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Résumé

We are interested in the problem of expressiveness of the following operations in the category of
sets: finite products and coproducts, initial algebras (induction) and final coalgebras (coinduction).
These operations are the building blocks of a logical system that allows circularity in Gentzen-style
proofs. Proofs in this system are seen as simple programs, while the cut-elimination process is
viewed as a running automaton with a memory device. In this paper, we show that higher-order
pushdown trees, those accepted by higher-order pushdown automata, are computable in this
setting, by providing an explicit simulation of the automata by cut-elimination.

1. Introduction

Circular proofs were introduced in [11] and recently improved in [5] as a means of expressing the
arrows of categories with finite products, finite coproducts, initial algebras and final coalgebras. Such
categories are called µ-bicomplete in [12]. If we restrict our attention to the µ-bicomplete category
Set of sets and functions, the semantical results from [5, 4] mean that we have a way to express, via a
logical system, the functions definable purely from induction, coinduction, finite cartesian products and
finite disjoint unions (without using the closedness of the category, which is the usual interpretation of
λ-abstractions). We call such functions circularly definable (CD). Circular proofs can then be used as
a combinatorial tool for tackling the following question: which functions, with respect to other known
classes of functions, are the circularly definable ones?

Circular proofs are Gentzen-style proofs in which cyclic reasoning is allowed, given that the cycles
satisfy some combinatorial property that we call guard condition. The main improvement from [11] to
[5] is the sound addition of the cut rule, with which we have a fullness property: every arrow from the
free µ-bicomplete category is expressible as a circular proof. Using this property and known semantical
results from [2, 10], we can conclude, for instance, that the primitive recursive functions f : Nk → N

are circularly definable.

In this paper, we are more interested in a syntactical approach to the problem. Our interest is not
only in the theoretical question of circular definability, but also in the concrete problem of circular
computability. In [5], we have described a cut-elimination procedure for circular proofs. The procedure
works like an automaton with memory, that uses a (finite) proof with cycles as its set of states and
produces a possibly infinite proof tree, which is a cut-free unfolded version of the original proof.
The Guard condition ensures the productivity of the procedure. In other words, the cut-eliminating
automaton is a sort of abstract machine for computing (at least) circularly definable functions, or an
interpreter of circular proofs. The functions that are computable by the cut-eliminator, given a finite
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(not necessarily guarded) pre-proof to work with, are called circularly computable (CC). In order
to understand better which functions are circularly computable we need to understand better the
computing mechanism described by the abstract cut-eliminator and its storage device, by comparison
with other models of abstract machines.

We focus our attention on circular proofs that compute infinite trees labeled over a signature
(Σ-trees) and compare these trees with the possible outputs of higher-order pushdown automata
(n-PDAs). The complexity of the memory structure (stacks of stacks of. . . stacks) of these automata
determine a well-established hierarchy of infinite trees known as the Caucal hierarchy [1, 7]. A natural
question is then: can we locate the expressive power of the cut-eliminator in the hierarchy?

It turns out, and we will see, that higher-order pushdown automata can always be simulated by the
cut-eliminator, but that the converse is not true. In other words, circular computability completely
bypasses the Caucal hierarchy. However, our construction does not always give a valid circular proof,
suggesting that there may be some gap between circular definability and circular computability, that
we have yet to understand.

The core of the paper is divided into two sections. In Section 2, we recall some facts about circular
proofs and cut-elimination and we show how they can define and compute Σ-trees. In Section 3, we
show how to encode an arbitrary higher-order pushdown automaton into a circular pre-proof, on which
cut-elimination simulates the behavior of the automaton.

2. Circular Proofs and Σ-trees

This Section is an informal tutorial about circular proofs and cut-elimination (formal definitions and
proofs can be found in [4, 5, 11, 12]). We illustrate the theory mainly with the example of trees over a
signature Σ in order to define the classes CD and CC of circularly definable and circularly computable
trees.

2.1. Directed systems of equations

Fix a set V of variables. A directed system of equations is a collection S of formal expressions of the
form “X =pX

FX”, where X ranges over a finite subset BV(S) ⊂ V, called the set of bound variables
of S. For all X ∈ BV(S), pX ∈ N is called the priority of X, and FX is a term associated to X. Terms
are well-formed expressions constructible from V using binary function symbols ×,+ and constants 0
and 1. We may freely use

∏
(resp.

∐
) to shorten the notation when many instances of × (resp. +)

are nested. An empty product just means the term 1 and an empty coproduct means the term 0. The
set FV(S) of free variables of S consists of all the variables that occur in some FX , but do not belong
to BV(S).

We use directed systems of equations simply as an alternative syntax to write fixpoint expressions
from the lattice µ-calculus [12]. In Set, 0 denotes the empty set ∅ (initial object), 1 denotes a singleton
that we may call 1 (final object), × and + are interpreted respectively as cartesian product and
coproduct (disjoint union), an odd priority means “least solution”, an even priority means “greatest
solution” and the value of the priority grows with the scope of the variable. For instance, the fixpoint
expression νX.(µN.(1 +N)×X), that the accustomed eye would recognize as denoting the set NN of
streams of natural numbers, can be transcribed as the following system:

S :

{
X =2 N ×X

N =1 1 +N.
(1)

With respect to the solution of a directed system of equation S in a µ-bicomplete category C,
each term τ denotes a functor JτKSV : CV → C for each finite set V ⊆ V such that FV(S) ⊆ V
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and BV(S) ∩ V = ∅. In this paper, we work mainly in the category C = Set. The exact set V in
consideration is not important, given that it is large enough. In fact, taking V = ∅ works fine in this
paper since we will be dealing with terms that only denote sets (constant functors). Since the system
S will be understood from context, we shall then just write JτK. For instance, in (1), we have JNK = N

and JXK = N
N.

