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SQUALL: the expressiveness of SPARQL 1.1 made available
as a controlled natural language !

Sébastien Ferré*

JRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France

Abstract

The Semantic Web (SW) is now made of billions of triples, which are available as Linked
Open Data (LOD) or as RDF stores. The SPARQL query language provides a very
expressive way to search and explore this wealth of semantic data. However, user-
friendly interfaces are needed to bridge the gap between end-users and SW formalisms.
Navigation-based interfaces and natural language interfaces require no or little training,
but they cover a small fragment of SPARQL’s expressivity. We propose SQUALL, a
query and update language that provides the full expressiveness of SPARQL 1.1 through
a flexible controlled natural language (e.g., solution modifiers through superlatives, re-
lational algebra through coordinations, filters through comparatives). A comprehensive
and modular definition is given as a Montague grammar, and an evaluation of natural-
ness is done on the QALD challenge. SQUALL is conceived as a component of natural
language interfaces, to be combined with lexicons, guided input, and contextual dis-
ambiguation. It is available as a Web service that translates SQUALL sentences to
SPARQL, and submits them to SPARQL endpoints (e.g., DBpedia), therefore ensuring
SW compliance, and leveraging the efficiency of SPARQL engines.

Keywords: Query language, Semantic Web, Expressiveness, Controlled natural
language, SPARQL 1.1

1. Introduction

An open challenge of the Semantic Web [3] is semantic search, i.e., the ability for
users to browse and search semantic data according to their needs. Semantic search sys-
tems can be classified according to their usability, the expressive power they offer, their
compliance to Semantic Web standards, and their scalability. The most expressive ap-
proach by far is to use SPARQL [4], the standard RDF query language. SPARQL 1.1 [5]
features graph patterns, filters, unions, differences, optionals, aggregations, expressions,
subqueries, ordering, etc. However, SPARQL is also the least usable approach, because
of the gap between users and the formal languages that RDF and SPARQL are. There

IThis paper extends previous papers [1, 2] with substantial improvement of the SQUALL language,
its presentation, and its evaluation.
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are mainly two approaches to make semantic search more usable: navigation and natural
language (NL). Navigation is used in semantic browsers (e.g., Fluidops Information Work-
bench?), and in semantic faceted search (e.g., SlashFacet [6], BrowseRDF [7], Sewelis [8]).
Semantic faceted search can reach a significant expressiveness [8], but still much below
SPARQL 1.1, and it does not scale easily to large datasets such as DBpedia®. Natu-
ral language is used in Ontology-based Query Answering (OQA) systems [9] in various
forms, going from full natural language (e.g., FREyA [10], PowerAqua [11]) to mere key-
words (e.g., NLP-Reduce [12]) through controlled natural languages (e.g., Ginseng [13]).
Existing systems devote the most effort to bridging the gap between lexical forms and
ontology triples (mapping and disambiguation), and process only the simplest questions,
i.e., generate SPARQL queries with only one or two triples. Most of them support none of
aggregations (e.g., counting), comparatives, or superlatives, even though those features
are relatively frequent [14]. This means that even if full natural language is allowed as
input, expressiveness is in fact strongly limited.

A less studied aspect is the update of RDF datasets, i.e., the insertion and deletion
of triples. SPARQL 1.1 offers an update language to this purpose but with the same
usability problem as the query language. Proposals for more usable interfaces have been
made in faceted search (e.g., UTILIS [15]), and as a controlled natural language (e.g.,
ACE [16]). We think that update (and creation) of RDF data is as important as querying
for end-users because it makes them first-class citizens, rather than consumers only.

In this paper, we define and evaluate SQUALL, a Semantic Query and Update High-
Level Language?. Its contribution is: (1) to offer the full expressiveness of SPARQL 1.1
Query/Update (SPARQL for short) apart from a few details, (2) to cover a significant
fragment of natural language (English), and (3) to be defined in a domain-independent
way and in a concise way (its grammar has about 120 rules). SQUALL qualifies as a
Controlled Natural Language (CNL) [17, 18] because it combines a fragment of natu-
ral language syntax, and the unambiguous semantics of formal languages. The main
advantage of CNLs over formal languages is a better readability and understandabil-
ity by people whose background knowledge does not cover logic or computer languages.
SQUALL provides a lot of syntactic flexibility in that a same SPARQL query/update
can be expressed in many different ways. To the best of our knowledge, no existing CNL
target SPARQL queries and updates. Other CNLs for the Semantic Web rather target
ontologies (e.g., ACE [19], SOS and Rabbit [20]). Because the focus of this paper is on
syntactic and semantic expressiveness, we only assume a domain-independent basic de-
fault lexicon that uses qualified names (e.g., dbo:Film) as content words. In this setting,
SQUALL is less natural at the lexical level, but applicable to SPARQL endpoints with-
out any preparation. However, our approach makes it possible to define a customized
lexicon (i.e., mapping words to possibly complex semantic forms), and is in principle
compatible with mapping techniques used in OQA systems (i.e., using external resources
such as ontologies and WordNet). SQUALL is also compatible with guided input (like
in Gingseng [13]), which is recognized as important to solve the habitability problem in
NL interfaces [12, 9].

%http://iwb.fluidops.com/
Shttp://dbpedia.org
4SQUALL’s homepage at http://www.irisa.fr/LIS/softwares/squall.
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SQUALL is available as two Web services®. A translation form takes a SQUALL
sentence and returns its SPARQL translation. A query form takes a SPARQL endpoint
URL, namespace definitions, and a SQUALL sentence, sends the SPARQL translation
to the endpoint, which returns the list of query answers. The translation of SQUALL
to SPARQL ensures compliance w.r.t. SW standards, and scalability by leveraging the
efficiency of SPARQL engines.

Section 2 is a short introduction to Semantic Web formalisms (RDF and SPARQL).
Section 3 gives an overview of the coverage of SPARQL features by SQUALL through
examples. Section 4 develops a comprehensive definition of the syntax and semantics
of SQUALL, where it is shown how each feature is covered by NL constructs. The re-
sult of syntactic parsing is a semantic intermediate representation, whose translation to
SPARQL is addressed in Section 5. Section 6 evaluates SQUALL’s expressiveness by
defining a backward translation from each SPARQL construct to SQUALL. Section 7
evaluates the NL coverage, the naturalness, and the performance of SQUALL on ques-
tions from the QALD challenge (Query Answering over Linked Data) [14]. Finally,
Section 8 compares SQUALL to related work, and Section 9 concludes and discusses
perspectives.

2. Semantic Web: RDF and SPARQL

The Semantic Web (SW) is founded on several representation languages, such as
RDF, RDFS, and OWL, which provide increasing inference capabilities [3]. The two
basic units of these languages are resources and triples. A resource can be either a URI
(Uniform Resource Identifier), a literal (e.g., a string, a number, a date), or a blank node,
i.e., an anonymous resource. A URI is the absolute name of a resource, i.e., an entity,
and plays the same role as a URL w.r.t. web pages. Like URLs, a URI can be a long
and cumbersome string (e.g., http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type),
so that it is often denoted by a qualified name, e.g., rdf : type, where rdf: is the RDF
namespace. In the N3 notation®, the default namespace : can be omitted for qualified
names that do not collide with reserved keywords (bare qualified names).

A triple (s p o) is made of 3 resources, and can be read as a simple sentence, where
s is the subject, p is the verb (called the predicate), and o is the object. For instance,
the triple (Bob knows Alice) says that “Bob knows Alice”, where Bob and Alice are
the bare qualified names of two individuals, and knows is the bare qualified name of
a property, i.e., a binary relation. The triple (Bob rdf:type man) says that “Bob has
type man”, or simply “Bob is a man”. Here, the resource man is used as a class, and
rdf:type is a property from the RDF namespace. The triple (man rdfs:subClass0f
person) says that “man is a subclass of person”, or simply “every man is a person”. The
set of all triples of a knowledge base forms an RDF graph.

RDF query languages [21] provide on semantic web knowledge bases the same service
as SQL on relational databases. They generally assume that implicit triples have been
inferred and added to the base. The standard RDF query language, SPARQL 1.1 [5],
reuses the SELECT FROM WHERE shape of SQL queries, using graph patterns in the WHERE
clause. A graph pattern G is one of:

Shttp://1isfs2008.irisa.fr/ocsigen/squall
Shttp://www.w3.org/TeamSubmission/n3/



a triple pattern (s p o .) made of RDF terms and variables (e.g., 7x),
e a join of two patterns (G1 Gs),

e an union of two patterns (G; UNION Gs),

e a difference of two patterns (G; MINUS Gs),

e an optional pattern (OPTIONAL G,),

e a filter pattern (FILTER C), where C is a constraint, i.e., a Boolean expression
based on predicates (e.g., comparing, matching), functions (e.g., arithmetic, string
concatenation), and the (un)satisfiability of a graph pattern ((NOT) EXISTS Gi),

e an assignement to a variable: either of the result of an expression (BIND (expr AS
x)), or of a RDF resource (VALUES = { res }),

e a named graph pattern (GRAPH g G1), where g denotes a named graph, in which
the graph pattern G should be matched,

e a service graph pattern (SERVICE wri Gy), where uri points to another SPARQL
endpoint against which the graph pattern G; should be matched,

e a subquery.

Aggregations and expressions can be used in the SELECT clause (e.g., COUNT(?x),
SUM(?x), 2 * ?7x), and GROUP BY clauses can be added to a query. Solution modifiers
can also be added to the query for ordering results (ORDER BY) or returning a subset
of results (OFFSET, LIMIT). Other query forms allow for closed questions (ASK), for re-
turning the description of a resource (DESCRIBE), or for returning RDF graphs as results
instead of tables (CONSTRUCT). SPARQL has been extended into an update language
to insert/delete triples in/from a graph (INSERT, DELETE), and to manage RDF graphs
(LOAD, CLEAR, etc.). The most general update form is DELETE D INSERT [/ WHERE G,
where I and D can be sets of triple patterns plus named graph patterns, and G is a
graph pattern that defines bindings for variables occuring in I and D.

3. SQUALL overview through SPARQL features

This section presents an overview of the SQUALL language by giving for each
SPARQL feature its counterpart in SQUALL. It aims to give the reader a first taste
of the language, and also a first assessment of its expressiveness compared to SPARQL.
This list of SPARQL features is adapted and extended from a comparison of RDF query
languages [21]. For each feature, SQUALL sentences are given as illustrations, with rel-
evant parts underlined. For the sake of simplicity, we assume that all resources belong
to a same namespace so that bare qualified names can be used (e.g., “person”, “author”,
“Paper42”). The SPARQL translation of SQUALL sentences can be obtained from the
translation form at http://1isfs2008.irisa.fr/ocsigen/squall/.



