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Abstract. This paper presents a parallel remeshing algorithm for distributed-memory
architectures. It is an iterative parallel algorithm that divides the areas to be remeshed
into multiple pieces which can be distributed to as many processing elements as pos-
sible, in order for these pieces to be remeshed concurrently by a third-party sequential
remesher. Then, remeshed pieces are reintegrated into the distributed mesh, and this pro-
cess is iterated until all relevant areas of the mesh have been remeshed. Any sequential
remesher can be used, provided it allows some of the mesh elements not to be modified,
so as to preserve interfaces between pieces. Our method, which has been implemented
in the PaMPA library, is validated by a set of experiments involving both isotropic and
anisotropic meshes.

1 Introduction

Today’s large scale simulations can only be run in parallel, because many meshes are
now too big to fit in the memory of a single computer. Since shared-memory architectures
are subject to memory bottlenecks, scalability can only be achieved by using distributed-
memory architectures such as workstation clusters. Therefore, a prerequisite for such
simulations is to be able to generate huge meshes in a parallel, distributed-memory fashion.
Moreover, in the case where users would like to perform mesh adaptation, the latter must
also be performed in parallel.

In this work, we propose a parallel mesh adaptation procedure that relies on existing
sequential mesh adaptation software. The only requirement of this sequential software is
that it should not modify prescribed mesh elements. The advantage of this approach is
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its ease of use, through the ability to use existing sequential software to generate huge
meshes in reasonable time.

This paper is organized as follows. After presenting the state of the art in parallel
remeshing, we will briefly discuss the features of the PaMPA [25] library that we designed
to handle distributed meshes, and then present out parallel remeshing algorithm. We
will then show results of parallel remeshing that we achieve with the current version of
PaMPA, combined with the MMG3D sequential tetrahedral remesher.

2 State of the art in parallel remeshing

The need for remeshing during a numerical simulation may arise from two different
reasons: either to reduce the numerical inaccuracy induced by an inadequate mesh (most
often because it is too coarse; yet, too fine meshes may induce numerical error and waste
too much compute time), or because of a changing geometry (moving bodies, deforma-
tions, etc.).

Sequential remeshers are confronted to physical limitations which hinder their practical
use. The hardest limit is the maximum available memory per processing element (PE),
but run time also becomes a strong concern for very large meshes. This is why many
authors explored the path of parallel remeshing.

Shared-memory parallelism is a straightforward way to reduce run time, at the expense
of only small modifications to existing sequential remeshing algorithms, by adding locking
mechanisms that prevent multiple PEs to process simultaneously the same elements. How-
ever, shared-memory parallelism cannot scale to a large number of processing elements,
because of memory bottlenecks. Moreover, all large-scale parallel architectures implement
a distributed-memory model, so that remeshing on the fly the distributed meshes used
in large-scale simulations requires distributed-memory parallel remeshing methods. In
the case where the physical nodes of the parallel cluster comprise several cores, shared-
memory parallelism can be used at the node level, but explicit message passing still has
to be used across machine nodes.

There exist two main families of remeshing algorithms. The first one, which may seem
the most natural, consists in parallelizing existing sequential remeshing algorithms. How-
ever, in a distributed-memory context, this is not an easy task, because of the synchro-
nization costs across PEs. This is why a second family of methods has been investigated,
which uses existing sequential remeshers as black boxes within an iterative framework.

2.1 Parallelization of sequential algorithms

In order to parallelize sequential remeshing techniques, one has to adapt to the distributed-
memory framework, elementary mesh transformations such as Delaunay triangulation and
edge subdivision.

The first works on parallel remeshing were carried out in the 1990’s on 2D meshes,
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by Castanos and Laemmer. In 1996, Castanos and Savage [4] proposed a distributed-
memory remeshing method for 2D meshes. Their technique allows one to adapt the meshes
several times, while preserving the correspondance between elements across successive
remeshings. In the case of triangles, mesh refinement is performed by cutting in two the
longest edge, so as to yield two smaller triangles. In order to avoid inconsistencies on the
frontier across two subdomains, a synchronization procedure is applied to frontier edges,
so that, when some PE wants to split an edge, the same node is created on all copies of
this edge possessed by neighboring PEs.

