N

HAL

open science

Mergeable persistent data structures

Benjamin Farinier, Thomas Gazagnaire, Anil Madhavapeddy

» To cite this version:

Benjamin Farinier, Thomas Gazagnaire, Anil Madhavapeddy. Mergeable persistent data structures.
Vingt-sixiémes Journées Francophones des Langages Applicatifs (JFLA 2015), Jan 2015, Le Val d’Ajol,

France. hal-01099136v2

HAL Id: hal-01099136
https://inria.hal.science/hal-01099136v2

Submitted on 21 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01099136v2
https://hal.archives-ouvertes.fr

Mergeable persistent data structures

Benjamin Farinier!, Thomas Gazagnaire? and Anil Madhavapeddy?

1: ENS Lyon

benjamin.farinier@ens-1lyon. fr

2: University of Cambridge
thomas.gazagnaire@cl.cam.ac.uk
anil.madhavapeddy@cl.cam.ac.uk

Abstract

Irmin is an OCaml library to design purely functional data structures that can be persisted on
disk and be merged and synchronized efficiently. In this paper, we focus on the merge aspect of the
library and present two data structures built on top of Irmin: (i) queues and (ii) ropes that extend
the corresponding purely functional data structures with a 3-way merge operation. We provide
early theoretical and practical complexity results for these new data structures. Irmin is available as
open-source code as part of the MirageOS project.

1. Introduction

Distributed version-control systems (DVCSs) are widely used to manage the source code of software
projects. These systems are at the core of any workflows to produce and maintain large software
stacks that involve many branches of development and maturity. DVCSs are used to keep track of
change provenance and help to relate newly discovered bugs in the software to the context of the
modification of the source-code which caused it.

We wish to see the same kind of workflow applied to data as well as source code. What if you
could version-control a (mutable) persistent data structure, inspect its history, clone a remote state
and revert it to a previous state? We find that using the existing tools around source-code DVCS and
applying them to application data results in significant benefits to developing distributed applications.
Instead of structuring our system like a conventional database, we instead provide the functionality
as a library that can be linked and customised directly by the application logic.

We will first explain the design ideas behind Irmin ! — a portable library written in OCaml — and

describe the implementation of two interesting data structures that we built using the library. Irmin
uses the same concepts as Git 2: clone, push, pull, branch, rebase, ... and exposes them as a library
that can be used by any OCaml application. It also features a bidirectional mapping with the Git
format: any changes committed by an application are reflected in the associated Git repository, and
any manual change in the Git repository is reflected back in the application via Irmin. This let users use
the usual Git tools (tig, gitk, ...) to inspect and manipulate the data structure. We demonstrate this
increased flexibility power comes with a very reasonable cost, thanks to the use of purely-functional
data structures and (implicit) hash-consing.

Our work is a generalization of the Concurrent Revisions framework [1] to handle arbitrary shape
of history graphs. It is also an extension of Conflict-free Replicated Data-types [5], with much simpler

Ihttps://github.com/mirage/irmin
2nttp://git-scm.com/

https://github.com/mirage/irmin
http://git-scm.com/

Mergeable persistent data structures

data structure state: we use 3-way merge instead of encoding the sequences of operations in the state
itself. White it has been shown that is possible to make any data structure persistent [2], we do not
believe such a technique exists for mergeable data structures. Irmin therefore provides an immutable
key-value store abstraction over which users of the library can develop their own mergeable data
structures.

One of the main issues with version control that will be familar to users of Git is the handling of
conflicts. It is the nightmare of any (sane) developer to see the familiar:

$ git merge master

Auto-merging lib/hello.html

CONFLICT (content): Merge conflict in lib/hello.html

Automatic merge failed; fix conflicts and then commit the result.

In Irmin, conflicts can appear in two different situations: when two nearby users are modifying
the same value at the same time, and when a value has been changed in two remote locations with
the propagation of changes resulting in a conflict. Irmin allows the application developer to deal
with these situations using several techniques: (i) Conflict-free replicated data-types, (ii) Supplying
a custom merge operator with the data structure and (iii) Explicit handling of conflicts as first-class
citizen in the API.