Triple patterns. Each noun or non-auxiliary verb plays the role of a class or predicate in
a triple pattern. If a question is about the class or predicate itself, the verbs “belongs”
and “relates” are respectively used.

e “Which person is the author of a publication whose publication_year is 20127”

e “To which nationality does John_Smith belong?” (here, “nationality” is a meta-class
whose instances are classes of persons: e.g., “French”, “German”).

e “What relates John_Smith to Mary_Well?”

Updates. Updates are obtained by declarative sentences. A sequence of declarative sen-
tences generates a sequence of updates. Graph-level updates (e.g., LOAD, CLEAR) are
obtained by imperative sentences.

e “Paper42 has author John_Smith and has publication_year 2012.”
e “John_Smith know-s Mary_Well. Mary_Well know-s John_Smith.”
e “Load <http://example.org/data.rdf> into Graphl.”

e “Clear all named graphs.”

Queries. SELECT queries are obtained by open questions, using one or several question
words (“which” as a determiner, “what” or “who” as a noun phrase). Queries with a single
selected variable can also be expressed as imperative sentences. ASK queries are obtained
by closed questions, using either the word “whether” in front of a declarative sentence, or
using auxiliary verbs and subject-auxiliary inversion.

e “Which person is the author of which publication?”
e “Give me the author-s of Paper42.”
e “Whether John_Smith know-s Mary_Well?”

e “Does Mary_Well know the author of Paper42?”

Solution modifiers. The ordering of results (ORDER BY) and partial results (LIMIT,
OFFSET) are expressed with superlatives.

e “Which person-s have the 10 greatest age-s?”
e “Who are the author-s of the publication-s whose publication_year is the 2nd latest?”

e “Which person is the author of the most publication-s?”

Join. The coordination “and” can be used with all kinds of phrases. It generates complex
joins at the relational algebra level.

e “John_Smith and Mary_Well have age 42 and are an author of Paper42 and Paper43.”



Union. Unions of graph patterns are expressed by the coordination “or”, which can be

used with all kinds of phrases, like “and”.

)

e “Which teacher or student teach-es or attend-s a course whose topic is NL or DB?”

Option. Optional graph patterns are expressed by the adverb “maybe”, which can be
used in front of all kinds of phrases, generally verb phrases.

e “The author-s of Paper42 have which name and maybe have which email?”

Negation. The negative constraint on graph patterns (NOT EXISTS) is expressed by the
adverb “not”, which can be used in front of all kinds of phrases, and in combination with
auxiliary verbs. In updates, negation entails the deletion of triples.

e “Which author of Paper42 has not affiliation Salford_University?”

e “John_Smith is not a teacher and does not teach Coursel101.”

Quantification. Quantifiers have no direct counterpart in SPARQL, and can only be
expressed indirectly with negation or aggregation. In SQUALL, they are expressed by
determiners like “a”, “every”, “no”, “some”, “at least 3”, “the”. The latter “the” is inter-
preted existentially in queries, and universally in updates. The universal quantifier in
updates allows for batches of updates, and corresponds to the use of a WHERE clause in

SPARQL updates.

e “Every author of Paper42 has affiliation the university whose location is Salford.”

e “Which publication has more than 2 author-s whose affiliation is Salford_University?”

Built-ins. Built-in predicates and functions used in SPARQL filters and expressions are
expressed by pre-defined nouns, verbs, and relational adjectives. They can therefore be
used like classes and properties.

e “Which person has a birth_date whose month is 3 and whose year is greater than 2000?”

e “Give me the publication-s whose title contains "natural language” ?”

Ezxpressions. Operators and functions are defined as coordinations so that they can be
applied on different kinds of phrases: e.g., relational nouns, noun phrases.

e “Which publication has the lastPage - the firstPage + 1 greater than 10?” (page number)

"o

e “Return concat(the firstname, " ", the lastname) of all author-s of Paper42.” (fullname)

Aggregation and grouping. Aggregation is expressed by the question determiner “how

« R

many”, by relational nouns such as “sum”, and by adjectives such as “total”, “average”.
Grouping clauses are introduced by the word “per”.

e “How many publication-s have author John_Smith?”
e “What is the number of publication-s per author?”

e “What is the average age of the author-s of a publication per affiliation?”
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Property paths. Property sequences and inverse properties are covered by the flexible
syntax of SQUALL. Alternative and negative paths are respectively covered by the coor-
dination “or” and the adverb “not”. Reflexive and transitive closures of properties have
no obvious linguistic counterpart, and are expressed so far by property suffixes among
“?70 “47 and “*”. SQUALL does not yet support the transitive closure of complex
property paths (e.g., (“author/author)+ for co-authors of co-authors, etc.).

e “Which publication-s cite+ Paperd42?” (i.e., Which publications cite Paperl2 or cite a
publication that cites Paper42, etc?)

Named graphs. The GRAPH (resp. SERVICE) construct of SPARQL, which serves to re-
strict graph pattern solutions to a named graph (resp. to a distant service), can be
expressed using “in graph” (resp. “from service”) as a preposition. A prepositional phrase
can be inserted at any location in a sentence, and its scope is the whole sentence.

e “Who is the author of the most publication-s in graph Salford_Publications?”

e “In which graph is John_Smith the author of at least 10 publication-s?”

e “What is  the dbpedia-owl:capital of  dbpedia:France from service
<http://dbpedia.org/>?"

Graph literals. The SPARQL query forms CONSTRUCT and DESCRIBE return graphs, i.e.
sets of triples, instead of sets of solutions. A DESCRIBE query is expressed by the imper-
ative verb “describe” followed by a resource or a universally-quantified noun phrase. A
CONSTRUCT query is expressed by using a subordinate clause introduced by “that”, which
is reified into a graph literal.

e “Describe the author-s of Paper42.”

e “For every publication with an author X and with an author Y different from X, return that
X has coauthor Y and Y has coauthor X.”

Collection patterns. SPARQL has a special notation for collection literals (e.g., (1 2
3)) but not for collection patterns (e.g., Paper42 has an author list whose last element
is John Smith). In SPARQL, collection patterns are expressed by combining triple pat-
terns, blank nodes, and property paths: e.g., :Paper42 :authorList [ rdf:restx* [
rdf:first :John Smith ; rdf:nil ] 1. SQUALL offers concise and powerful pat-
terns by reusing Prolog’s notations plus the ellipsis, and translating them into SPARQL.

e “What has authorList [..., John_Smith]?”
e “Paper42 has authorList [..., who]?” (i.e., Who is the last author of Paper42?)
e “Paper42 has authorList [..., who, ...]?” (i.e., Who are the authors of Paper42?)

e “Paper42 has authorList [_, who, ...]?” (i.e., Who is the second author of Paperj2?)



4. Syntax and semantics

In this section, we formally define the syntax and semantics of SQUALL in the style
of Montague grammars. Montague grammars [22] are an approach to natural language
semantics that is based on formal logic and A-calculus. It is named after the American
logician Richard Montague, who pioneered this approach [23]. A Montague grammar
is a context-free generative grammar, where each rule is decorated by a A-expression
that denotes the semantics of the syntactic construct defined by the rule. The semantics
is defined in a fully compositional style, i.e., the semantics of a construct is always
a composition of the semantics of sub-constructs. The obtained semantics for a valid
SQUALL sentence is represented in an intermediate logical language, rather than directly
in terms of an existing query language for the Semantic Web. This is a common practice
in the compilation of high-level programming languages, and has a number of advantages.
First, it makes the semantics easier to write and understand because defined at a more
abstract level. As a side effect, it would also make it easier to redefine SQUALL for
other natural languages than English. Second, it gives freedom in the choice of the
implementation. For instance, the operational semantics of the intermediate language
can be given by translating it to an existing language, e.g., SPARQL; by interpreting it
in a relational algebra engine; or by using continuation passing-style, like in Prolog. In
Section 5, we describe a solution for the first approach.

SQUALL sentences are decomposed into noun phrases, verb phrases, relatives, de-
terminers, prepositional phrases, etc. As an illustration, we consider a complex sentence
that covers many features of SQUALL: “For which researcher-s X, in graph DBLP every publi-
cation whose author is X and whose publication_year is greater than 2000 has at least 2 author-s?”.
Its syntactic analysis is

[sfor [np[petwhich] [nG1[Noun:researcher-s] [apy [LaberX]]]],
[s[pp[Prepnounin graph] [wp[Propernoun DBLP]]]
[s[vp[Detevery] [Nc1[Nouns publication]
[Rret[rewhose [Nz [Nounzauthor]] [vris [np[LaserX]]]]
and [reiwhose [nGz [Nounz publication_year]]
[vris [regreater than [np[Litera:2000]]]]]]]]
[vphas [petat least 2] [nounzauthor-s]]]]],

and its semantic intermediate representation is

select Ar.(triple r rdf:type :researcher)

Ar.(context GRAPH :DBLP (forall

Ap.(exists \y.(and
(triple p rdf:type :publication) (triple p :author r)

(triple p :publication_year y) (pred > y 2000)))
Ap.(exists An.(and

(aggreg COUNT A[].Aa.(triple p :author a) n)

(pred >=n 2))))).

In the following, we successively define the semantic types and expressions (Sec-
tion 4.1) used for the intermediate representation, notations for Montague grammars
(Section 4.2), SQUALL’s lexical units and our default lexicon (Section 4.3), and

8



type | definition variable names | name of the type
e - T, Y, 2 entity

S - s statement

pl e— s d description

p2 e—e—s r relation

sl pl = s q quantifier

52 pl = pl =5 | g2 binary quantifier
M a— o m a-modifier

Co, a—a— c a-coordination

Table 1: List of semantic types along with their definition (except for base types), the common name of
their variables, and a short description of the type.

SQUALL’s syntactic rules (Section 4.4). We also explain how syntactic ambiguities
are resolved (Section 4.5), how non-local aspects are handled by semantic transforma-
tions (Section 4.6), and how the intermediate representation is semantically validated
(Section 4.7).