The parallel remeshing of homogeneous 3D meshes has been studied by Oliker, followed
by the works of Chrisochoides, Casagrande and Cavallo. In 2000, Oliker et al. [20] pre-
sented both some parallel remeshing techniques, which they implemented in the 3D_TAG
software, and a load balancing library called PLUM [19]. In 2003, Chrisochoides [6] pro-
posed a parallel version of the Delaunay triangulation algorithm. This method is based
on querying neighboring PEs about the frontier face for which the Delaunay cavity has
to be extended.

In the method proposed by Casagrande [3] in 2005, it is not necessary to keep the
correspondance between the remeshed and the original meshes, thus allowing for better
flexibility in the remeshing and higher quality of the adaptation. While edge and face
flipping can be performed easily at the interface between two or more PEs, structural
changes such as node addition and removal are much more difficult to achieve, because of
the need to synchronize all involved PEs.

Also, parallel remeshing has been implemented for mixed meshes by Lawlor [18], in the
ParFUM library [18].

As one can see, the parallelization of sequential remeshing algorithms requires to per-
form some synchronization across several PEs when the elements to be remeshed belong
to the frontier between two or more subdomains. While locking and synchronization
primitives are reasonably cheap in shared memory, they incur very high latency in a dis-
tributed memory context. This is why methods of a higher granularity of synchronization
have been investigated. They amount to run concurrently several instances of existing
sequential remeshers, on independent pieces of the mesh.

2.2 Re-use of existing sequential remeshers

The re-use of sequential algorithms in a parallel context started with the works of
Coupez [§], followed by those of Dobrzynski [13] and Tremel [23].

In 2000, Coupez [8] proposed a parallel remeshing method based on an iterative process.
At each step, sequential remeshing techniques are applied to the interior of the subdomains
possessed by every PE, without changing their frontiers. Then, the mesh is migrated so
that former frontier areas reside in the interior of the new subdomains, so that they can
be remeshed during the next iteration.

This technique has been extended by Dobrzynski [13], using the MMG3D sequential
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remesher [I4]. It allowed her to remesh isotropic as well as anisotropic meshes, in 2D
and in 3D. Meshes comprising more than 2 millions of tetraedra have been remeshed on
32 PEs.

In 2005, Cavallo et al. [5] presented the adaptation method they implemented in the
CRUNCH CFD code [16]. Remeshing is applied to mixed unstructured meshes by means
of edge deletion, Delaunay triangulation and smoothing techniques [2] for tetraedra of
low quality (that is, tetraedra one angle of which is greater than 120 degrees). Every
subdomain performs its remeshing without modifying the frontiers. Then, interfaces are
migrated between pairs of PEs, so that PEs receive the other side of one of their interfaces
and process them alone.

In all of the above methods, balancing the load of remeshing tasks is a concern, as some
PEs may have much more work to do than others. This is why, in the method we propose,
we will over-decompose the areas to be remeshed so as to leave as few idle PEs as possible.

Another aspect of parallel remeshing is the ability to project the values of the variables
from the original mesh to the remeshed mesh. In 2007, Digonnet et al. [10] proposed both
a parallel remeshing method based on interface migration, and a parallel hierarchical
migration method to copy the values of the original mesh to the remeshed mesh.

Also, some numerical simulations may require several correlated meshes, each of them
having their specificity. Ramadan [22] extends the parallel remeshing method to such
meshes, in the case of incremental industrial processes like wire drawing and metal rolling.
A fine mesh is used to store the results and perform thermal computations, while a coarser
mesh is used for structural mechanics computations. This method has been implemented
in the CiMLIB library [I1], which uses the MTC mesh generator [7] as a remesher.