2. Irmin Architecture

Irmin provides a mutable high-level interface built upon two backend stores.

The first backend store is the block store: this is a low-level key/value append-only store, where
values are a sequence of bytes and keys are deterministically computed from the values (for instance
using SHA algorithms). This mean that:

o if a value is modified, a new key/value pair is created: the resulting data-store is immutable

o if two data-stores share the same values, they will have the same keys: the store is consistent,
the overall structure only depend on the stored data

The block store contains serialized values from application contents, but also structured data, like
prefix-tree nodes and history meta-data. As the store is append-only, there is no remove function.
The store is expected to grow forever, but garbage-collection and compression techniques can be used
to manage its growth. This is not an issue as commodity storage steadily becomes more and more
inexpensive.

The second backend store is the tag store: this is the only mutable part of the system. It is a
key/value store, where keys are names created by users and values are keys from the block store, and
can be seen as a set of named pointers to keys in the block store. This store is expected to be local to
each replica and very small. The tag store is central for higher-level algorithms such as synchronisation
and garbage collection.

The high-level interface is generated over the block store, the tag store and the application-specific
data structures. It lifts immutable operations on the block store into a mutable prefix-tree, whose
signature is given in Figure 1. The prefix tree path is usually a list of strings and node values are the
user-defined mergeable contents.

Irmin allows the application developer to deal with conflicts using several tools. One of them
is the use of data structures with custom merge operators. The idea is to give an abstraction of the
Irmin low-level store as a high-level data structure. In addition of their classical operations, these data
structure include the merge operation mentioned earlier. In this paper, we will considered queue and

Mergeable persistent data structures

module type S = sig
type t
type path
type contents

val read: t — path — contents

(#* Read the content at [path] in [t]. x*)

val update: t — path — contents — unit

(x* Replace the contents at [path] in [t] by [contents] if [path] is already
defined and create it otherwise. x)

val remove: t — path — unit

(x* Remove the given [path] in [t]. x)

end

Figure 1: High-level prefix-tree interface of Irmin, generated over the block store, the tag store and
the application contents description.

rope data structures. These data structures and their associated operations have already been widely
studied, even in a pure functional context [4]. We do try not to compete with existing implementations of
such data structures, but to extend them with an efficient and consistent merge operation. The signature
of the 3-way merge functions are defined in Figure 2.

type t =
(x* User—-defined contents.)
type result = [‘0k t | ‘Conflict string]

val merge: old:t — t — t — result
(x+x 3-way merge functions. x)

Figure 2: IrminMerge signature. In queues and ropes signature, IrminMerge .t refers to the type of
the above merge function.

As there are several ways to implement a merge function over these data structures, we first have
to define what is a good merge operation:

Given two data structures to be merged, the result of every operation applied on these
structures since their common ancestor has to be present in the result of the merge
operation.

Even though no formal proofs are provided, we believe that the merge algorithms detailed in this
paper are consistent to this principle. We are planning to translate these algorithms into a proof
assistant such as Coq in order to assert them more strongly.

3. Mergeable Queues

The first data structure we chose to implement is the queue, for two reasons. The first one is the wide
use of this data type, and hence the large choice of possible usecases. A basic one could be a queue of
operations to be executed in parallel and distributed between several operators. In case of overload, a
new operator could spawn and clone the queue in order to share and ease the work of other operators.

Mergeable persistent data structures

The second reason is the simplicity of the merge behaviour representation. The merge principle can
be - in the case of queues — specialized as follows:

e Every element popped in one of the two queues to be merged has to be absent in the resulting
queue.

e All of the elements pushed in one of the queues have to be present in the result in the same
order.

3.1. Implementation Overview

Operation Read Write
Push 0 2 O(1)
Pop 2 on average 1 on average 0(1)
] Merge | nworstcase | 1 | O |

Figure 3: Cost of queue operations where n denotes the length of the queue. Read and write are
expressed in number of memory access.