Next, we define a directed system for denoting the central structure of this paper, Σ-trees, which
happen to be the outputs of higher-order pushdown automata that we will present in the next section.

Definition 2.1. A signature is a finite, nonempty set Σ with an arity function ar : Σ → N. A Σ-tree
is a tuple t = (f, t1 . . . tr) such that f ∈ Σ, r = ar(f) and t1 . . . tr are Σ-trees.

Note that Definition 2.1 is somewhat circular and, since it does not rely on a base case, may be
iterated infinitely often. It therefore describes trees whose branches are infinite, unless some symbol of
arity 0 ends them (which is not a necessity). Let T (Σ) be the system given by the following equations:

T =2

∐

f∈Σ

f , f =2

ar(f)∏

j=1

T (for each f ∈ Σ). (2)

In order to exhibit an element t ∈ JT K, we have to choose a symbol f in the signature and then exhibit
an element of the set denoted by JfK. But doing this just means to choose ar(f) elements of JT K. So t
is determined by a choice of elements (f, t1 . . . tar(f)), as in Definition 2.1. Taking an even priority
(greatest solution) means that we allow this process to be iterated infinitely often.

2.2. The proof system

Pre-proofs are built from an intuitionistic sequent calculus with left (L) and right (R) rules that
depend on a directed system S. The rules are given in Table 1: a hypothesis of the form {ai ⊢ bi}i∈I

just means that there is one entry for each i ∈ I. Note that only one term is allowed on each side of
the turnstile symbol (⊢).

Identity, Cut,
Assumption

Id
a ⊢ a

a ⊢ c c ⊢ b
Cut

a ⊢ b
A

a ⊢ b

L R

Products aj ⊢ b
L×j∏

i∈I ai ⊢ b
{a ⊢ bi}i∈I

R×
a ⊢

∏
i∈I bi

( ∀I finite, j ∈ I )

Coproducts {ai ⊢ b}i∈I
L+∐

i∈I ai ⊢ b
a ⊢ bj

R+j
a ⊢ ∐

i∈I bi
( ∀I finite, j ∈ I )

Fixpoints FX ⊢ b
LFX

X ⊢ b
a ⊢ FX

RFX
a ⊢ X( ∀X ∈ BV(S) )

Table 1: Inference rules over a directed system S

Note that in ordinary sequent calculus, the structure of the proofs is always required to be a finite
tree. In order to deal with the semantics of fixpoint expressions, we have to remove that constrtaint.
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So, a pre-proof Π is any directed graph with two mappings Rule and Seq of the vertices to rules and
sequents respectively, such that the syntax of the rules is locally respected by the sequents.

From an algebraic point of view, these local syntactic constraints establish a system of equations
in which the unknowns are the vertices of the pre-proof. The rules determine equations between
these variables, according to the standard categorical semantics of inference rules (see [8] and [5, 4]).
We say that Π is resolvable in a category C if a unique solution to the system exists. In that case,
we denote the solution at vertex a v such that Seq(v) = a ⊢ b by JvKΠ : JaK → JbK or, if Π is well
understood, simply by JvK. The assumption rule allows us to introduce variables in those systems that
can eventually be substituted by suitable functions: we use it as a place-holder for further constructions
in Section 3.2.

Of course, not every pre-proof should be called a proof, since some of them are not resolvable.
Consider, for instance, the pre-proof over the system S of (1) given in Figure 1.

R×
1 ⊢ 1

R+0
1 ⊢ 1 +N

RFX
1 ⊢ N

1 ⊢ X

Id
X ⊢ X

L×1
N ×X ⊢ X

LFX
X ⊢ X

Cut
1 ⊢ X

R×
1 ⊢ N ×X

RFX
1 ⊢ X

Figure 1: A bad pre-proof

From a computational point of view, we interpret proofs as programs defining functions. So what
is the function s : 1 → N

N denoted by the root of that pre-proof? By extracting the corresponding
system of equations, one finds that it must satisfy the following equation:

s = Cons(0, tail(s)).

But the solution to that equation is far from being unique. In fact, any stream that starts with 0 is a
solution, so the pre-proof is not a productive definition of any particular stream.

In order to make sure that proofs denote precise functions, we ask valid proofs to satisfy a global
condition, inspired by the theory of parity games [12].

Definition 2.2. We say that an infinite path γ in a pre-proof Π has a right ν-trace (resp. left µ-trace)
if it has a suffix γ′ such that the following properties hold:

• for all v ∈ γ′, if Rule(v) = Cut, then the next vertex in γ′ is the right (resp. left) premise of v;

• there is some X ∈ BV(S) such that the rule RFX (resp. LFX) is used infinitely often in γ′;

• the maximal value of pX for any such X is an even (resp. odd) number.