3 The PaMPA library

Remeshing is not the only feature that is needed by writers of numerical solvers that
operate on unstructured meshes. More generally, the numerical resolution of problems
arising in, e.g., fluid dynamics, requires to represent adequately the unstructured meshes
that discretize the simulation domain and bear the simulation data, and then to write
the numerical scheme so as to compute efficiently the solution of the numerical problem
on this mesh. Consequently, most of the code of such parallel numerical solvers does not
relate to the numerical scheme itself, but to the handling of data structures and commu-
nication, which is indeed not the core business of applied mathematicians. Consequently,
huge amounts of time are spent writing again and again blocks of code that perform the
same tasks. The common set of functional needs that have to be addressed by solver
writers is the following.

First, software should be able to represent adequately distributed meshes in memory,
according to the distributed-memory paradigm. This imposes to distribute mesh data
across the PEs of a parallel architecture, so as to evenly balance workload. It amounts to
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performing a subdomain decomposition of the mesh, each subdomain being assigned to a
different PE. For the sake of usability, meshes should consist of any kind of element, and
the software should be able to handle mixed and/or non-conformant meshes.

In order to perform the desired computations, data has to be attached to the different
entities that make up the mesh: elements, faces, edges, nodes, etc. These data may
differ according to some sub-classification of the mesh entities, e.¢g. numerical boundary
condition values attached only to boundary faces. Since computations on every PE involve
data that belongs to other PEs, primitives must allow one to perform data exchange across
neighboring entities, taking into account the different amount and type of data borne
by entities and sub-entities. Data exchanges should be asynchronous, so as to overlap
communication with computation: computations can be performed on mesh entities that
belong to the interior of the subdomains, while data borne by subdomain frontier entities
are exchanged asynchronously.

Writing the numerical schemes equates to iterating over all the members of some entity
in an outer loop, and then to iterating over members of some other entity that are adjacent
to each member of the entity considered in the outer loop. Hence, one should benefit
from efficient iterator methods that allow him/her to iterate, on each PE, over any kind
of entity (e.g. local elements, local faces, etc.) or sub-entity (e.g. local regular faces,
local boundary faces, etc.), potentially distinguishing between internal or frontier entities
so as to overlap communication with computation (e.g. local internal regular elements,
local frontier boundary faces, etc.). In order to speed-up computations, mesh data must
be placed in memory so as to maximize cache effects. This amounts to performing a
reordering of all mesh entities on each PE, such that data that are topologically close
(and thus will be accessed together) are placed close to each other in memory. This
reordering can advantageously be performed while distributing mesh data across the PEs.

Then, in some cases, one may want to dynamically modify the mesh structure, or the
computations attached to it (e.g. when switching from an elastic deformation model to
more expensive plasticity computations in some parts of a mesh). This imposes to perform
a dynamic redistribution of the mesh entities, so as to restore load balance. All relevant
numerical data associated with the migrated entities has to be migrated, and may also
benefit from the aforementioned data reordering.

Finally, this dynamic modification can be delegated to a third-party remesher. Since
almost all remeshing software is sequential, one has to run multiple times this sequential
software on different pieces of the mesh, and to handle cases when areas to remesh span
across several subdomains.

As one can see, implementing all the aforementioned features represents a huge amount
of work, which is all the more wasteful as it is done independently by every solver writer.

PaMPA [17] (for “Parallel Mesh Partitioning and Adaptation”) is a software that aims
at relieving solver writers from the tedious and error-prone task of writing again and
again service routines for mesh handling, data communication and exchange, remeshing,
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and data redistribution. PaMPA represents meshes as graphs, whose data is distributed
across the processors of the parallel machine. It allows users to define distributed meshes,
to declare values attached to the entities of the meshes, to exchange values between over-
lapping entities located on the frontiers of subdomains assigned to different processors, to
iterate over the relations of entities, to remesh the pieces of the mesh that need to be, and
to redistribute evenly the remeshed mesh across the processors of the parallel architecture.
PaMPA relies on the PT-ScoTcH library [21] for parallel graph (re)partitioning.