4.1. Semantic types and expressions

Montague grammar are based on simply-typed \-calculus [24]. Every syntagm is
associated to some semantic type, and those types constrain the way semantic expressions
can be combined. The two base types are e for entities, and s for statements. The main
type constructor is a — [ for functions from expressions of type « to expressions of
type 8. The sub-types a and (B can themselves be function types, recursively. For
instance, an expression of type pl = e — s expects an entity, and returns a statement:
it can be seen as a statement missing an entity. For example, the verb phrase “knows
Mary” has semantic type pl because it misses an entity (e.g., “John”) as the subject so
as to make a complete statement. Table 1 lists and defines the semantic types that are
used in this paper.

There are two kinds of semantic expressions associated to function types: applications
and abstractions. The application of an expression f of type a — S to an expression e
of type [ is noted f e, and has type 5. The abstraction of an expression e of type £ by
a variable x of type « is noted Ax.e, and has type a — (3. In the notation of expres-
sions, abstraction has priority over application, and application is left-associative: e.g.,
e1 Az.eg e3 = ((e1 (Az.ea)) e3). Expressions obtained by composition can be simplified
according to A-calculus, through S-reduction ((Az.s) y =g s[z < y], where s[x + ]
denotes the substitution of x by y in s), and n-expansion (d =, Az.(d z), if d is a
function).

For convenience, we also introduce a type constructor for lists, i.e., [] for lists whose
elements have type . In semantic expressions, [z;y; z] denotes a list with 3 elements, []
is the empty list, and (z :: 1) is a list whose first element is 2, and whose rest is 7.

Constants in semantic expressions play the role of semantic constructors in the inter-
mediate representation of SQUALL sentences. Table 2 lists all the necessary constants,
called primitives, to define the semantics of SQUALL. Although they take their name

"The reader may have recognized the notations from ML [25].
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primitive type description

triple e—~e—e—s triple pattern

command n—le] =s command

pred n—le] = s predicate call

func n — [e] = pl function call

aggreg n — ([e] = pl) — pl | aggregation

modif n — My solution modifier (e.g., ordering)
context n—e—msg context (e.g., named graph, service)
arg n—e—ms defining extra-argument

true S tautology

not Mg negation

option Ms optional

and Cs conjunction

or Cs disjunction

implies Cs implication

where Cs conditional

exists sl existential quantifier

forall s2 universal quantifier

the s2 definite quantifier

forarg n — sl using extra-argument

ask Mg query constructor

select s1 interrogative quantifier
select_where | s2 binary interrogative quantifier
return pl interrogative imperative

label p2 entity labelling by a user variable
ref e—e entity reference by a user variable
graphliteral | s — e graph reification as entity

Table 2: List of semantic primitives, along with their type and description.

eq: p2 = Az.\y.(pred = [z;y])
gt : p2 = Az \y.(pred > [z;y])
between : e — p2 = Az.Ay1.\y2.(and (pred >= [z;y1]) (pred <= [z;y2]))
count : pl — pl = Ad.\n.(aggreg COUNT A[].Ay.(d y) n)

4.2. Notations for Montague grammars

from English, they are in fact determined by SPARQL features, and independent to the
source natural language. In types, the base type n is introduced as a sub-type of e for
primitive arguments that correspond to names (e.g., predicates, functions, solution mod-
ifiers, extra-arguments). The table is given here in full for reference, but the meaning of
each primitive is only explained on their first introduction in the Montague grammar. For
convenience, we define additional constants on top of those primitives for comparators
and counting;:

A Montague grammar is made of rules. Each rule has a syntactic part, and a semantic
part. The syntactic part is a generative rule (e.g., S — there is NP), where grammatical
words are in bold, and syntagms are in italic.
10
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between curly brackets (e.g., { np Az.true }), where constants are in bold, RDF terms
are in teletype, and variables are in italic. For each syntagm (e.g., NP) in the right-
hand side of the generative rule, its semantics is denoted by a variable whose name is
a lowercase prefix of the syntagm name (e.g., np). Indices are used to disambiguate
between several occurences of a same syntagm (e.g., np;, np,). For brevity, alternative
words or syntagms are combined with a slash (e.g., is/are), instead of writing several
rules. Each syntagm is associated to a single semantic type, which is specified in the first
rule defining it (e.g., S : s). A default semantic can be defined at the same time (e.g.,
Rel : p1  (default : Az.true)), and allows to make the syntagm optional in right-hand
sides of rules (e.g., Rel?). In trivial rules like X — Y { y }, the semantic part may be
left implicit. To support modularity and avoid duplication of rules, we use higher-order
syntagms, i.e., syntagms parametrized by other syntagms. There are two parametrization
modes: X (Y) is used when the semantics of Y is incorporated into the semantics of X
and X{Y'} is used when the semantics of Y is not part of X, and is returned apart. The
latter is useful to parse non-contiguous constructs (e.g., “between ...and ...”). A beauty
of Montague grammars is that they can be directly encoded in functional programming
languages because they are based on lambda-calculus. Therefore, the grammar detailed
in the following sections constitutes an executable specification of SQUALL’s semantics.

4.3. Lexical units and default lexicon

Table 3 lists the different lexical units that are used in SQUALL’s grammar, along
with their semantic type. That list could be different for other natural languages than
English, although there would probably be a large overlap. An entity can be any of a
proper noun, a literal, a number, and a label. A description (type pl) can be any of
a common noun, an adjective, an intransitive verb, and an imperative verb. A relation
can be any of a relation noun, a transitive adjective, and a transitive verb. A statement
modifier can be any of a preposition, and a superlative. Functions and operators return
a description of their result given a list of entities (arguments). Aggregators return a
description of their result (the aggregated value) given a description of what has to be
aggregated (pl — pl). However, when there are dimensions (e.g., a GROUP BY clause), the
description of what has to be aggregated depends on the values taken on each dimension
([e]), hence the type ([e] = pl) — pl for aggregators. This type is a complex analogue
of the type of quantifiers (pl — s).

Because the focus of this paper is about the SQUALL language and its correspondence
with SPARQL, we do not elaborate much about the lexical analysis, i.e., about the
translation from concrete word forms to a Semantic Web vocabulary. There is active
research on this task (see Section 8), and integrating their results is left to future work.
The current implementation of SQUALL has a default definition of lexical units based
only on URIs, and SPARQL built-ins (see below), but the way it is coded makes it
relatively easy to extend those definitions for a particular vocabulary. Just to give an
exemple, assuming a data property ex:color, the adjective “green” can be defined by
the following rule:

Adjl — green { Az.(triple z ex:color "green”) }

This rule says that a “green” thing is a thing that has color "green".
By default, all URIs can be used as a proper noun (e.g., res:France); class URIs
can be used as common nouns (e.g., :Person); property URIs can be used as relation
11



syntagm type name (examples)

ProperNoun e proper noun (John, France)

Literal e literal value (2013, "Hello")

Number e number (3, 0.5)

Label e label (X, Y2, ?foo)

Nounl pl common noun (man, country)

Noun2 p2 relation noun (mother, birth date)

Adj1 pl adjective (green, French)

Adj2 p2 transitive adjective (knowing, known by)
Verb1 pl intransitive verb (works, drink)

Verb2 p2 transitive verb (knows, wrote)

VerbImp pl imperative verb (load, print)

QueryImp pl imperative question prefix (return, give me)
Func [e] = pl function (sqrt, pged)

Nulop pl nullary operator (now, a random number)
Unop e—pl unary prefix operator (-)

Mulop e—e—pl x-priority infix operator (*, /)

Addop e—e—pl +-priority infix operator (+, -)
NounAggreg ([e] = pl) — pl | aggregation noun (count, sum)

AdjAggreg ([e] = pl) — pl | aggregation adjective (total, average)

Prep e — my preposition (to, from)

PrepNoun{Det} | e — my preposition (in {a} graph, from {the} service)
AdjSuper e — mg superlative adjective (10 greatest, 2nd)
DetSuper e — my superlative determiner (the most, the 2nd most)

Table 3: List of the lexical units along with their semantic type, name, and concrete examples.

nouns (e.g., :author) and transitive verbs (e.g., :1ivesIn), and function URIs can be
used as functions. Absolute URIs, relative URIs, and qualified names are written like
in SPARQL. In the default namespace, bare qualified names can also be used, like in
notation N3 (e.g., author instead of :author). Qualified names allow for relatively
natural sentences, as shown in examples in this paper and on the Web page.

ProperNoun — URI { uri }

Noun! — URI { Ax.(triple x rdf:type uri) }
Noun2/Verb2 — URI { Ax.)y.(triple x uri y) }
Func — URI { Mz.\y.(func uri lx y) }

In SPARQL triple patterns, a variable can be used in place of a class or a property.
To support this feature, a triple 7x rdf:type ?c is expressed as “X belongs to C”; and a
triple 7x 7p 7y is expressed as “P relates X to Y”. “belong(s)” is a predefined intransitive
verb, and “relate(s)” is a predefined transitive verb. They both rely on the predefined
preposition “to” to specify the object of the triple (see Section 4.4.6).

Verbl — belong(s) { Az.(forarg to Ac.(triple = rdf:type c)) }
Verb2 — relate(s) { Ap.A\z.(forarg to A\y.(triple x p y)) }
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SPARQL built-ins can be used under various forms, according to their semantic type.
Unary predicates can be used as common nouns (e.g., “literal” for isLiteral(.)), adjec-
tives (e.g., “numeric” for isNumeric(.)), and intransitive verbs. Binary predicates can
be used as relation noun (e.g., “prefix” for strStarts(.,.)), transitive adjective (e.g.,
“matching” for REGEX(.,.)), and transitive verbs (e.g., “contain(s)” for contains(.,.)).
All SPARQL functions can be used as SQUALL functions. Unary functions can also
be used like binary predicates (e.g., “length” for strlen(.)), and nullary functions can
be used as nullary operators (e.g., “a random number” for RAND()). Aggregations can be
used as aggregation nouns and adjectives (e.g., the adjective “total” for SUM). SPARQL
commands like DESCRIBE and LOAD are expressed as imperative verbs (resp., “describe”,
“load”). The SPARQL constructs GRAPH and SERVICE are expressed by the noun prepo-
sitions “in Det graph” and “from Det service”. Indeed, the latter constructs modify a
statement given an entity (either a named graph or a service). The other default prepo-
sitions are “into” and “to” to be used in the commands LOAD and ADD/MOVE/COPY. The
SPARQL solution modifiers combine the ordering of solutions (ORDER BY), and the se-
lection of a range of solutions (LIMIT and OFFSET). They are expressed as superlative
adjectives and determiners. For example, the adjective highest translates to the SPARQL
modifier ORDER BY DESC(xz) LIMIT 1, where x is the entity passed to highest. We finally
give a few representative examples about defining SPARQL built-ins as lexical units.