Guard condition. Every infinite path in Π has a left µ-trace or a right ν-trace.

The guard condition, in the view that proofs denote programs, is a productivity constraint. It says,
intuitively, that after a while, the program either reads an inductive input or produces a coinductive
output, while keeping track of what it is doing.

Definition 2.3. A proof is a pre-proof Π that satisfies the guard condition. It is a circular proof if Π
is finite, and an arboreal proof if Π is a (possibly infinite) tree. A pre-proof is ground if it does not use
the assumption rule, and cut-free if it does not use the cut rule.
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For instance, a quick analysis of the cycles suffices to see that the pre-proof given in Figure 3 is a
ground circular proof, while the one given in Figure 1 does not satisfy the guard condition. In [5], we
proved the following result.

Theorem 2.4 (Soundness and Fullness). Let Π be a ground circular proof. Then Π is resolvable in
any chosen µ-bicomplete category. In particular every v ∈ Π denotes an arrow JvKΠ. Conversely, every
arrow of the free µ-bicomplete category is definable as the solution at some vertex of a ground circular
proof.

Since the category of sets is µ-bicomplete [12] and because of the richness of such categories, many
functions are definable by circular proofs. We focus our attention on the case of functions of the form
1 → JT K that denote a choice of a particular Σ-tree.

Definition 2.5. A Σ-tree t is circularly definable if there is a ground (finite) circular proof Π over a
system S ⊇ T (Σ) and a vertex v ∈ Π such that JvKΠ : 1 → JT K has value t in Set. Let CD denote the
set of circularly definable trees.

One reason for focusing on functions of the form 1 → JT K is that the analysis of cut-elimination
procedure (see Section 2.3 below) is simpler on them, although they are general enough to encode
wide classes of interesting functions. For instance, by results in [2, 10] combined with Theorem 2.4,
the class of streams f ∈ N

N definable by circular proofs includes all the primitive recursive functions
in one variable. But streams can be encoded by their comb-tree, Comb(f), defined in the usual way:
the positions in the stream (or inputs) are encoded by an infinite branch whose nodes are labeled by
a 2-ary symbol a, and from such a symbol a at depth n, we put a branch of f(n) 1-ary symbols s
(successor) followed by one 0-ary symbol z (zero). For instance, Figure 2 shows the comb-tree of the
identity function.

a

z a

s

z

a

s

s

z

a

s

s

s

z

. . .

Figure 2: The comb-tree of identity

In Figure 3, we give a circular proof whose interpretation is the function Comb : NN → JT K. An
argument for claiming this can be achieved with the help of cut-elimination (see 2.3 below). Essentially,
the left rules of the proof are “reading rules” that interact with similar right rules of a stream given
input by an essential cut-reduction, while the right rules are “writing rules”, on which cut-elimination
is productive. In Figure 3, the underlying directed system is S ∪ T (Σ) (as in equations (1) and (2))
with Σ as above. We conclude that for all primitive recursive f ∈ N

N, Comb(f) ∈ CD.
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R×
1 ⊢ 1

RFz
1 ⊢ z

R+z
1 ⊢ a+ s+ z

RFT
1 ⊢ T

N ⊢ T
RFs

N ⊢ s
R+s

N ⊢ a+ s+ z
RFT

N ⊢ T
L+

1 +N ⊢ T
LFN

N ⊢ T
L×N

N ×X ⊢ T
X ⊢ T

L×X
N ×X ⊢ T

R×
N ×X ⊢ T × T

RFa
N ×X ⊢ a

LFX
X ⊢ a

R+a
X ⊢ a+ s+ z

RFT
X ⊢ T

Figure 3: A circular proof for turning streams into comb trees

A cardinality argument shows, however, that many Σ-trees are not circularly definable. For those,
we need arboreal proofs. Figure 4 shows how to translate a Σ-tree t = (f, t1 . . . tr) into its proof
representation Ψt. Note that each Ψt is resolvable in Set.

t = (f, t1 . . . tr):

f

t1 t2 · · · tr

7→

Ψt:
==== Ψt1
1 ⊢ T · · ·

==== Ψtr
1 ⊢ T

R×
1 ⊢

∏r

1 T
RFf

1 ⊢ f
R+f

1 ⊢
∐

i∈Σ i
RFT

1 ⊢ T

Figure 4: Proof representation of Σ-trees

In that Figure (and many others later in this paper), we allow ourselves to use a previously defined
proof Π, with root of the form a ⊢ b and assumptions A0 . . . Ak of the form ai ⊢ bi, as if it was a new
rule (or subroutine) denoted as follows:

a0 ⊢ b0 · · · ak ⊢ bk
=============== Π

a ⊢ b
or

{ai ⊢ bi}i=1...k
=========== Π

a ⊢ b

On the other hand, it should be clear that any ground and cut-free arboreal proof of the sequent
1 ⊢ T is Ψt for some Σ-tree t, except for possible uses of Id instead of R× to justify the sequent 1 ⊢ 1.
This is just an instance of a more general fact.

Lemma 2.6. Let Π1,Π2 be two ground, cut-free arboreal proofs with no occurrence of the rule Id.
Let ri be the root of Πi, and suppose that Seq(r1) = Seq(r2) = 1 ⊢ τ for some term τ . Assume also
that Π1 and Π2 both are resolvable. Then, if Jr1KΠ1

= Jr2KΠ2
, we can conclude Π1 = Π2.