4 Our parallel remeshing algorithm

Our method for parallel remeshing is an iterative algorithm made of two nested loops.
The outer loops iterates the remeshing process until all elements that need to be remeshed
have been processed. The inner loop, which is depicted in Figure [I] is made of five
consecutive steps. It splits the groups of elements to be remeshed into pieces that will be
remeshed concurrently on as many PEs as possible by a third-party, sequential remesher.
In the following, we will give further details on each of these five steps. A thorough
description of all of the sketched algorithms can be found in [17].

Tagging of elements to be remeshed The purpose of the first step is to tag the
elements that need to be remeshed. Step la, which represents the initialization phase of
the inner loop, just considers the tags that have been computed at the beginning of the
outer loop. In subsequent inner iterations, corresponding to step 1b, tags are removed
from the elements that have been successfully remeshed. The elements that belong to the
skin of the pieces are left tagged, as they cannot be remeshed (see below).

Computation of independent pieces This step aims at computing pieces of the mesh
that can be remeshed independently from each other. Three criteria must be enforced: (i)
pieces must contain mostly elements that have been flagged. However, because remeshers
have to modify the neighboring elements of an element being refined, a piece may contain
additional un-tagged elements that form a “skin” around the tagged elements; (ii) the size
of the pieces must be big enough to leave room for work to the sequential remesher. Yet,
there must be enough pieces not to leave any PE idle. Hence, the size of the pieces may
depend on the number of PEs, and has also to be bounded by the available remaining
memory on the PEs; (iii) the size of the skin must be as small as possible, so that the
aspect ratio of the piece to remesh is as high as possible, hence constraining the remesher
as little as possible.

During our research, we have experimented several algorithms to compute the pieces.
The most efficient one, with respect to the above criteria, is to use graph partitioning on
the dual graph. The desired number of parts is determined by estimating the number of
nodes that will be created (or removed) by the remeshing process. Each of the tagged
elements is assigned a weight that represents an estimation of the amount of work that the
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Figure 1: Sketch representing the inner loop of our algorithm, composed of five steps. The first one
(la, 1b) tags the elements that still need to be remeshed (the gray area). The second one computes
independent pieces. The third one extracts the pieces and gives them to PEs so as to balance the
workload of the fourth step, which is the sequential remeshing phase. In the last step, remeshed pieces
are reintegrated into the distributed mesh. This process iterates until no tagged element remains.

remesher will spend processing this element. Then the parallel partitioner PT-ScoTcH
is called to partition this weighted dual graph into the desired number of pieces.

Extraction of the pieces to be remeshed The pieces that have been computed
at the previous step may span across multiple PEs. The goal of this step is therefore
to gather all the fragments of a given piece to the same PE, so that PEs can work on
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complete, centralized instances of the pieces that they have to remesh. All the entities
adjacent to an element that belongs to some piece are copied to the destination PE for
this piece. Consequently, some entities (e.g. nodes) may be duplicated on several PEs; if
they are adjacent to elements that belong to different pieces and thus are to be processed
by different PEs.

The assignment of pieces to PEs is also performed by using the SCOTCH partitioner.
The purpose of this partition is to balance the estimated remeshing workload of the
pieces among the PEs, while migrating as little data as possible across PEs, by favoring
the assignment of pieces to PEs that already hold most, or at least some, of their data.

Remeshing of the pieces Every piece, now on the form of a centralized submesh, is
processed concurrently by an instance of the third-party, sequential remesher. In order to
be able to reintegrate the remeshed pieces into the distributed mesh, the outermost layer
of elements that belong to the skin of the piece must never be modified by the remesher.

Reintegration of the remeshed pieces Once the pieces have been remeshed, they
have to be reintegrated into the unmodified part of the distributed mesh. This includes
merging the new topological information, as well as the new values associated with the new
mesh entities. Once this step is complete, a new iteration of the inner loop can take place.