Nounl — literal { \z.(pred isLiteral [z]) }

AdjAggreg — total { Ad.\x.(aggreg SUM d z) }

VerbImp — load { Ay.(forarg into Az.(command LOAD [y; z])) }
AdjSuper — highest { Az.As.(modif ”0RDER BY DESC(x) LIMIT 1” s) }
PrepNoun{Det} — in Det graph { Az.\s.(context GRAPH x s) }

4.4. Syntactic rules

In this section, we describe the syntactic rules of SQUALL in a modular fashion,
where each module corresponds either to some SPARQL feature, or to some natural
language feature, and often to a combination of both. This has the benefits to split the
whole grammar (about 120 rules) in smaller parts, and to emphasize the relationships
between SQUALL and SPARQL. This is also a way to assess the coverage of SPARQL
by SQUALL (see Section 6 for a more rigorous evaluation of expressiveness). The reader
should feel free to skip some modules, or to ignore the formal grammars on first reading.

4.4.1. Triples as sentences

A triple (s p 0) can be seen as a basic sentence. The tradition in linguistics [26] is to
analyse s and o as noun phrases (NP), p o as a verb phrase (VP), and the whole triple
as a sentence (5). Here, noun phrases are either proper nouns or literal values, but they
are given the type sl to prepare for the use of quantifiers in Section 4.4.2. Verb phrases
are based either on an intransitive verb (Verb1) followed by an optional complement
phrase (CP), or on a transitive verb ( Verb2) followed by an object phrase (OP), which
is a noun phrase followed by an optional complement phrase. Complements are defined
in Section 4.4.6, and are assumed empty at this point.
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S s
— NP VP {npuwp}
NP : sl
— Term { Ad.(d term) }
Term : e
— ProperNoun
— Literal
VP : pl
— VPdo
VPdo : pl
— Verbl CP? { Az.(cp (vp x)) }
— Verb2 OP { \x.(op Ay.(verb2 z y)) }
OP : sl
— NP CP? { Xd.(np My.(cp (dy))) }
CP : ms (default: As.s)

4.4.2. Quantifiers as determiners

Quantifiers are commonplace in natural languages in the form of determiners, whereas
they are notoriously difficult to express in SPARQL or SQL [27]. Determiners behave
as binary quantifiers (type s2), but unary quantifiers (type sl1) can be cast as binary
quantifiers by conjuncting the two descriptions. The definite article the has its own
semantic primitive because it is interpreted either as the existential quantifier or as the
universal quantifier depending on its syntactic context (see Section 4.6). A noun phrase
can be formed by a determiner followed by a noun group (NG1). A binary noun phrase
(NP2) is a noun phrase abstracted over an entity, and is made of a relation noun group
(NG2). Noun groups are based on a noun (a relational noun for NG2), and may be
modified by an adjective, an apposition (App), and a relative clause (Rel) (to be defined
in the following sections). The keywords for and there introduce global quantifiers, in
a style close to mathematical logic.

The grammar rules are defined so that the scope of quantifiers are leftmost-outermost,
and are restricted to the scope of the related verb. Therefore, “every man love-s some
woman” means there is possibly a different woman for each man; while “there is a woman
that every man love-s” means there is a single woman that is loved.
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Det : s2
— Detl { Ady.Adz.(det! \x.(and (dy x) (d2 ))) }
— every/all { Ad;.\dz.(forall dy d3) }
— the { )\dl)\dg(the d1 d2) }
Det1 : sl
— a/an { \d.(exists d) }
— some { Ad.(exists d) }
— no { Ad.(not (exists d)) }
NP — Det NG1 { Md.(det ngl d) }
— NP2 of NP { Ad.(np A\x.(np2 x d)) }

NP2 : e— sl
— Det NG2 { Mz \d.(det M\y.(ng2 z y) d) }
NG1 : pl

— Adj1? Nounl App? Rel? { Az.(and (app x) (nouni x) (adjl x) (rel x)) }
NG2 : p2

— Adj1? Noun2 App? { Axz.A\y.(and (app y) (noun2 z y) (adjl y)) }
S —for NP, S {np x.s}

— there is/are/was/were NP { np A\z.true }

4.4.8. Labels as appositions and anaphoras
Labels are used to cover the phenomenon of anaphoras in natural languages. They

are introduced as appositions into noun groups, and referenced as terms. References
are resolved at the semantic level, taking into account the scope of variables to check
their validity, and to resolve ambiguities (see Section 4.7). Labels are the analogues of
variables in SPARQL queries, but are much less often necessary in the syntax of a natural
language.

App : pl (default : Az.true)

— Label { \z.(label z label) }
Term — Label { ref label }

4.4.4. Relative clauses

Relative clauses modify the nouns, and semantically, are statements abstracted over
an entity. Therefore, they can be derived from the syntax and semantics of sentences,
replacing a noun phrase by a keyword among that/which/who/whom, and moving
it at the beginning of the relative clause. Relative clauses can also be similar to a verb
phrase, only using adjectives (including participles) instead of verbs.
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Rel : pl (default : A\z.true)
— that/which/who VP { Az.(vp z) }
— that/which/whom NP Verb2 CP? { Ay.(np Azx.(cp (verb2 x y))) }
— NP2 of which VP { \x.(np2 x wp) }
— whose NG2 VP { Az.(exists \y.(and (ng2 = y) (vp y))) }
— Adj1 CP? { Ax.(cp (adjl z)) }
— Adj2 OP { Ax.(op Ay.(adj2 z y)) }
— such that S { A\z.s }

4.4.5. Auziliary verbs

A particular syntax and semantics is associated to the auxiliary verbs “to be” and “to
have”, and verb phrases take three forms accordingly. Auxiliaries can be negated, and
they are given the semantics of a sentence modifier, either negation or identity. The verb
“to be” can be followed by nothing (keyword there), a relative clause (mostly adjective
forms), and a copula noun phrase. Copula noun phrases (NPC and NPC2) have a syntax
similar to noun phrases (NP and NP2), but a different semantics (type pl instead of s1).
They are parametrized by a semantic-less determiner syntagm, here an article. Copula
noun phrases are also used in queries (Section 4.4.7) and aggregations (Section 4.4.12).

The verb “to have” can be followed by a relation noun (playing the role of a transitive
verb) and an object phrase (e.g., “John_Smith has spouse Mary_Well”), or by a relational
noun group and an optional relative clause (e.g., “John_Smith has every child that is a doc-
tor”). The prepositions “with/without” play the same role as “to have”, but for relative
clauses instead of verb phrases (e.g., “every man with a child”).

Auz(Root) : my
— Root { As.s }
— Root not { As.(not s) }
— Rootn’t { As.(not s) }
VP — Auz(does/do/did) VPdo { A\x.(aux (vp z)) }
— Aux(is/are/was/were) VPbe { Az.(auz (vp x)) }
— Auz(has/have/had) VPhave { \x.(auz (vp z)) }
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VPbe : pl
— there { Az.true }
— Rel { \x.(rel x) }
— NPC(a/an/the) { \z.(npc z) }
NPC(Det) : pl
— Term { Ax.(eq x term) }
— Det NG1 { Mz.(ngl )}
— NPC2(Det) of NP { A\y.(np Az.(npc2 z y)) }
NPC2(Det) : e— pl
— Det NG2 { Mz \y.(ng2 z y) }
VPhave : pl
— Noun2 OP { Az.(op Ay.(noun2 z y)) }
— NP2 Rel? { Az.(np2 x rel) }
Rel — with VPhave { Mz.(vp z) }
— without VPhave { Az.(not (vp z)) }

4.4.6. Prepositional phrases

Prepositional phrases (PP) are used to handle verbs that expect arguments in ad-
dition to subject and object (e.g., “John belongs to the rdfs:Class that has rdfs:label
"human"”), and also to express truth-contezts such as the named graphs and distant ser-
vices of SPARQL (e.g., “from the graph whose author is John Paris is the capital of France”).
A prepositional phrase is made of a preposition and a noun phrase. The noun phrase
is used like subjects and objects, and the preposition modifies the statement in function
of the variable z introduced by the noun phrase (e.g., passing the extra-argument to the
verb, see Section 4.6). In the case of a noun preposition (PrepNoun), the noun of the
noun phrase helps to determine the semantics of the preposition (e.g., “from {the} graph”).
A propositional phrase can occur at any position in a sentence: at the beginning or at
the end of the sentence, before or after the verb. The nesting of S, VP, OP, and CP
ensures the leftmost-outermost rule for the scope of quantifiers, and the free position
of complements allows for their flexible ordering. Finally, as a relative clause is a sen-
tence with a displaced noun phrase, a form of relative clause is generated for each form
of prepositional phrase (e.g., “to which John belongs”, “in which graph Paris is the capital of
France”).

S—=PPS {pps}
VP — PP VP { Az.(pp (vp z)) }
OP — PP OP { Ad.(pp (op d)) }
CP — PP CP? { As.(pp (cp 9)) }
PP : mg
— Prep NP { As.(np \z.(prep z s)) }
— PrepNoun{Det} App? Rel? { As.(det Az.(and (app z) (rel z)) Az.(prep z s)) }
Rel — Prep which S { Az.(prep = s) }
— PrepNoun{which} S { \z.(prep = s) }
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4.4.7. Updates and queries

Updates (U) are either a sentence ended by a full-stop (e.g., “John knows Mary.”),
or an imperative verb followed by an object phrase and a full-stop (e.g., “Clear all named
graphs.”), or a sequence of updates. Queries (Q)) can be closed or open. Closed queries can
be formed by ending a declarative sentence by a question mark (e.g., “John knows Mary?”),
possibly prefixing it with the keyword whether. The semantic primitive ask modifies the
statement into an interrogative one. Open queries are expressed either with imperative
locutions (e.g., return, give me) followed by an object phrase that describes what has to be
returned (e.g., “Give me all film-s whose director is Tim_Burton.”), or with the interrogative
words which/what/who/whom. The semantic primitive return specifies the variable
to be projected in results. The semantic primitives select and select_where quantify
over a variable to be projected (the SELECT clause in SPARQL). A multi-dimensional
query is a sentence with several occurences of wh-words (e.g., “Which person is the director
of which film?”).