Proof. By the principle of coinduction (see [6]), it is sufficient to show that the relation ∼ defined by

Π1 ∼ Π2 ⇐⇒ Seq(r1) = Seq(r2) and Jr1K = Jr2K
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is a bisimulation on the set of proofs for which the left-hand side of the sequent at the root is 1. That
is, we want to show that if Π1 ∼ Π2, then the following is true:

• Rule(r1) = Rule(r2);

• r1 and r2 have the same degree;

• Given i, j, let Πj
i be the sub-proof of Πi generated by the j-th son of ri. Then for all j, Πj

1 ∼ Πj
2.

Verifying these properties is a simple case-check on the value of Rule(r1). Keep in mind that
since SeqL(r1) = SeqL(r2) = 1 and the proofs do not contain occurrences of Cut or Id, then
Rule(r1),Rule(r2) ∈ R.

2.3. Cut-elimination

In [5], we gave an algorithm for eliminating cuts in circular proofs, although their finiteness cannot
always be preserved in the process. Given a ground (not necessarily finite) proof Π, cut-elimination on
Π can be described as a sort of automaton whose configurations are what we call multicuts. A multicut
is just a finite composable sequence M = [u1, u2 . . . um] of vertices of Π. We can think of multicuts of
size m as m-ary instances of a generalized cut rule MCut as follows, where Seq(ui) = ai−1 ⊢ ai:

a0 ⊢ a1 a1 ⊢ a2 . . . am−1 ⊢ am
MCut

a0 ⊢ am
.

The automaton, that we call cut-eliminator, builds up a cut-free proof by “pushing” cuts towards
infinity. To do it, it needs to have Rule(u1) ∈ L or Rule(um) ∈ R in order to operate commutative
cut reductions, such as the following:

a0 ⊢ . . . ⊢ am−1

am−1 ⊢ FX
RFX

am−1 ⊢ X
MCut

a0 ⊢ X
7→

a0 ⊢ . . . ⊢ am−1 am−1 ⊢ FX
MCut

a0 ⊢ FX
RFX

a0 ⊢ X
.

Whenever this is not the case, the automaton can modify the content of M by performing one of
the following internal operations:

• merge the hypothesis of a cut ui into M :

a0 ⊢ . . .
ai ⊢ c c ⊢ ai+1

Cut
ai ⊢ ai+1 . . . ⊢ am

MCut
a0 ⊢ am

7→
a0 ⊢ . . . ai ⊢ c c ⊢ ai+1 . . . ⊢ am

MCut
a0 ⊢ am

;

• remove an instance of the identity rule:

a0 ⊢ . . . ⊢ b
Id

b ⊢ b b ⊢ . . . ⊢ am
MCut

a0 ⊢ am
7→

a0 ⊢ . . . ⊢ b b ⊢ . . . ⊢ am
MCut

a0 ⊢ am
;

• perform an essential cut reduction between two successive vertices ui,ui+1 such thatRule(ui) ∈ R

and Rule(ui+1) ∈ L (we illustrate it with the case of fixpoint rules, but a similar reduction
applies to product and coproduct rules):

a0 ⊢ . . .
ai−1 ⊢ FX

RFX
ai−1 ⊢ X

FX ⊢ ai+1
LFX

X ⊢ ai+1 . . . ⊢ am
MCut

a0 ⊢ am

7→
a0 ⊢ . . . ai−1 ⊢ FX FX ⊢ ai+1 . . . ⊢ am

MCut
a0 ⊢ am

.
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If a multicut M ′ is obtained from M by one of these internal operations, we write M QM ′ (or M QM ′

if an arbitrary number of steps are necessary).

The problem with internal operations is that they do not allow the cut-eliminator to produce a
part of an infinite proof tree by “pushing” the cut away: they rather “pull” everything above to the
ground. Since Π may contain infinite paths, it may not seem clear that this process eventually halts.
This is one of the main results in [5], that we could rephrase as: there is no infinite Q-chain, given
that Π satisfies the guard condition. Thus, the guard condition is sufficient for ensuring that, given a
multicut M over Π, cut-elimination produces an arboreal cut-free proof ceΠ(M). This proof, in turn,
is resolvable: the solution of the corresponding system at v ∈ ceΠ(M) is obtained by composition of
the solutions (in Π) of the vertices in the multicut at the moment when v is produced.

Definition 2.7. A Σ-tree t is circularly computable if there exists a multicut M over a ground and
finite pre-proof Π, such that ceΠ(M) = Ψt. Let CC denote the set of circularly computable trees.

Note that the definition of ceΠ(M) could be ambiguous, since the cut-eliminator is not deterministic:
it chooses between producing something on the left or on the right, given that both options are available.
However, in our case, since the sequent at the root of Ψt is 1 ⊢ T and no left rule can justify a sequent
of that form, then the cut-eliminator always justifies all its productions by right rules.

Proposition 2.8. CD ⊆ CC.

Proof. Let t ∈ CD, so that there is a ground circular proof Π and v ∈ Π such that JvKΠ : 1 → JT K has
value t.