After all the tagged elements have been remeshed, the new distributed mesh may be
repartitioned and redistributed, so as to rebalance workload across the PEs.

Our parallel remeshing method has been implemented in the PaMPA parallel library.
An interface has been defined, which allows one to use any sequential remesher that allows
some of the elements of the mesh that is passed to it not to be modified.

5 Experimental validation

In order to show the genericity of our method, we applied it to several test cases, both
isotropic and anisotropic. For that purpose, we combined PaMPA with the MMG3D se-
quential tetrahedral isotropic and anisotropic remesher [12]. Our test machine is AVAKAS [24],
a cluster of Intel® Xeon® x5675’s running at 3 GHz.

5.1 Isotropic mesh generation

On 240 processors, we have been able to remesh an isotropic mesh with 27 millions of
elements into a refined mesh comprising more than 600 millions of elements, in less than
35 minutes. Table [1] evidences the quality of the produced mesh. We could not compare
our method to its sequential counterpart, as the sequential remesher ran out of memory
on our largest system, which has 200 Gib of memory.



C. Lachat, C. Dobrzynski and F. Pellegrini

Initial number of elements 27 044 943
Final number of elements 609 671 387
Elapsed time 00h34mb9s
Elapsed time x number of PEs 139h56m
Smallest edge length 0.2911
Largest edge length 8.3451
Worst element quality 335.7041
% element quality between 1 and 2 98.92%
% edge length between 0.71 and 1.41 97.20%

Table 1: Execution time and mesh quality of the remeshing of a link rod composed of isotropic tetrahedra,
on 240 processors, with PaMPA-MMG3D.

5.2 Anisotropic mesh generation

In a second test case, we generated an anisotropic mesh with the aim to capture an
interface. In [9], the authors propose a geometric approximation control of interfaces using
an anisotropic metric. They rely on the generation and the adaptation of an anisotropic
triangulation to a metric tensor field related to the intrinsic properties of the manifold.
We adapted this technique to generate meshes under the constraint that the distance
between a point and the surface is limited. Thanks to a proper definition of the metric
tensor, we can generate anisotropic meshes adapted to an interface defined as a level-set.

In our example, the surface is an ellipse (sizes: (0.5,0.1,0.2)) centered in a sphere (of
radius r = 10), we approximate the surface with a precision of ¢ = 0.0003, and we impose
a minimal edge size equal to 0.0003. The results concerning this test case are summed
up in Table 2l The quality of the mesh after remeshing is good enough, while execution
time could be improved.

Initial number of elements 715 791
Final number of elements 29 389 210

Elapsed time 00h34m

Elapsed time x number of PEs 27h12m

Smallest edge length 0.1116

Largest edge length 8.2191

Worst element quality 14.8259

% element quality between 1 and 2 99.61%

% edge length between 0.71 and 1.41 | 93.65%

Table 2: Execution time and mesh quality of the remeshing of a sphere composed of anisotropic tetra-
hedra, on 48 processors, with PaMPA-MMGS3D.
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5.3 Mesh adaptation to a physical solution

Finally, we used our method within an adaptation loop to solve a transsonic Eulerian
flow around a M6 wing. The system of equations is discretized using a residual distribution
scheme [I]. Mesh adaptation is guided by a metric based on an a posteriori error estimate
of the interpolation error [15].

Figure 2: On the left: volumic cut on the adapted mesh; on the right: density field.

6 Conclusion

We have presented a parallel method for remeshing distributed meshes on distributed-
memory machines. This method allows one to use any sequential remeshing software,
provided the latter can be instructed not to modify some prescribed elements. This
method, which has been implemented in the PaMPA library, already allows us to produce
meshes of several hundred millions of elements in reasonable time. Yet, smaller run
times could be achieved with a better distribution of the remeshing workload across PEs.
PaMPA [25] and MMG3D [14] are available from the Inria GForge, under the GPL license.
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