U : s

—8. {s}

— VerbImp OP . { op Az.(verbimp x) }

—UU {andu1u2}
Q : s

—S7? {asks}

— whether S 7 { ask s }

— QueryImp OP . { op Az.(return x) }
NP — what/who/whom { \d.(select d) }
Det — which { Ad;.)\ds.(select_where d; ds) }

To allow for a more natural verbalization of closed questions, the grammar has been
extended to support subject-auxiliary inversion (e.g., “Does John know Mary?”, “Is John
the father of a doctor?”). Those grammar rules can be derived from previous rules, and we
do not detail them here.

4.4.8. Solution modifiers as superlatives

SPARQL solution modifiers include ordering results w.r.t. a variable or expression
(ORDER BY), and selecting a sub-range of solutions (LIMIT and OFFSET). In SQUALL,
they are expressed as superlative adjectives (e.g., highest like in “Which mountain has the
highest elevation?”), and they modify a statement in function of the entity the adjective
applies to. Those adjectives are special in that they must occur first and only once in
noun groups. See Section 4.6 for a deeper explanation of their semantics.

NG1 — AdjSuper NG1 { Az.(adj = (ngl x)) }
NG2 — AdjSuper NG2 { Az.)\y.(adj y (ng2 x y)) }

4.4.9. Relational algebra as coordinations
There is a one-to-one mapping between operations from the relational algebra of
SPARQL (join, union, optional, negation), coordinations (resp., and, or, not, maybe), and
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Boolean operators that we use in our intermediate representation. We define Boolean ex-
pressions (Bool(X)) in a generic way by parametrizing them with atomic expressions X.
In this way, they can be defined once, and applied to many syntagms. For example,
the grammar rule S — Bool(S) means that sentences can be coordinated (e.g., “John
own-s a book X and Mary own-s X.”). In SQUALL, all the following syntagms can be fully
coordinated: S, NP, NP2, Rel, VP, OP, CP, PP, Prep, Nounl, Noun2, Adjl, Adj2,
Verb1l, and Verb2. This helps to make sentences more concise by factorizing common
phrases (e.g., “Do John and Mary own or rent every book whose topic is "CNL"?”). Paren-
theses can be used to override the usual priorities between Boolean operators, but they
are hardly ever necessary in practice. Because Boolean expressions are applied to syn-
tagms having different types «, the Boolean semantic primitives must be extended from
statements to those types. For example, (and,; di d2) = Az.(and (di z) (d2 z)), and
(andp2 7 r2) = Az Ay.(and (r1 z y) (r2  y)). More generally, every additional argument
is passed down to sub-expressions.

Bool(X :a) : «
— Bool(X) or Bool(X) { or, booly bools }
— Bool(X) and Bool(X) { and, booly bools }
— maybe Bool(X) { option, bool }
— not Bool(X) { not,, bool }
— ( Bool(X) ) { bool }
- X {z}

4.4.10. Conditionals

Conditionals are introduced by the keywords if-then, and are semantically defined
with implications (e.g., “If John has a spouse X then X is a woman.”). The coordina-
tion where is interpreted as a reverse implication in updates, and as a conjunction
in queries (e.g., “Which film F has a director D where D is an actor of F?”).

S —if Sthen S { implies s s2 }
— S where S { where s; s2 }

4.4.11. Ezpressions

In SPARQL, expressions are found in filters, in the SELECT clause, and in solution
modifiers (ORDER BY, HAVING). They combine operators, functions, literals, and variables.
In SQUALL, expressions (Fzpr(X)) are defined in a generic way by parametrizing them
with a syntagm for atomic expressions X, like for Boolean expressions. This allows
to use expressions in all kinds of noun phrases (see below). Syntactically, expressions
are classically made of atomic expressions (X), terms (include literals and references),
additive and multiplicative infix operators, prefix unary operators, nullary operators (e.g.,
the SPARQL function NOW), functions, and parentheses. Semantically, an expression has
type ko = (e = a) — a, i.e., is defined in Continuation Passing Style (CPS). In short,
each expression takes a continuation as an argument, i.e., a function that says what to do
with the result of the evaluation of the expression. The definition of k., makes expressions
analogue to unary quantifiers, and hence to noun phrases. Indeed, the SQUALL sentence
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“The height * the width of some rectangle R is 100” is equivalent to “For the height H of some
rectangle R, for the width W of R, H * W is 100”. The definition of the semantics of expressions
rely on a combinator apply that applies a continuation k to the result of an operation or
function.

apply : (e = a) = pl — a = Ak Ad.Az".(the \y.(d y) Ay.(k y 2¥))

The number of extra arguments z* is equal to the arity of type a. The quantifier the
ensures that expressions will be put in the WHERE-clause of updates.

Ezpr(X : ko) @ ko
— Ezpr(X) Addop Ezpr(X)
{ Mk.(expry Axy.(expry Axa.(apply k (addop z1 x2)))) }
— Exzpr(X) Mulop Frpr(X)
{ Mk.(expry Axy.(expry Axo.(apply k (mulop x1 x2)))) }
— Unop Expr(X) { Ak.(expr Az.(apply k (unop x))) }
— Nulop { Mk.(apply k nulop) }
— Func(Expr(X),...,Ezpr(X))
{ Ak.(expry Axy1.(... expr, Azy.(apply k (func [x1;...;2,])) ..)) }
— ( Bzpr(X) ) { expr }
— Term { Mk.(k term) }
=X {z}

Expressions apply to all kinds of noun phrases: NP, NP2, NPC, and NPC?2. Because
expressions and the different noun phrases have different types, noun phrases need to be
wrapped as atomic expressions, and whole expressions need to be unwrapped back as
noun phrases.

NP — Expr(NP { Ak.Md.(np Mx.(k z d)) })
{ expr Av.\d.(d v) }
NP2 — Ezpr(NP2 { Ak Az Md.(np2 x My.(ky x d)) })
{ expr A z.Ad.(d v) }
NPC(Det) — Expr(NPC(Det) { Mk.Ax.(exists Ay.(and (npc y) (k y))) })
{ Az.(ezpr Mv.(eq z v)) }
NPC2(Det) — Expr(NPC2(Det) { Mk.Az.(exists \y.(and (npc2 x y) (k y))) })
{ Az \y.(expr Mv.(eq y v) x) }

4.4.12. Aggregations and grouping

Aggregations are another way to compute values, beside expressions. However, they
behave differently w.r.t. syntax and semantics because an aggregator applies to a de-
scription (i.e., a set of values). Moreover, one or several dimensions can be specified
(GROUP BY clauses in SPARQL) so that an aggregation may return a set of aggregated
values (type pl instead of e). For instance, “the average size of the person-s per age” returns
an average size for each instanciated age. Hence the type g = ([e] — pl) — pl of ag-
gregators, where [e] represents the list of dimension variables, the first pl represents the
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set of values to be aggregated, and the second pl represents the set of aggregated values.
Aggregators can be seen as quantifiers, which quantify existentially over each dimension.
In fact, an adjective aggregator can be used as a determiner, where the aggregated values
are constrained by an optional relative clause (e.g., “John has a number greater than 3 of
paper-s”). Alternately, aggregators can be the head of noun groups so that aggregated
values can be used as subjects and objects of verbs (e.g., “Is every number of publication-s
per author lesser than 100?”), and so that aggregations can be nested (e.g., “What is the
average number of publication-s per author?”). Each dimension is defined as a relation from
the facts (e.g., “publications” in previous examples) to the dimension variable z. A list
of dimensions is a relation from the facts to a list [z of dimension variables.

Det! — a number App? Rel? of
{ M\d.(the \z.(count d z) Az.(and (app z) (rel x))) }
— a/an AdjAggreq App? Rel?
{ Ad.(the Az.(aggreg Alz.\y.(d y) =) Az.(and (app x) (rel x))) }
NG1 — NounAggreqg App? of NPC(the) Dims?
{ M.(and (app v) (aggreg Alz.Ay.(and (npc y) (dims y 12)) v)) }
— AdjAggreqg App? NG1 Dims?
{ M.(and (app v) (aggreg Nz.My.(and (ngl y) (dims y 12)) v)) }
— AdjAggreg App? NG2 of NPC(the) Dims?
{ M.(and (app v) (aggreg Alz.\y.(exists Az.(
and (npc x) (ng2 z y) (dims z 12))) v)) }
Dims : e — [e] = s (default : Ay.\[].true)
— Dim { Ay Az].(dim y 2) }
— Dim and Dims { Ay.\(z :: lz).(and (dim y z) (dims y 12)) }
Dim : p2
— per NG2 { A\y.Az.(ng2 y z) }
— per NPC(the) { Ay.Az.(npc 2) }

4.4.13. Comparisons

Although comparators have type p2 and can therefore be verbalized as transitive
verbs (e.g., is greater than), or as transitive adjectives (e.g., greater than), they deserve a
special treatment because of the rich combinations offered by natural languages. We
define below a number of constructs that do not increase SQUALL’s expressivity, but
that improves a lot SQUALL’s naturalness and concision when expressing comparisons.
We only detail here the “greater than” comparator (constant gt), but other comparators
are straightforward to add.

Relatives are extended by using comparators as transitive adjectives, and by adding
“between” as a ditransitive adjective. Their semantics is the same as for transitive
adjectives.

Rel — greater than OP { Az.(op \y.(gt = y)) }
— between OP and OP { A\z.(op; Ay1.(ops Aya.(between z y1 y2))) }
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Comparators are also used as determiners after the auxiliary verb “to have” to com-
pare two properties of an entity (e.g., “Which rectangle has a greater height than width?”),
or to compare a same property between two entities (e.g., “Which woman has a greater size
than every man?”).

DetComp{X,Y} : s2
— a greater X than Y
{ )\dl.)\dg.(eXiStS /\yl.(exists )\y2.(and (dl yl) (dg yg) (gt Y1 yg)))) }
VPhave
— DetComp{Noun2, Noun2}
{ Az.(detcomp Ay1.(noun21 = y1) Aya.(noun2s x y2)) }
— DetComp{Noun2, NP}
{ Az1.(np Aza.(detcomp Ayi.(noun2 x1 y1) Aya.(noun2 zs y2))) }

There are also determiners to compare numbers of things, where the values to be
compared are the result of a COUNT-aggregation. The semantic statement (count d n) tells
that n is the number of entities satisfying description d. It is used to define generalized
determiners such as “more than 2”7 or “between 3 and 5”, the interrogative determiner “how
many”, and superlative determiners such as “the most”. From these, it becomes possible
to express queries such: “How many person-s are the author of at least 10 publication-s?” or
“Which person is the author of the most publication-s?”.