Note that the only way, for the cut-eliminator, to justify a node by the rule Id is to reach a state
where its multicut is [u], for some u ∈ Π such that Rule(u) = Id. But since the left-hand side of
the production must be 1, then Seq(u) = 1 ⊢ 1. Hence, by replacing Π by a proof Π′ in which every
sequent 1 ⊢ 1 is justified by R×, we can make sure that ceΠ′([v]) does not involve the identity rule.
This operation does not change the system of equations since J1K is the final object. Hence, JvKΠ′ has
value t.

But ceΠ′([v]) is resolvable and the solution at the root is JvKΠ′ . Hence, by Lemma 2.6, ceΠ′([v]) = Ψt

and therefore t ∈ CC.

Note that it is not clear whether Proposition 2.8 is true or not, since there are some finite pre-proofs
on which cut-elimination is productive, even if they do not satisfy the Guard condition. Indeed, the
construction that we are about to describe, of a pre-proof that simulates the behavior of a given
higher-order pushdown automaton, provides such examples.

3. Higher-Order Pushdown Automata

We use the model of higher-order pushdown automata from [7]. Such an automaton manipulates a
higher-order stack in a way that is completely determined by its top symbol. Hence, they are not
accepting or rejecting words given as input, but rather accepting some Σ-tree. Our goal is to describe
a simulation of higher-order pushdown automata by cut-elimination, in order to conclude that the
accepted Σ-trees are circularly computable.

3.1. The Algebra of Stacks

Definition 3.1. Fix a finite alphabet Γ. A 0-stack is an element of Γ. For n ≥ 1, an n-stack is
a finite list of (n − 1)-stacks. A n-stack is well-formed if n = 0 or if it is a nonempty list of well-
formed (n − 1)-stacks. The top symbol of a well-formed n-stack is defined by top(a) = a if a ∈ Γ,
top[sℓ, sℓ−1 . . . s1] = top(sℓ) otherwise.
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This is essentially the definition from [7], although in the latter, n-stacks (also called higher-order
pushdown stores) are always well-formed. This will make no difference in our modeling of automata,
since the operations we will define on them are partial functions, the non-well-formed case being
treated as an error. In [7], we also assume that Γ contains a special symbol ⊥ to denote the bottom of
the stack. We will also use this convention later in our construction, although it is not necessary to
define the n-stacks algebraically.

First, we need to describe n-stacks as directed systems of equations, in order to use them in
circular proofs. Since n-stacks are lists of (n− 1)-stacks, the reader who is familiar with initial algebras
might suggest to iterate the Kleene star S∗ = µX.(1 + S ×X). But this will not work since cartesian
products behave inaccurately on the left side of circular proofs. Indeed, the structure of the rules L×i

only allows us to read the head or the tail of such a list, destroying the rest of the data in the process.

We circumvent this problem by taking the free monoid in the category V = End(Set) of endofunctors
of Set, rather than doing it in Set itself. Recall from [9, Chapter VII] that V is a strict monoidal
category where the tensor is given by functorial composition ◦. We distinguish functorial composition
from composition of ordinary functions, that we write in prefix notation: (f · g)(x) = g(f(x)). A
monoid in V is called a monad.

For any definable functor F ∈ V, one can show (see [2]) that the functor defined by

F̂ (X) := µY.(X + F (Y )) has the structure of a free monad over F . Therefore, we define the following
family of functors.

S0(X) :=
∐

a∈Γ

X , Sn(X) := Ŝn−1(X)

So for n ≥ 1, Sn(X) is an initial algebra, whose structure map is

αn
X = {nilnX , consnX} : X + Sn−1SnX −→ SnX.

For any symbol a ∈ Γ, let inaX : X → S0(X) denote the canonical injection.

Lemma 3.2. For all n ∈ N and X ∈ Set, SnX is isomorphic to the set of pairs (s, x) such that s is
an n-stack and x ∈ X. In particular, Sn1 is isomorphic to the set of n-stacks.

Proof. We proceed by induction on n. For n = 0, this is just a consequence the usual definition of the
coproduct in Set:

S0X =
∐

a∈Γ

X =
{
(a, x) : a ∈ Γ, x ∈ X

}
.

For n ≥ 1, we define a function ϕn
X : SnX → W × X, where W is the set of finite words over the

following alphabet:
An = Γ ∪ {consk , nilk}k=1...n.

Let z ∈ SnX. If z = nilnX(x) for some x ∈ X, let ϕn(z) = (niln, x). Otherwise, z = consnX(y) for
some y ∈ Sn−1SnX. By induction, let (w, z′) := ϕn−1

SnX
(y). Note that z′ ∈ SnX and w is a word over

An−1 ⊂ An. We define ϕn
X(z) := consn · w · ϕn

X(z′). That may look like a circular definition (and it
is!), but by initiality of the Sk’s, the computation of ϕn

X(z) must halt, the base case being z = nilnX(x)
for some x ∈ X.

So we have ϕn
X = (s, x) for some s ∈W and x ∈ X. Note that s is independent of x, since x is only

used in the base case. It follows that ϕn
X is injective. Its first component is, therefore, an isomorphism

into its image set Ln ⊆W . By construction, the Lk’s must satisfy the following equations:

L0 = Γ

Lk = (consk · Lk−1)
∗ · nilk .

