to be in
nested prenex form (NPF), that is, existential quantifiers can only occur in front of the
whole formula or directly after TCx,y. Every PFO+TC1 query can be rewritten into an
equivalent NPF query of linear size. This may require some renaming of variables.

Lemma 1. Let KB be given. Let q be a PFO+TC1n formula in NPF with a set of free

variables X. Then there exists a 1NTA AKB,q such that t is accepted by AKB,q iff Zt

exists and q is satisfied by tree−1ΠΛ(t) andZt. The size ofAKB,q is (n + 1)-exponential

in q and the parity condition has a fixed length.

Proof (Sketch). The proof is by induction on the nesting depth. The base case (depth 0)
is stated in Corollary 1. For the induction step, consider a PFO+TC1n formula ψ = ∃z.ψ′

where ψ′ is a positive Boolean expression over TCx1,y1 .ψ
′
1, . . .TCxk ,yk

.ψ′
k

with ψ′1, . . . , ψ
′
k

in PFO+TC1n−1. By induction hypothesis, we find 1NTAs AKB,ψ′1
, . . . ,AKB,ψ′

k
of n-

exponential size. We use Property 3 and 4 to get 2ATAsAKB,TCx1 ,y1 .ψ
′
1
, . . . ,AKB,TCxk ,yk

.ψ′
k

of still n-exponential size. Exploiting that for 2ATAs, intersection and union automata
have only linear size, we arrive at a 2ATAAKB,ψ′ of n-exponential size. Now, we obtain
the 1NTAAKB,ψ by turningAKB,ψ′ into a 1NTA (exponential) and then projecting away
all variable labels of z (polynomial). ThusAKB,ψ is of (n + 1)-exponential size. ⊓⊔

Theorem 5. Let KB be a ZOIQ knowledge base with the QFHC property. Let q be a

Boolean PFO+TC1n formula. Then deciding if KB entails q is in (n + 2)ExpTime.

Proof (Sketch). Following [5], we can build a 1NTA AKB that recognizes tree repre-
sentations of quasi-forest models of KB of branching degree at most k. It suffices to
consider models of such branching degrees as the models of q are closed under homo-
morphism.AKB is double exponential in KB. By Lemma 1, we can find an 1NTAAKB,q

recognizing the tree representation of quasi-forest interpretations satisfying q. By tak-
ing the complement of AKB,q, AKB,¬q, this 1NTA recognizes the tree representation of
quasi-forest interpretations not satisfying q. This 1NTA has a size (n+2)-exponential in
KB and q. Finally, the intersection of the tree languages accepted by AKB and AKB,¬q

is empty iff KB entails q. Hence, we just have to check the emptiness of the product
automaton ofAKB andAKB,¬q. This is polynomial w.r.t. to the two automata and expo-
nential w.r.t. the parity conditions. As the latter are fixed, we have shown our claim. ⊓⊔

7 Conclusion

This work is a starting point for a systematic study of a range of highly expressive
regular path query languages that are obtained by introducing various forms of nesting.
Our results open up a field of decidable DL query languages that require further study.

The complexity bounds we obtain are very high: non-elementary for the most gen-
eral language PFO+TC1, and 3ExpTime even for a single level of nesting in PFO+TC11.
In contrast, CN2RPQ query answering is in 2ExpTime irrespective of the nesting level,
and is known to become simpler when restricting to weaker DLs [1]. There is a host of
open research questions regarding the space in between these two results.

Moreover, the high complexity of PFO+TC1 does not mean that this is the most
expressive query language that is still decidable for DLs. Indeed, PFO+TC1 is properly
contained in nested monadically defined queries, proposed recently as a combination
of monadic Datalog and regular path queries [11], and all of our complexity arguments
can be extended to this case as well.

Acknowledgement This work was supported by the DFG in project DIAMOND (Emmy
Noether grant KR 4381/1-1).

References

1. Bienvenu, M., Calvanese, D., Ortiz, M., Šimkus, M.: Nested regular path queries in descrip-
tion logics. CoRR abs/1402.7122 (2014)

2. Bienvenu, M., Ortiz, M., Šimkus, M.: Conjunctive regular path queries in lightweight de-
scription logics. In: Rossi, F. (ed.) Proc. 23rd Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’13). pp. 761–767. AAAI Press/IJCAI (2013)

3. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive
regular path queries with inverse. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc.
7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’00). pp. 176–
185. Morgan Kaufmann (2000)

4. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description
logics: An automata-theoretic approach. In: Proc. 22nd AAAI Conf. on Artificial Intelligence
(AAAI’07). pp. 391–396. AAAI Press (2007)

5. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description logics
with nominals. In: Boutilier, C. (ed.) Proc. 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI’09). pp. 714–720. IJCAI (2009)

6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. of the ACM 28(1), 114–133
(1981)

7. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with regular
expressions. In: Mendelzon, A.O., Paredaens, J. (eds.) Proc. 17th Symposium on Principles
of Database Systems (PODS’98). pp. 139–148. ACM (1998)

8. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–
778 (1987)

9. Krötzsch, M., Simančík, F., Horrocks, I.: A description logic primer. CoRR abs/1201.4089
(2012)

10. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. J. of Web
Semantics 8, 255–270 (2010)

11. Rudolph, S., Krötzsch, M.: Flag & check: Data access with monadically defined queries.
In: Hull, R., Fan, W. (eds.) Proc. 32nd Symposium on Principles of Database Systems
(PODS’13). pp. 151–162. ACM (2013)

	How to Best Nest Regular Path Queries
	Introduction
	DLs and Positive Regular Path Queries
	Three Ways of Nesting P2RPQs
	Expressiveness of Nested Path Queries
	Hardness of PFO+TC1 Query Answering
	Deciding Entailment for PFO+TC1
	Conclusion