There are several efficient implementations of queues that can perform enqueuing (or push) and
dequeuing (or pop) operations in O(1) time. However, Irmin is built on an append-only low-level
store. Such representations of the memory matches well with the functional programming model
where the memory is immutable. For this reason we design these mergeable queues as functional
queues. The exposed signature is presented in Figure 4.

module type IrminQueue.S = sig
type t
type elt

val create : unit — t
val length : t — int
val is_empty : t — bool

val push : t — elt — t
val pop : t — (elt x t)
val peek : t — (elt x t)

val merge : IrminMerge.t
end

Figure 4: Queues signature. The peek function returns a (elt * t) because a normalization can
occur during its execution. In order to avoid useless computations, we return a potentially updated
queue.

A functional queue is composed of two simple linked lists. The first one contains elements that
have been pushed onto the queue, and the second one those that will be popped. When the pop list is
empty, the push list is flushed into the pop one. This operation is called normalization. Event though
the normalization is a linear operation, each element of the queue has to be normalized only once.
That is why — as it is reminded in Figure 3 — the amortized cost of operations on the queue is O(1).

The implementation of mergeable queues is based on an Irmin store containing three types of
element: Index, Node and E1t. Their type declarations are given in Figure 5.

Mergeable persistent data structures

type index = { type node = {
push: int; next: K.t option;
pop: 1int; previous: K.t option;
top: K.t; elt: K.t option;
bottom: K.t; branch: index option;

} }

type elt = Index index | Node node | Elt V.t

Figure 5: Type declaration of mergeable queue structuring elements. The Irmin store is specialized in
order to containing such elements.

Index are queue accessors. They are defined by four fields, push, pop, top and bottom. The
two first fields, push and pop, are the number of pushes and pops applied to the queue since its
creation. They are useful for the merge operation. The two others, top and bottom, are keys of the
top and bottom element of the queue. Node are elements manipulated by queue operations. They
are composed of four optional elements, next, previous, elt and branch. next and previous
are keys to a potential preceding or following element.In practice, only one of these two can be not
empty. elt is also an optional key which points to a value of the queue. The last field branch is an
optional index, used only by the merge operation. Finally, E1t contains elements added to the queue.

The two first main operations on a queue are push and pop. The push operation adds a new E1t
containing the pushed value, and a Node pointing to this element and the previous bottom element
of the queue. It returns a new Index where the bottom element is the new created Node. The pop
operation tries to read the top element of the queue. If the pop list is empty, the queue is normalized.
Then it returns the value associated with the reading Node and an Index, where the top element is
the following element of the reading Node. On average, there are two reads and three writes in the
Irmin store for one push and one pop. Figure 6 shows an example of mergeable queues internals.

3.2. Merging

The other main operation is merging. The merging operation takes three arguments: two queues to
be merged, g1 and g2, and a common ancestor to those two queues called o1d. The resulting queue
— called new — has to reflect the transformations from o1d to both g1 and g2. This is done in three
step.

First, elements of o1d which have been removed from g2 are removed from gl. This is done
without accessing these elements by using the push and pop values. In the same way, all elements
of o1d which are still in g2 are removed. Then, g2 is concatenated at the end of g1 by adding a new
node where the field branch contains the index of g2. In the current implementation, the merge
operation uses — in the worst case — a number of reads linear in the size of o1d, but always only one
write. However, using binary random-access lists [4] instead of classical chained lists will reduce the
overall number of reads to the logarithm of the size of the old.

For example, let’s assume the following case:

old = {push = 6; pop = 2}, gl = {push = 8; pop = 2}, g2 = {push = 7; pop = 4}

We can see that there are two elements of o1d which have been removed in g2, but which are still
present in g1. So we have first to removed them. More other, we cannot directly concatenated g2 at
the end of g1. Indeed, there is still two remaining elements of o1d in g2 which are already present
in g1. Again, we have to removed them before the concatenation step. Just before this final step, the
internal state is therefore in the following situation.