Hence, Ln
∼= L∗

n−1 and, by induction, Ln−1 is isomorphic to the set E of (n− 1)-stacks. So we have
Ln

∼= E∗ and, by Definition 3.1, E∗ is the set of n-stacks.

9
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A visual interpretation of the proof of Lemma 3.2 is achievable through an interpretation of directed
systems of equations as parity games, as described in [12]. Indeed, let Zk = (Sk ◦ . . . ◦ Sn)(X) for
0 ≤ k ≤ n. Then by construction of the Sk’s, the Zk’s must satisfy the following directed system of
equations.

Z :





Zn+1 = X

Zk =1 Zk+1 + Zk−1 (0 ≤ k ≤ n)

Z0 =1

∐

a∈Γ

Z1

Following the conversion proposed in [12], we can rewrite this system as a graph with one vertex
for each variable of Z and an edge X → Y if and only if Y occurs in FX (see Figure 5).

X

Zn Zn−1 Z1 Z0

· · ·

niln

consn

niln−1

consn−1

niln−2

cons2

nil1

cons1

a ∈ Γ

Figure 5: Parity game board associated to SnX

Still following the interpretation in [12] (and skipping the details), SnX is then isomorphic to the
set of pairs (s, x) such that s is a path from Zn to X in the graph, and x is a choice of element in X.
The set of those paths s is exactly the set Ln in the proof of Lemma 3.2. It is just easier to memorize
it with the help of the graph than it is with only the formula defining Ln.

Now that we are given an algebraic description of n-stacks, we can express some basic operations
in this setting. The reason for doing this is to observe that all these definitions use nothing but the
µ-bicomplete structure of Set, so by Theorem 2.4, they are all definable by circular proofs.

We start with the bottom n-stacks. Assume that there is a special symbol ⊥ ∈ Γ. We define
⊥0 = ⊥ ∈ Γ and ⊥n+1 = [⊥n]. The ⊥n’s are particular stacks that we can assimilate to functions
⊥n : 1 → Sn(1). It suffices to take ⊥n = bn1 where bnX : X → SnX is defined by b0X = in⊥X , and
bn+1
X = nilnX · bn−1

SnX
· consnX .

Another operation is to push a given symbol a ∈ Γ on top of a 1-stack. We call this the symbol
push operation. In practice, it is used only with a 6= ⊥.

spusha1 [aℓ, aℓ−1 . . . a1] = [a, aℓ, aℓ−1 . . . a1].

This is just pa1;1 where pa1;X is defined by the following composition.

S1X
in

a

S1X−−−−→
∐

a∈Γ

S1X = S0S1X
cons

1
X−−−−→ S1X →֒ X + S1X.

Here, the extra summand X is added to the codomain, as it will be for the other operations, in
order to treat the possible error case of non-well-formed stacks (there is no such possibility for spusha1).
To define the next operations on n-stacks, we need another property of the functors Sn: they are
cocommutative comonads.

Lemma 3.3. For each set X, there are functions definable by circular proofs Υn
X : SnX → X and

∆n
X : SnX → SnSnX (called destroy and double) such that for all (s, x) ∈ SnX, Υn

X(s, x) = x and
∆n

X(s, x) = (s, (s, x)).

10
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Proof. The definition of Υn
X and ∆n

X , along with the fact that they provide a cocommutative comonadic
structure (whence the equations provided in the statement of the Lemma), can be found (in a more
general context) in [2]. One can check that this construction uses only the µ-bicompleteness of Set.
Therefore, it follows by Fullness (Theorem 2.4) that Υn

X and ∆n
X are definable by circular proofs.

On any stack level, one can perform push and pop operations, where the term push refers to a full
copy of the leftmost (n− 1)-stack and pop refers to the destruction of that (n− 1)-stack. Formally:

pushnn[sℓ, sℓ−1 . . . s1] = [sℓ, sℓ, sℓ−1 . . . s1];

popnn[sℓ, sℓ−1 . . . s1] = [sℓ−1 . . . s1].

Each of those two operations is a function of the form pnn;1, where the family of functions
pnn;X : SnX → X + SnX is of the form pnn;X = (αn

X)−1 · (id + f). The difference between pushnn
and popnn is the choice of function f : Sn−1SnX → SnX in that expression. For popnn, since we want
to destroy some information, we take f = Υn−1

SnX
. For pushnn, we want to double the first (n− 1)-stack,

so we let f be the following composition:

Sn−1SnX
∆n−1

SnX−−−−→ Sn−1Sn−1SnX
Sn−1(cons

n

X
)−−−−−−−−→ Sn−1SnX

cons
n

X−−−−→ SnX.

We also need the following level k < n operations on n-stacks:

spushan[sℓ, sℓ−1 . . . s1] = [spushan−1(sℓ), sℓ−1 . . . s1];

pushkn[sℓ, sℓ−1 . . . s1] = [pushkn−1(sℓ), sℓ−1 . . . s1];

popkn[sℓ, sℓ−1 . . . s1] = [popkn−1(sℓ), sℓ−1 . . . s1].

The shape of these three definitions is the same. The functions we are defining are of the form pzn;1,
where pzn;X : SnX → X + SnX is either already defined above, or can be reached by induction on n

with pzn;X = (αn
X)−1 · (id+ f), where f is the following composition

Sn−1SnX
pz

n−1;SnX−−−−−−→ SnX + Sn−1SnX
Υn

X
+id−−−−−→ X + Sn−1SnX

αn

X−−→ SnX.