Det! — Number { Ad.(count d number) }
— more than Number { Ad.(exists An.(and (count d n) (gt n number))) }
— between Number and Number
{ A\d.(exists An.(and (count d n) (between n number; numbersy))) }
— how many { \d.(select An.(count d n)) }
— DetModif { Ad.(exists An.(modif n (count d n))) }

We also define binary determiners to compare two numbers of things, which lead to
new forms of noun phrases:

e “Do more woman than man own a cat?”

e “Who has more daughter-s than son-s whose age is lesser than 18?”

e “Which woman X has more daughter-s than the mother of X?”

DetCompCount{X,Y} : s2
— more X than Y { A\dy.\ds.(exists Any.(exists Ang.(
and (count d; n;) (count ds ng) (gt n1 n2)))) }
NP — DetCompCount{NG1,NG1} { \d.(detcomp
Azi.(and (ngl; x1) (d 1)) Aze.(and (ngl4 x2) (d x2))) }
NP2 — DetCompCount{ NG2, NG2} { Az.\d.(detcomp
Ayi-(and (ng2; @ y1) (d y1)) Ayz.(and (ng2; x y2) (d y2))) }
— DetCompCount{ NG2, NP} { Az1.\d.(np Aza.(detcomp
Ayr.(and (ng2 1 y1) (d y1)) Ayz.(and (ng2 2 y2) (d y2)))) }

22



4.4.14. Graph literals

In SPARQL, CONSTRUCT-queries return graphs, i.e., sets of triples. In order to support
this kind of query in SQUALL, we allow the reification of statements as entities using the
primitive graphliteral in the semantics, and the word that followed by a sentence in
the syntax to introduce a subordinate clause. The reification is invalid if the statement
is anything else than a conjunction of triples, and if any variable remains unbound. Like
in notation N3, graph literals (called formulae in N3) can be used everywhere an entity
can be used. However, when translating to SPARQL, they can only be returned as the
query result (e.g., “For every person X whose age is greater or equal to 18, return that X is an
adult.”).

Term — that S { graphliteral s }

4.4.15. Collections

RDF collections are single-chained lists based on properties rdf : first and rdf :rest,
plus the empty list rdf:nil. They are useful to represent closed and ordered sets of
entities, such as the authors of a document. Turtle and SPARQL provide syntactic sugar
for fixed-length collections, but the representation of other graph patterns is extremely
tedious. For example, the SPARQL pattern to access the last element of a collection is:
[ rdf:rest* [ rdf:first 7last ; rdf:rest rdf:nil ] ]. We extend SQUALL’s
noun phrases so as to completely avoid the use of the RDF vocabulary about collections.
We reuse the rich Prolog’s syntax for list patterns [28], and extend it with the ellipsis ...
to allow jumping over an arbitrary number of elements. List patterns are delimited by
square brackets, list elements are separated by commas, and sublists are raised after a bar.
An underscore _ stands for an arbitrary element (joker), and an ellipsis ... stands for an
arbitrary sequence of elements. For example, “Which book has authorList [..., John_Smith]?”
returns the books whose last author is John Smith, and “Whether [_, every member of
Teaml, ...] is the authorList of a book whose topic is AI?” returns whether every member of
Teaml is the second author of a book whose topic is Al

List noun phrases (NPL) are noun phrases that quantify over lists. To simplify the
definition of their semantics, we rely on two combinators cons and sublist which build
unary quantifiers (type s1), respectively, from a first and a rest, and from a sublist:

cons = Ae.Al.Ad.(exists A\z.(and (triple x rdf:first e) (triple z rdf:rest [) (d z)))
sublist = Al.\d.(exists Az.(and (triple z rdf:restx ) (d z)))

Term — [] { rdfmnil }
NP — _ { Md.(exists d) }
— [ NPL] { npl}
NPL : sl
— NP, NPL { Ad.(np Xe.(npl Al.(cons el d))) }
— NP | NP { Md.(np, Ae.(npy Al.(cons el d))) }
— NP { Md.(np Xe.(cons e rdf:nil d)) }
— ..., NPL { Ad.(npl M.(sublist | d)) }
— ... | NP { Md.(np AN.(sublist | d)) }
— ... { Ad.(sublist rdf:nil d) }
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4.5. Handling of syntactic ambiguities

The price for the natural and flexible syntax of SQUALL is ambiguity, i.e., the fact
that some sentences can be parsed in different ways possibly leading to different seman-
tics. In SQUALL, ambiguities are resolved by the following rules:

1. when forming a construct X from one or two constructs of same syntagm X (e.g.,
coordinating 2 NPs, modifying a sentence with a PP), algebraic operators have
priority (in decreasing priority order: not, maybe, and, or, where) over sentence
modifiers (PP as a prefix, and global quantifiers for NP), and right-associativity
applies for binary coordinations;

2. “smaller” syntagms have priority over “larger” syntagms, i.e., in decreasing priority
order: Detx, Rel, NG, NPx, PP, CP, OP, VP, S,

3. in case of remaining ambiguity between two phrases of the same syntagm, the
shorter phrase is chosen.

Round brackets can be used in coordinations and expressions to escape those rules. Rule 2
implies that “a man or woman” is interpreted as “a (man or woman)” rather than “(a man)
or woman”, as NG has priority over NP. Rule 3 implies that in “A know-s a researcher
that X cite-s in graph G”, the PP “in graph G” binds to the shorter VP “cite-s ...” rather
than to the longer VP “know-s ...”.

4.6. Semantic transformations of statements

Semantic transformations need to be applied to the intermediate representation pro-
duced through Montague grammars, because some primitives are contextual in nature,
i.e., have non-local effects. This concerns the interrogative quantifiers (primitives select
and select_where), prepositions (primitive arg), and modifiers (primitive modif). For
example, the SQUALL sentence “Every member of Groupl belongs to which nationality?”
(equivalent to “To which nationality does every member of Groupl belong?”), gets the fol-
lowing intermediate representation (some lexical units have not been expanded by their
definition for clarity):

forall A\z.(member x :Groupl)
Az.(select_where \z.(nationality z) \z.(arg to z (belong x)))

Two problems appear in this example. First, the primitive select_where should be out
of the scope of the quantifier forall. Second, the sub-expression (belong ) should reduce
to (triple x rdf:type z), but z is not an argument of belong.

The solution we have found to retain a compositional style (i.e., to avoid global
variables), while maintaining a local treatment of each feature, is to define statements
as state monads [29], i.e. as functions that take a state as a parameter, and that return
a modified state in addition to the statement itself. The additional state enables to
pass information downward, and upward in the semantic expression tree. The state is
here made of extra-arguments added by prepositions, selectors added by interrogative
quantifiers, and modifiers. Selectors are passed upward up to the root of the syntax
tree. Modifiers are also passed upward, but are catched by the determiner of noun
phrases (NP), to account for sentences such as “Does the person with the lowest age has a
greater size than the person with the highest age?”. Prepositions are passed downward with
primitive arg and catched by verbs with primitive forarg (e.g., the preposition “to” is
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catched by the verbs “belongs” and “relates”). Applying those principles to the above
example, we get the fully reduced intermediate representation.

select A\z.(and (triple z rdf:type :nationality)
(forall A\x.(triple = :member :Groupl) A\z.(triple x rdf:type 2)))

Note that select_where has been transformed into select, and has now the out-
ermost scope. Note also that primitives arg and forarg have been eliminated in the
transformed intermediate representation. Similarly, primitive the (resp. where) is re-
placed by primitive exists (resp. and) in a query context (in the scope of ask, select,
and the left argument of forall and implies); and is replaced by forall (resp. the inverse
of implies) otherwise.

4.7. Semantic validation

Like in programming languages, SQUALL sentences may be syntactically correct,
but semantically invalid. Examples of semantic errors in programming languages are
undeclared variables, or type errors. In SQUALL, semantic errors can be:

e out-of-scope references: e.g. the reference X in “John has no child X and X is a doctor.”;

e unbound variables: e.g. “Return 1 + some thing.”, where there is no way to bind the
second operand of the addition.

In order to detect semantic errors, and return them to users, statements are validated
w.r.t. accessibility and boundedness. References are first resolved in function of defined
labels, and accessible variables, which eliminates primitives label and ref from the inter-
mediate representation. Accessibility validation consists in checking that every variable
is used in the scope of its quantifier. Discourse Representation Theory (DRT) [30], and
its combination with Montague grammars [31], is used to define those scopes, and plays
an important role in the naturalness of SQUALL sentences. For example, this validation
phase accepts the sentence “Some man X loves a woman and X is a doctor.” | and rejects “Every
man X loves a woman and X is a doctor.”. Boundedness validation consists in checking that
dataflow constraints are satisfied. For example, all arguments of predicates and functions
must be bound before evaluating them, while triple patterns have no such constraints.
This validation phase ensures that queries and updates can effectively be evaluated, i.e.,
are semantically well-defined. For example, the boundedness validation accepts “Which
person has every child that is a doctor?”, and rejects “Who has every child that is a doctor?”
because the latter does not provide any means to bind the variable quantified by Who®.
Boundedness validation is also used to replace equalities (pred = [z;y]) with the identity
function when only one argument is bound (e.g., func ID [z] y, if only x is bound).

5. Translation to SPARQL
The generation of a SPARQL query or update from the intermediate representation

of semantics is much simpler than syntactic and semantic analysis because it mostly
consists in mapping logical constructs to SPARQL constructs, which are at the same

8Unless a default class for people is specified, and used in the semantics of who.
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level of abstraction. Note that the intermediate representation would make it easy to
support another target RDF query language. As an illustration, the SPARQL translation
of the SQUALL sentence “For which researcher-s X, in graph DBLP every publication whose
author is X and whose :publication_year is greater than 2000 has at least 2 author-s?”, from
the introduction of Section 4, is as follows:

SELECT DISTINCT ?x1 WHERE {
?x1 a :researcher .
FILTER NOT EXISTS {
GRAPH :DBLP {
?x2 a :publication .
?x2 :author 7x1 .
?x2 :year 7x3 .
FILTER (?x3 > 2000) . }
FILTER NOT EXISTS {
GRAPH :DBLP {
{ SELECT DISTINCT ?x2 (COUNT(?x5) AS ?7x4)
WHERE { ?x2 :author ?x5 . }
GROUP BY 7x2 }
FILTER (?x4 >=2) . } } } }

The two nested FILTER NOT EXISTS encode the universal quantifier “every”, and the
subquery with aggregation encodes the numeric quantifier “at least 2”.