Mergeable persistent data structures

l Index

10 bottop Node
09 ‘—“““““““A“““* n07 Elt
/// pop list
n01 I1 ,/ push list

Figure 6: Example of a possible queue internal structure. Here, the main queue is accessible through
the index 10. The index I1 is pointing to a queue concatenated during a previous merge operation.
This queue will be unfolded during the next normalization. Because of the Irmin store behavior, two
nodes containing the same element share its physical representation.

qgl’” = {push = 8; pop = 4}, g2’ = {push = 7; pop = 6}

The concatenation of those two intermediate queues return in the expected result. This step is done
in constant time since we only need to add the index of g2’ at the end of g1’ .

4. Mergeable Ropes

A rope is a data structure that is used for efficiently storing and manipulating a very long string. A
rope is a binary tree having leaf nodes that contain a short string. Each node has an index equal to the
sum of the length of each string in its left subtree. Thus a node with two children divides the whole
string into two parts: the left subtree stores the first part of the string and the right subtree stores the
second part. The binary tree is crossed from the root to leaf each time the string has to be accessed. It
can be done in log(n) time if the tree is balanced.

Operation Rope String
Set/Get O(logn) 0(1)
Split O(logn) O(1)
Concatenate O(logn) O(n)
Insert O(logn) O(n)
Delete O(logn) O(n)

! Merge \ log (f(n)) | f(n) |

Figure 7: Comparison of the complexity of several operations on ropes and strings. n denotes the
length of the rope/string, and f is the complexity of the merge function provided by the user.

The main operations on a rope are set, get, split, concatenate, insert and delete: Set and get

Mergeable persistent data structures

respectively set or get the character at a given position. Split(¢,4) split at the position 4 the rope ¢
into two new rope. Concatenate(t,?2) return a new rope which is the concatenation of ¢; and ts.
Insert(t, i, s) insert the character chain s in the rope ¢ at the position 4. Finally, Delete(¢, 7, j) delete in
the rope ¢ the characters between 7 and j. Figure 7 compares the complexity of these operations for a
rope and a string.

If ropes are mainly used to manipulate strings, they can also be used to manipulate any other type
of container, as long as they support the above six operations. In fact, we design the ropes with the
following idea: "give me a container with a set of operations, and we will return you a rope on this
container, supporting the same operations but achieving a better complexity, with the exception of set
and get". We therefore request a merge operation on the container in order to implement the merge
operation of the mergeable rope. Indeed, because such a rope can be built on any type of container, it
is impossible to have a general way to merge it.

This versatility was one of the major reason which motivated the choice of ropes as our second
mergeable data structure implementation. Indeed, in a context such as MirageOS [3], the rope can
be instantiated as a file system, using pages as rope atomic elements. In combination with Irmin, we
obtain a Git-like persistent file system that can be distributed over several machines.

4.1. Implementation Overview

The implementation of mergeable ropes is quite straightforward, in the sense that it follows the
previous description, and its signature is given in Figure 8. The tree containing the rope is a self-
balancing binary search tree which keeps a factor of two between its minimal and maximal depth.
To implement such tree, the Irmin store is specialized in order to contain three types of elements. As
in mergeable queue, Index are accessors to the data structure. Node are intermediate elements of
the tree which contain information to improve the binary search. Finally, Leaf are the user-defined
container on which the rope is built.

module type IrminRope.S = sig
type t
type value (x e.g char x)
type cont (x e.g string x)

val create : unit — t
val make : cont — t

val set : t — int — wvalue — t
val get : t — int — value

val insert : t — int — cont — t
val delete : t — int — int — t
val append : t — t — t

val split : t — int — (t * t)

val merge : IrminMerge.t
end

Figure 8: Ropes signature. Here, cont and value can be instantiated as st ring and char, but also
with any other possible array of value where basic function are written in a persistent style.