The set of level n operations is then defined as

On = {spushan : a ∈ Γ \ {⊥}} ∪ {pushkn, popkn : 1 ≤ k ≤ n}.

3.2. From automata to proofs

Definition 3.4. A level n pushdown automaton (or n-PDA for short) is a tuple A = 〈Q,Σ,Γ, q0, δ〉,
where Q is a finite set of states with an initial state q0 ∈ Q, Σ is a signature, Γ is a finite stack
alphabet and δ : Q× Γ → IA is the transition function. The codomain IA of δ is the set of admissible
instructions, consisting of the expressions of one of the two following forms: (q, ϕ), where q ∈ Q and
ϕ ∈ On; or (f, p1 . . . pr), where f ∈ Σ, r = ar(f) and p1 . . . pr ∈ Q.

A configuration of A is a pair (q, s) where q ∈ Q and s is an n-stack. Let CA be the set of
configurations of A. We write (q, s) →A (q′, s′) if δ(q, top(s)) = (q′, ϕ) for some ϕ ∈ On such that
s′ = ϕ(s). The relation ։A is the reflexive transitive closure of →A. The initial configuration of A
is (q0,⊥n).

Let t = (f, t1 . . . tr) be a Σ-tree and (q, s) ∈ CA. A run of t from (q, s) is a partial function
̺ : T ⇀ CA defined at t, with the following property. Let ̺(t) = (qt, st). Then (q, s) ։A (qt, st) and
δ(qt, top(st)) = (f, p1 . . . pr) for some states p1 . . . pr ∈ Q such that for 1 ≤ i ≤ r, ̺ is a run of ti from

11
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(pi, st). A tree t is accepted by A if and only if there is a run of t from (q0,⊥n). Note that, since our
automata are deterministic, any n-PDA accepts at most one tree.

Next we now show how to convert an n-PDA A = 〈Q,Σ,Γ, q0, δ〉 into a finite pre-proof Π(A). The
general idea is to reproduce the graph structure of A, while replacing each vertex by a gadget that
simulates it. For this, we keep the stack on the left of the turnstile symbol, and the tree t accepted by
A on the right. In order to deal with possible errors cases, we see t as a Σ′-tree, where Σ′ = 1 + Σ.
That allows us to define a proof ERRX for any term X in the following way.

ERRX =

R×
X ⊢ 1

R+0
X ⊢ 1 +

∐
f∈Σ f

RFT
X ⊢ T

First we need to encode the transition function δ. The encoding depends on the shape of δ(q, a)
and is shown in Table 2.

δ(q, a) = (ϕ, p) for ϕ ∈ On δ(q, a) = (f, p1 . . . pr) for f ∈ Σ

=========== ϕ
Sn1 ⊢ 1 + Sn1

==== ERR1
1 ⊢ T

A
Sn1 ⊢ T

L+
1 + Sn1 ⊢ T

Cut
Sn1 ⊢ T

A1
Sn1 ⊢ T · · ·

Ar
Sn1 ⊢ T

R×
Sn1 ⊢

∏r

1 T
RFf

Sn1 ⊢ f
R+f

Sn1 ⊢ 1 +
∐

i∈Σ i
RFT

Sn1 ⊢ T

Table 2: Proof encoding of δ(q, a)

In A, the choice of transition to take depends on the top symbol of the n-stack. Hence, we want a
proof TOP with as many assumptions as the cardinality of Γ, that we can use to branch on different
cases.

The construction of TOP is in two steps. First, we need to “dig” in the n-stack in order to access
the top symbol. We show how in Table 3, where a new piece of notation is introduced: given a proof
Π in which the variable X occurs free (i.e. no fixpoint rule is applied at X) and some term τ , Π[X/τ ]
is the proof in which τ is substituted for every occurence of X. Since reading is destructive in circular
proofs, we also need a proof to “fill” such an input by putting the lost symbol back and building a
well-formed stack (see Table 3 again).

We can now define TOP as follows:

TOP =

{ ============== FILLan[X := 1]
(S1 · · ·Sn)1 ⊢ Sn1

Aa
Sn1 ⊢ T

Cut
(S1 · · ·Sn)1 ⊢ T

}

a∈Γ
============================================ DIGn[X := 1]

Sn1 ⊢ T

For all q ∈ Q, generate the following proof Πq. Let
√
q be the root of Πq and l

a,i
q the assumption

node labeled by Aa,i.

Πq =

{ Aa,1
Sn1 ⊢ T . . .

Aa,r
Sn1 ⊢ T

===================== δ(q, a)
Sn1 ⊢ T

}

a∈Γ
================================= TOP

Sn1 ⊢ T
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DIG0 : DIGk :
{

Aa
X ⊢ T

}
a∈Γ

L+∐
ΓX ⊢ T

LFS0X
S0X ⊢ T

===== ERRX
X ⊢ T

{
Aa

(S1 · · ·Sk)X ⊢ T
}
a∈Γ

====================== DIGk−1[X := SkX]
Sk−1SkX ⊢ T

L+
X + Sk−1SkX ⊢ T

LFSkX
SkX ⊢ T

FILLa0 : FILLak :

Id
X ⊢ X

R+a
X ⊢ ∐

ΓX
RFS0X

X ⊢ S0X

=================== FILLak−1[X := SkX]
(S1 · · ·Sk)X ⊢ Sk−1SkX

R+1
(S1 · · ·Sk)X ⊢ X + Sk−1SkX

RFSkX
(S1 · · ·Sk)X ⊢ SkX

Table 3: Categorical programming at work

Let also Π⊥ be the following proof. Call its root
√
⊥ and its assumption l⊥.