The fully-reduced intermediate representation, after semantic transformations and
validation (Sections 4.6 and 4.7), is only made of the following semantic primitives:
triple, pred, func, aggreg, modif, command, context, true, not, and, or, option,
implies, exists, forall, ask, select, return, graphliteral (see Table 2). We define in
the following a mapping of those primitives to SPARQL 1.1 constructs. The notation [s]
denotes the SPARQL translation of the statement s. Such a mapping provides at the
same time a concrete semantics for SQUALL, and a practical way to evaluate SQUALL
sentences by leveraging existing SPARQL engines and endpoints. We first consider the
translation of interrogative sentences, and then the translation of imperative and declar-
ative sentences. While the former always generate SPARQL queries, the latter generate
both queries and updates. In all cases, the translation is not designed to produce optimal
SPARQL code, but to be simple. This should not be a high concern given that SPARQL
engines perform optimizations before evaluating queries and updates.

5.1. Interrogative sentences

Interrogative sentences have intermediate representations that start with primi-
tives ask or select, which respectively generate ASK-queries and SELECT-queries in
SPARQL. The notation [X | s]g denotes an auxiliary translation for multidimensional
queries (nested select) where X is a row of variables, and the notation [s]¢ denotes the
translation of a statement into a graph pattern. Every occurence of a SPARQL vari-
able 7x assumes the generation of a fresh variable name. Those variables are used to
instantiate the description parameters of quantifiers and aggregations.

[ask s] = ASK { [s]¢ } [X | select d]g = [X 7z | d 7z]q
[select d] = [z | d ?z]q [X | slo = SELECT X WHERE { [s]¢ }
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Most statements can be mapped to graph patterns. Predicates and functions trans-
late to SPARQL filters, and aggregations translate to SPARQL aggregative sub-queries.
Modifiers translate to solution modifiers using sub-queries. Contexts translate to named
graph patterns, and service patterns. Algebraic constructors translate to their SPARQL
counterpart, and quantifiers all translate to the implicit SPARQL existential quantifier
and negation.

[triple spo]c =5 p o .
[pred p lz]c = FILTER p(lz)
[func ID [z] yJ¢ = BIND (z AS y)
[func f lx y]¢ =BIND (f(x) AS y)
[aggreg g d ] =
{ SELECT ?2* (g(?7y) AS z)
WHERE { [d 7z* ?y]c }
GROUP BY ?2* }
[modif m s] = { SELECT * WHERE { [s]|¢ } m }
[context GRAPH z s]g = GRAPH z { [s]¢ }
[context SERVICE x s]¢ = SERVICE z { [s]¢ }
[true]c =€
[and 51 so]a = [s1]a [s2]a
Jor s1 s2]a =1 [s1]¢ } UNION { [s2]¢ }
[option s]¢ = OPTIONAL { [s]¢ }
[not s]¢ = FILTER NOT EXISTS { [s]¢ }
[exists d]¢ = [d ?z]a
[forall d; ds]¢ = [not (exists Az.(and (d; z) (not (d3 x))))]c

5.2. Imperative and declarative sentences

In imperative and declarative sentences, universal quantifiers (forall) and implica-
tions (implies) introduce a WHERE-clause, and existential quantifiers introduce new blank
nodes (using SPARQL function BNODE() ). In order to simplify the following mappings,
we first define a few simplification rules that reduce all quantifiers to implications, and
that collapse nested implications.

exists d = forall Az.(func BNODE || z) d
forall dy dy = implies (d; ?z) (dy 7x)
implies s; (implies sy s3) = implies (and s; s2) s3

Declarative sentences translate to updates that add and/or delete triples. The
SPARQL form depends on the presence of a WHERE-clause.

[implies s; s,] = DELETE { D } INSERT { I } WHERE { [s1]¢ }
given [DEFAULT : s3]y = (I, D)

[s] = INSERT DATA { I }; DELETE DATA { D }
given [DEFAULT : s]y = (I, D)

This translation relies on the auxiliary translation [g : s]y that generates two graph
patterns (I, D), where I contains the triples to be inserted, and D contains the triples to
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be deleted. The parameter g specifies in which graph triples should be inserted /removed.

[DEFAULT : triple s p o]y = (s p o .,¢)

[g: triple s p o]y = (GRAPH g { s p o .},€)

[[g :and S1 SQ]]U = (Il IQ,Dl Dg) given [[g : S1]]U = (I17D1)7 [[g : SQHU = (IQ7D2)
[g : not s]y = (D, I) given [g : sju = (I, D)

[g : context GRAPH z s]y = [z : s]u

Imperative sentences can generate many forms of SPARQL queries and updates,
depending on the imperative verb. Only some of those forms accept a WHERE-clause, and
the mapping is therefore a partial function. For example, the command CLEAR cannot be
used with a WHERE-clause, even though it would make sense: e.g., “Clear all named graphs
in which graph John owns a unicorn.”.

[command LOAD [z;y|] = LOAD x INTO GRAPH y

[command CLEAR [z]] = CLEAR «

[command DESCRIBE [z]|] = DESCRIBE x

[implies s; (command DESCRIBE [z])] = DESCRIBE = WHERE { [s1]¢ }

[implies s; (return (graphliteral s5))] = CONSTRUCT { I } WHERE { [s]¢ }
given [DEFAULT : sq]ly = (1, €)

[implies sy (return z)] = SELECT = WHERE { [s1]¢ }

[and s1 so] = [s1] ;5 [s2]

6. Evaluation of expressiveness by backward translation

We have defined in previous sections the translation from SQUALL to SPARQL,
which demonstrate the adequacy of SQUALL for querying and updating RDF stores.
However, it remains to evaluate the coverage of SPARQL expressiveness by SQUALL.
We do so by sketching the backward translation from SPARQL to SQUALL. This demon-
strates that SQUALL is as expressive as SPARQL 1.1 apart from arbitrary length paths
and a few minor things (discussed at the end of this section). Note that the purpose of
this backward translation is not to produce natural verbalizations of SPARQL queries,
which is another issue [32], even though it could be used as a starting point.

SPARQL has a very rich syntax, but it can be simplified by transforming non-essential
constructs to essential constructs. Turtle syntactic sugar is equivalent to basic graph pat-
terns, and blank nodes can be replaced by variables. Property paths can also be expanded
into graph patterns, except arbitrary length paths. In filters, usage of the function IN can
be replaced by disjunction (| |). A VALUES-clause can be moved into a graph pattern, and
complex VALUES-patterns can be split into unions of joins of atomic VALUES-pattern (e.g.,
VALUES ?7x { :John }). Expressions out of a graph pattern (e.g., SELECT, ORDER BY)
can be moved into the graph pattern using BIND and a fresh variable. A HAVING-clause
can be moved into the graph pattern as a filter, after reifying the aggregation as a sub-
query. References to graphs (e.g., FROM, WITH, USING) can be replaced by GRAPH-patterns
to specify where triples should be queried or updated. Finally, in a SELECT * clause, the
joker * can be replaced by all free variables in the graph pattern.

We present backward translation in a format similar to forward translation, but from
SPARQL constructs to SQUALL phrases. SPARQL syntagms are typed with SQUALL
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syntagms. The four forms of queries are translated to either interrogative or imperative
sentences. Variables in the SELECT-clause are marked so that the determiner which is used
upon their first occurence in the translation of the graph pattern. The solution modifier
clause (e.g., ORDER BY DESC(?x) LIMIT 1) is translated into a adjective modifier to be
used upon the first occurence of its variable (e.g., the highest thing ?x). The different
forms of updates are translated to either declarative sentences, using a conditional for
WHERE-clauses, or imperative sentences for graph-level updates.

Query : Q
— ASK Graph { whether graph ? }
— DESCRIBE URI { describe uri . }
— DESCRIBE Var WHERE Graph { describe var where graph . }
— CONSTRUCT Graph WHERE Graph { return that graph, where graph, . }
— SELECT Var... Var WHERE Graph SolModif { graph ? }
Update : U
— INSERT DATA Graph { graph .}
— DELETE DATA Graph { not graph .}
— DELETE WHERE Graph { if graph then not graph . }

— DELETE Graph INSERT Graph WHERE Graph { if graphg then not graph, and graph, .

— LOAD URI INTO GRAPH URI { load wriy into uris . }
— CLEAR GRAPH URI { clear uri .}
— Update ; Update { update; update, }

Graph patterns are translated to sentences. Triple patterns translate to simple sen-
tences, depending on whether a class or a property is used, and whether a variable or a
URI is used. Classes are translated to nouns, properties to transitive verbs, and aggre-
gations to aggregation adjectives. A variable 7x is translated as an apposition in a noun
phrase (e.g., a thing 7x), on its first occurence, and then to a reference (e.g., ?x).

Graph : S
— Term a Var . { term belongs to var }
— Term a URI . {termisa uri }
— Term Var Term . { var relates termy to termsa }
— Term URI Term . { termy uri termg }
— BIND(Ezpr AS Var) { varis expr }
— VALUES Var { Term } { varis term }
— Graph Graph { (graph, and graph,) }
— Graph UNION Graph { (graph, or graphs) }
— Graph MINUS Graph { (graph, and not graph,) }
— OPTIONAL Graph { maybe graph }
— FILTER Constr { constr }
— GRAPH Term Graph { at graph term graph }
— SERVICE Term Graph { from service term graph }
— { SELECT Vary ... Var, (Aggreg(Var,) AS Var,) WHERE Graph }
{ var, is the aggreg things var, such that graph per var; and ... and per var,, }

Constraints are also translated to sentences, using the same SQUALL coordinations
for Boolean operators as for relational algebra operators. Constraints simply produce
29
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sentences based on predicates, where graph patterns produce sentences based on classes
and properties. Therefore, unary predicates translate to nouns (like classes), and binary
predicates translate to transitive verbs (like properties). Expressions translate to noun
phrases, as they play the same role as variables and RDF terms.

7.