The implementations of the six main operations follow more or less the same pattern. The
algorithm performs a binary search on the tree in order to determine the leaves concerned by the
operation. Then the operation is applied on the containers found in the leaves. In order to achieve

Mergeable persistent data structures

the logn complexity, the size of these containers has to be of the same order as the depth of the
tree. Finally, the tree is recursively rebuilt, using a rotation transformation in order to maintain the
balancing property.

4.2. Merging

The merge operation is a bit different. Given two trees to be merged and their common ancestor, their
keys in the Irmin store are used to determine the smallest subtrees where modifications occurred.
This decision is recursively performed by the two functions detail in Figure 9 and Figure 10. Then,
if these subtrees are separated, the resulting rope can be automatically deduced. Indeed, as they are
separeted the modifications occurred in differentiable places, that means we can therefore include all
of them being sure there is no conflicts. If it is not the case, these subtrees are linearised and flushed
into containers on which the user-defined merge operation is applied.

let merge_branch oldl o0ld2 (branchll, branchl2) (branch2l, branch22) =
if (branchll.key = branch2l.key) then Some branchll
else if (branchl2.key = branch22.key) then (
if (oldl.key = branchll.key) then Some branch2?l
else if (oldl.key = branch2l.key) then Some branchll
else None
)
else if (branchl2.key = o0ld2.key && branch2l.key = oldl.key) then Some branchll
else if (branchll.key = oldl.key && branch22.key = old2.key) then Some branch2l
else None

Figure 9: The key comparison function, which returns an option for branch11 and branch12 with
the help of branch21 and branch22. The top level conditional statement distinguishes three major
cases. First, if branch11 and branch12 are equal, then we can return any of them. Second, if
branch21 and branch22 are equal, then we can return a branch if the other one is still equal to
old. Finally, if modifications occurred in different branches, we can return the modified branch.

let rec merge_node old nodel node2 =

let leftl = nodel.left in

let rightl = nodel.right in

let left2 = node2.left in

let right2 = nodeZ.right in
let left_option =

merge_branch store old.left old.right (leftl, rightl) (left2, right2) in
let right_option =

merge_branch store old.right old.left (rightl, leftl) (right2, left2) in
match (left_option, right_option) with

| None, None — ... (* bad case x)
| Some left, None | None, Some right — ... (x recursive case x)
| Some left, Some right — ... (% good case x)

Figure 10: The merge decision function. The final pattern-matching distinguishes three case. The good
case return immediately the result of the merge, since it achieve to deduce it at this step. The recursive
case recall the merge function on the None subtree. The bad case appears when it is impossible to
automatically deduce the result of the merge. In this case, the two subtrees are flushed into two
containers, and the merge function provided by the user is called on it.

On simple trees, this approach is very efficient because the merge operation is applied on the

Mergeable persistent data structures

smallest possible container. However, the balancing property reduces this effectiveness. Indeed,
the internal structure of a tree can be deeply modified during a rebalancing operation, making it
impossible to compare potentially large subtrees. In order to minimize the scope of rebalancing
operations, the rotation function is applied as less as possible, and only on the smallest unbalanced
subtree. Due to this restriction, the impact on the merge function efficiency is proportional to the
volume of modifications produced by an operation. An example of merge operations is given in
Figure 11.

5/ \2
2/ \2 d/\l

SN LN /N
lo rem ip sum a met
10 10
. / \ . : / \ 2
7N 7N RN SN
2 2 2 1 2 2 do 4
/N /N VA VA AN N /N
lo rem ip sum do lor a met lo rem ip sum 3 met
A

10 sit a
5/ \5
2/ \2 2/ \4
VAN VA VAN /A

lo rem ip sum do lor 3 met

/N

sit a

Figure 11: In this example, the old green rope have been modified in two different manners — yellow
and red —, resulting in two ropes having to be merged. In this case, the merge algorithm is able to
select the two relevant subtrees in both of the ropes, and returns the final rope without having to call
the user-provided merge function.

5. Analysis

We now details how we evaluated the correctness of the previously described implementation and
how we analyzed their effective costs.