Π⊥ =
====== ⊥n
1 ⊢ Sn1

A
Sn1 ⊢ T

Cut
1 ⊢ T

The pre-proof Π(A) is then obtained from the union of Π⊥ with all the Πq by linking l⊥ to
√
q0

rather than by justifying with an assumption and, for all q ∈ Q and a ∈ Γ: if δ(q, a) = (p, ϕ), link l
a,1
q

to
√
p in a similar fashion; otherwise, δ(q, a) = (f, p1 . . . pr) and then, for i = 1 . . . r, link l

a,i
q to

√
pi
.

We can now state this paper’s main theorem: trees accepted by n-PDAs are circularly computable.

Theorem 3.5. Let A be an n-PDA that accepts t ∈ T . Then ceΠ(A)([
√
⊥]) = Ψt.

Proof sketch. The key of the proof is to lift the local behavior of a run ̺ : T ⇀ CA to the set of
configurations of the cut-eliminator. These configurations simply are multicuts on Π(A).

We say that a multicut M = [u1 . . . um−1, um] is good if the left-hand side of Seq(u1) is 1 and
um =

√
q for some q ∈ Q. Note that any good multicut is then associated to a state qM , and for

1 ≤ i < m, ui is part of a valid sub-proof of Π(A). Since the right-hand side of Seq(um−1) is Sn(1),
then M defines a unique stack sM = Ju1K · · · Jum−1K. So if GA is the set of good multicuts, we can
define a function ψ : GA → CA by ψ(M) = (qM , sM ).

Let M ∈ GA and (q, s) = ψ(M), such that s is well-formed. A technical analysis of the construction
of Πq leads to the following facts:

1. For all (q′, s′) ∈ CA such that (q, s) →A (q′, s′), there is M ′ ∈ GA such that M Q M ′ and
ψ(M ′) = (q′, s′);

2. If δ(q, top(s)) = (f, p1 . . . pr), then there are M ′
1 . . .M

′
r ∈ GA such that for all i, ψ(M ′

i) = (pi, s).
Also, ceΠ(A)(M) has the same shape as Ψt (see Figure 4), except that Ψti on the Figure is
replaced by ceΠ(A)(M

′
i).

Now, let t = (f, t1 . . . tr) ∈ JT K and (q, s) ∈ CA be such that there is a run ̺ of t from (q, s). Suppose
there is a multicut M ∈ GA such that ψ(M) = (q, s). Using facts 1 and 2 above, a rather simple
induction shows that ceΠ(A)(M) = Ψt. In particular, if M = [u,

√
q0 ] such that JuK = ⊥n, then t is the

tree accepted by A. Since [
√
⊥]QM , we conclude that ceΠ(A)([

√
⊥]) = ceΠ(A)(M) = Ψt.
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Note that the converse of Theorem 3.5, which states that circularly computable trees are accepted
by some n-PDA, is not true. For instance, let f : N → N be the function assigning to x ∈ N a tower of
x exponents: that is, let h0(x) = x, hk+1(x) = 2hk(x), and define f(x) = hx(1). Then f is primitive
recursive and therefore, by the discussion in Section 2.2, Comb(f) ∈ CD ⊆ CC. However, if Comb(f)
were accepted by some n-PDA, then as a consequence of [3, Th. 9.3], there would exist a polynomial p
such that for x large enough, f(x) ≤ (h2n ◦ p)(x), a contradiction.

4. Conclusion

The work done in this paper provides effective links between language theory and the theory of initial
algebras and final coalgebras. Indeed, our constructive encoding of n-PDAs via finite pre-proofs
provides an algebraic description of higher-order trees as solutions (in the category of sets) to a certain
class of systems of equations with initial algebras and final coalgebras, as described in Section 2 and,
in more details, in [5]. On the other hand, the cut-eliminator is an alternative abstract machine for
computing them.

It is important to note, however, that in general (except for the case n = 0), there is no cause for
believing that Π(A) satisfies the Guard condition (hence that higher-order trees are in CD). The Guard
condition on Π(A) is equivalent to the assertion that every cycle in A goes through an instruction
of the form (f, p1 . . . pr). Of course, we did not use this in the proof of Theorem 3.5: productivity of
cut-elimination was ensured by the fact that A accepts a tree.

So either our construction of Π(A) is not smart enough, or there is a difference between CC and
CD that we have yet to understand. That leaves open the question of measuring the expressive power
of these two classes. For instance, can one encode higher-order pushdown trees into valid circular
proofs? If CD 6= CC and µ-bicomplete categories are the semantical world for CD, then what is the
semantical world of CC? Can we formulate a (weaker) guard condition that characterize the pre-proofs
on which cut-elimination is productive?
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