5.1. Automatic checking

In the case of the correctness, we especially want to ensure that the classical operations match with
their equivalents in other implementations, and that the merge operation follows its specification. The
way it works is similar for queues and ropes. An oracle is used to determine a sequence of operations
and their result. This sequence is then applied on the tested data structure, and on a witness obtained
from another implementation. At each step, the data structure and the witness are required to exactly
match. And at the end of the sequence, the two obtained result have to correspond with the result
predicted by the oracle.

If this protocol is working fine with classical operations, it cannot be honestly applied on the merge
operation. Indeed, it does not exist at our knowledge another data structure to be used as a witness.
The verification process is therefore a bit different for this operation. In this case, we chose a result

Mergeable persistent data structures

with a easily verifiable property which is preserved after each merge operation. For example, a queue
containing an increasing sequence of numbers, or a rope composed by a nondecreasing sequence of
characters. This result is decomposed in several subresult having to be merge in order to recover the
initial one. And because a merge preserves the aforementioned property, we can verify the correctness
of the merge operation at each of its uses.

These tests have successfully guaranteed the good behaviors of our implementation of queues and
ropes data structures. But they are not sufficient to ensure that the theoretical complexity is reached.
In addition, we therefore designed several benchmark tests in order to validate this last point. Aside
from showing the theoretical complexity is reached, these tests highlight some other interesting facts.

5.2. Benchmarking

Performance analysis The most obvious interest of benchmark tests is to measure the needed time
of a given operation. Figure 12 shows the result of one of these tests. As a first glance, we can
see that the theoretical complexity is reached for every operations. Then we can see a general stair
behaviors. This one is due to the internal tree representation. Indeed, at each a step a new level is
needed in this tree in order to represent the whole rope. Finally, we can see several spikes, which are
the consequences of the complex interactions between the balancing property and maintaining a leaf
length proportional to the depth of the tree.

140 T T T T T T
Insert

120

100

80

60

40

Time spent for one operation (us)

20

0 10000 20000 30000 40000 50000 60000 70000

Size of the rope on wich the operation is applied

Figure 12: Needed time for one operation on a rope of size n on the Obj backend (see later)

Backend comparison As Irmin can be instantiated on different backends, it may be interesting to
compare their relative performances. One of these backends is the OCaml heap, which maps Irmin
blocks to the OCaml heap and use the memory address as block address (instead of its hash). This
backend (whose implementation is given in Figure 13) uses the Obj module: it is useful to get raw
performance results to compare it with already existing OCaml libraries. We do not advise to use it in
other contexts.

Figure 14 shows the result of a same test run on different backends. On this graph, Memory refers
to the in RAM backend. GitMem and GitDsk respectively refer to a Git backend, in the first case
instantiate in the memory, on the hard drive in the second case. The Core is not strictly a backend
because it refers in fact to the implementation of functional queue in the Core library. It is used here
as a sort of optimal case, in a matter of comparison.

10

Mergeable persistent data structures

module ObjBackend
type t = unit
type key = K.t
type value = V.t

let create () = ()
let clear () = ()

let add t value =
Obj.magic

let read t key =
Obj.obj

= struct

(Obj.repr value)

(Obj.magic key)

let mem t key = true

end

500000

400000

300000

200000

100000

Time spent for whole operations (us)

500

0 500

Figure 13: ObjBackend implementation overview.

T T T T T T T T
Core

Obj
IMemory
GitMem
GitDsk

1000 1500 2000 2500 3000 3500 4000

Number of push/pop successively applied

4500

T T T T T T T T
Core

Obj ——

400 tMemory ——
GitMem ——
GitDsk

300 -

200

100

Time spent for whole operations (us)

0 500

1000

1500 2000

3000

3500 4000 4500

Number of push/pop successively applied

Figure 14: Time needed for n push followed by n pop on different backends

11

Mergeable persistent data structures

As we can see, there is a factor five between Core and the implementation of our queue on the Obj
backend. It is an acceptable price to pay for maintaining a mergeable data structure.

IO cost estimation A final original use of benchmarks is the possibility to determine the time needed
for a read and a write on different backends. Indeed, our rope implementation is able to produce some
statistics about the number of read and write used in each operation. Some results of this statistics

are given in Figure 15.

Aside from highlighting the obvious fact that the cost of an operation is proportional to the number
of read and write, we can see that the relative proportion of read and write is different in each
operation. Knowing the time needed for one operation, these proportions give us a linear system of
four independent equation where variables are the time needed for a read and a write, represented in
Figure 16. The average of intersection points indicates the solution that we looking for.

Insert read I

~ write B oo

Delete read
write

| Append read
write

Split read n—

c

o

T 1600
2

S 1400
(0]

5

S 1200
£

3 1000 -
hel

2 800
=}

£ 600
2

® 400
Qo

S 200
3

[0
p=}

pz4

S,

- write D ----ooeeeeeeeieeeeeeo IR
Id?l IG‘IG’ Ic9| Iu’lé’
7 Y/
70765 2 C5; 70765 2 A5
9 R0 S 1S 95 O3 S, S5
t-"d;,t%,g%, 96%7629%,

75 GOy O &, 75 5 O
65 O "0 70. 65 " Ok
Do S I8 95 P S, 1S

Size of the rope on which the operation is applied

Figure 15: Number of read/write used during one operation on a rope of size n.

IrminGit.Memory backend

80
70 -
60 -
50 -
40 -
30 -
20 -

Write time estimation (ps)

10

0

0

10 20 30 40 50 60 70

Read time estimation (us)

80

80
70
60
50
40
30
20

Write time estimation (us)

10
0

IrminMemory backend

0

10 20 30 40 50 60 70

Read time estimation (ps)

80

Figure 16: Let x be the time needed for one read, y the time needed for one write and d the time
needed for one operation on a rope. Then the above curves — where colors match with the previous
figure — are the plot of the equation: z * nrb of read + y * nbr of write = d

12

Mergeable persistent data structures

6. Conclusion

We have presented Irmin, a high-level OCaml library that follows the same design principles as
Git. We presented the design, implementation and evaluation of two mergeable data structures:
queues and ropes. We also evaluated the performance of the different backends of Irmin and showed
that it is possible to build very efficient version-controlling data structures. As a future work, we
plan to (i) build more mergeable data structures, (ii) build higher-level protocols on top of Irmin
to manage a distributed computation and (iii) build eventually-consistent applications using the
provided data structures and protocols. All of the source code is available under a BSD license
athttps://github.com/mirage/mergeable—queues and https://github.com/mirage/
mergeable—-ropes.

7. Acknowledgment

The research leading to these results has received funding from the European Union’s Seventh
Framework Programme FP7/2007-2013 under Trilogy 2 project, grant agreement number 317756.

References

[1] Sebastian Burckhardt and Daan Leijen. Semantics of concurrent revisions. In Proceedings of the
20th European Conference on Programming Languages and Systems: Part of the Joint European
Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, pages 116-135, Berlin,
Heidelberg, 2011. Springer-Verlag.

[2] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data structures
persistent. J. Comput. Syst. Sci., 38(1):86-124, February 1989.

[3] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library operating
systems for the cloud. In Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’13, pages 461-472, New
York, NY, USA, 2013. ACM.

[4] Chris Okasaki. Purely Functional Data Structures. PhD thesis, Pittsburgh, PA, USA, 1996.
AAI9813847.

[5] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data
types. In Proceedings of the 13th International Conference on Stabilization, Safety, and Security of
Distributed Systems, SSS’11, pages 386—400, Berlin, Heidelberg, 2011. Springer-Verlag.

13

https://github.com/mirage/mergeable-queues
https://github.com/mirage/mergeable-ropes
https://github.com/mirage/mergeable-ropes

	Introduction
	Irmin Architecture
	Mergeable Queues
	Implementation Overview
	Merging

	Mergeable Ropes
	Implementation Overview
	Merging

	Analysis
	Automatic checking
	Benchmarking

	Conclusion
	Acknowledgment