Constr : S

— Ezpr > FExpr { expr; is greater than expr, }
— Pred1(Ezpr) { expris a predl }

— Pred2(Expr, Expr) { expr, pred2 expry }
— Constr || Constr { (constry or constrs) }
— Constr && Constr { (constry and constrs) }
— 1 Constr { not constr }

— EXISTS Graph { graph }

— NOT EXISTS Graph { not graph }

Expr: NP

— Expr + Ezpr { (expry + exprsy) }

— Func(Ezxpr, ..., Expr) { func(expry,...expr,) }
— Literal { literal }

—Var { var }

We have looked in detail at SPARQL’s grammar® in order to identify all restrictions
of SQUALL compared to SPARQL. The main restriction is arbitrary length property
paths (e.g., ("author/author)+), which involves a form a recursivity that is difficult to
express in natural language. Moreover, if recursivity could be expressed in SQUALL,
it would probably exceed SPARQL’s expressivity because recursivity only applies to
property paths, and not to arbitrary graph patterns. The other restrictions of SQUALL
are of lesser importance:

e n-ary DESCRIBE: e.g., DESCRIBE 7x 7y WHERE {?x a :man. 7x :spouse ?7y.};

n-ary ORDER BY: e.g., ORDER BY ASC(?age) DESC(?size);

missing functions: &%, ||, !, UUID, STRUUID, COALESCE, IF, sameTerm;
the third argument of REGEX is fixed to 1i’;

DISTINCT is always used with SELECT;

SILENT is never used in updates and with SERVICE.

Evaluation on the QALD challenge

This section reports on the evaluation of SQUALL on the QALD-3 challenge, in which
we took part. The QALD!? challenge (Query Answering over Linked Data) provides
“a benchmark for comparing different approaches and systems that mediate between a

9mttp://www.w3.org/TR/sparqlil-query/#sparqlGrammar
Onttp://greententacle.techfak.uni-bielefeld.de/" cunger/qald/
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user, expressing his or her information need in natural language, and semantic data”.
The last campaign, QALD-3, provides hundreds of questions in natural language over
two large and real linked datasets: DBpedia [33] and MusicBrainz [34]. The principle
of the challenge is that a training set of 100 questions is provided, along with SPARQL
translations and answers, and systems are evaluated on a test set that is made of 100 new
questions. Systems are compared in terms of precision and recall for the test questions.

The QALD questions do not cover all features of SPARQL 1.1, and hence, do not
permit to evaluate all features of SQUALL. However, we find that the DBpedia questions
provide a rich set of questions in natural language on many topics, and cover a wide range
of SPARQL features including aggregations and solution modifiers. The missing features
are updates, named graphs, built-ins and expressions, graph literals (CONSTRUCT and
DESCRIBE queries), and collections.

The objective of our participation in the QALD-3 question answering task was to
evaluate the capability of SQUALL to express English questions in a natural and precise
way, and the precision and recall of its SPARQL translations. Because our approach relies
on a reformulation of the original questions, which is allowed by the QALD challenge,
the QALD measures of precision and recall are not enough to evaluate it. Therefore,
before presenting the performance of SQUALL in the QALD-3 challenge (Section 7.3),
we first assess the grammaticality of QALD questions in SQUALL (Section 7.1), and
the naturalness of their reformulation in SQUALL (Section 7.2). We do not evaluate the
efficiency of our system in detail as this is not an issue: the 100 questions of the challenge
are translated in 6s. We do not present either a usability study on the formulation of
SQUALL queries because we consider that guided input is necessary to overcome the
habitability problem [12], which is not the object of this paper and is already addressed
in existing work [13].

In our evaluation, we focus on the 99 English test questions (question 18 does not
exists in QALD-3) for the DBpedia dataset. Questions in other languages are out of the
scope of this paper. Training questions are very similar to test questions, and the same
conclusions can be drawn from them. For the MusicBrainz dataset, the definition of a
custom lexicon would be necessary to keep SQUALL questions natural because many
relations are reified as events.

7.1. Grammaticality of QALD questions

In this subsection, we assess the grammaticality of QALD questions in SQUALL. In
other words, we answer for each question whether it can be parsed as a SQUALL sentence
assuming the right lexicon and the right schema have been defined. For example, the first
question “Which German cities have more than 250000 inhabitants?” is a correct SQUALL
sentence, if we assume that “German” is an adjective, “cities” is a noun, and “inhabitants”
is a relational noun. It also assumes that there is a relation from each city to each
known inhabitant. This is unlikely in a dataset like DBpedia, but quite possible in other
contexts (e.g., in a civil registry). Therefore, grammaticality evaluates the coverage of
natural language by SQUALL, but not its adequation to a particular RDF dataset. It is
all about syntax, and none about lexicon.

Among the 99 test questions, we found that 57 of them are grammatical. Most
of the other 42 questions have only one ungrammatical element, and have therefore
a small edit distance to a grammatical question. We list below the different cases of
ungrammaticality, by decreasing frequency. In each case, we show an example where the
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ungrammatical element is underlined, and add between brackets a possible replacement
to make it grammatical.

e prepositions attached to nouns: “List all games by GMT.” (relational adjective: made
by);

e temporal and spatial phrases: “When did Michael jackson die?” (prepositional
phrase: In which year);

e pronouns: “Which films starring Clint Eastwood did he direct himself?” (repeated
proper noun: Clint Eastwood);

e proper noun as apposition: “Who created the comic Captain America?” (proper

noun: Captain America);

e measure adjectives: “How tall is Michael Jordan?” (use relational noun: What is the
height of);

e comparative adjectives: “Was the Cuban Missile Crisis earlier than the Bay of Pigs
Invasion?” (use a relational noun: Did ... have an earlier date).

e composite nouns: “Give me the Apollo 14 astronauts.” (noun group: astronauts with
mission Appolo 14);

e void undefinite article: “Give me a list of all trumpet players that were bandleaders.”
(singular noun: a bandleader);

e perfect tenses: “How many space missions have there been?” (use past: were there);

The difficulty of those cases is less a syntactic problem than a semantic problem. For
most cases, it would be relatively easy to extend SQUALL’s grammar, but some of them
involve implicit relations that can only be guessed from expertise on the domain and
context. For example, “games by GMT” can mean “games produced by GMT” or “games
developed by GMT”.

7.2. Naturalness of SQUALL questions

The cost of using a CNL instead of spontaneous language is the need for reformula-
tion, and the benefits is more precision and less ambiguity. We have reformulated the
QALD questions into SQUALL sentences with the double objective to keep them as nat-
ural as possible, and to match the RDF schema of DBpedia. From the training phase, we
had already learned some of the DBpedia vocabulary, and other URIs were found man-
ually with Google searches and DBpedia browsing. We spent on average a few minutes
per question for the reformulation phase. The SQUALL reformulations of the 99 test
questions, as well as the reformulations of the 100 training questions, are available on
SQUALL’s homepage!'!. For illustration purposes, Table 4 lists a few original questions
along with their SQUALL reformulation. From a detailed analysis of all reformulations,
we derive the following conclusions.

Hhttp://http://1isfs2008.irisa.fr/ocsigen/squall/examples: for each question, the SPARQL
translation and answers from DBpedia can be obtained in two clicks.
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“Which German cities have more than 250000 inhabitants?”
“Which Town that has country res:Germany has a populationTotal greater than 2500007”

“Who was the successor of John F. Kennedy?”
“Who was the successor of res:John_F._Kennedy?”

“Who is the mayor of Berlin?”
“Who is the leader of res:Berlin?”

“How many students does the Free University in Amsterdam have?”
“What is the numberOfStudents of res:Vrije_Universiteit?”

“What is the second highest mountain on Earth?”
“Which Mountain has the 2nd highest elevation?”

“When was Alberta admitted as province?”
“What is the dbp:admittancedate of res:Alberta?”

“Give me a list of all trumpet players that were bandleaders.”
“Give me all Person-s whose instrument is res:Trumpet and whose occupation
res:Bandleader.”

“Give me all world heritage sites designated within the past five years.”
“Give me all WorldHeritageSite whose dbp:year is between 2008 and 2013.”

“What is the longest river?”
“Which River has the highest dbp:length?”

“What is the capital of Canada?”
“What is the capital of res:Canada?”

“How many official languages are spoken on the Seychelles?”
“How many officialLanguage-s of res:Seychelles are there?”

“Give me all movies directed by Francis Ford Coppola.”
“Give me all Film-s whose director is res:Francis_Ford_Coppola.”

“How often did Nicole Kidman marry?”
“How many spouse-s of res:Nicole_Kidman are there?”

“When did Michael Jackson die?”
“What is the deathDate of res:Michael_Jackson?”

Table 4: A sample of original QALD-3 questions, followed by their SQUALL reformulation.

is

The concision of SQUALL is comparable to natural language. Table 5 compares the aver-
age length of questions in three languages: English (original QALD question), SQUALL
(our reformulation of the questions), SPARQL (the golden standard provided by QALD
organizers). Whereas SPARQL queries (excluding prologues) are two and a half times
longer than natural language questions, SQUALL queries are only about 33% longer.
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language English SQUALL SPARQL
average question length || 45 60 111

Table 5: Comparison of the average length of questions in the three languages.

The difference between natural language and SQUALL is in a large part explained by
the namespaces in qualified names (e.g., res:Berlin instead of Berlin).

SQUALL queries look natural. The use of variables is hardly ever necessary in SQUALL
(none was necessary in both training and test questions), while SPARQL queries are
cluttered with many variables. No special notations were used, except for namespaces.
Only grammatical words are used to provide syntax, and they are used like in natural
language. There are 10 out of 99 questions where SQUALL is identical to natural lan-
guage, up to proper names replaced by readable URIs, namespace prefixes, and plural
marks (numbers are question ids): (2) “Who was the successor of res:John_F._Kennedy?”,
(14) “Give me all bandMember-s of res:Prodigy.”, (21) “What is the capital of res:Canada?”, (22)
“Who is the dbp:governor of res:Wyoming?”, (24) “Who was the dbp:father of res:Elizabeth_11?”,
(30) “What is the dbp:birthName of res:Angela_Merkel?”, (54) “What are the dbp:nickname-s of
res:San_Francisco?”, (58) “What is the dbp:timezone of res:Salt_Lake_City?”, (73) “How many
child-s did res:Benjamin_Franklin have?”, (76) “List the child-s of res:Margaret_Thatcher.”.

Most discrepancies between natural language and SQUALL are a matter of vocabulary.
Most discrepancies come from the fact that for each concept, a single word has been
chosen in the DBpedia ontology, and related words are not available as URIs. Because
our default lexicon uses URIs as nouns and verbs, some reformulation is necessary. In
the simplest case, it is enough to replace a word by another: e.g., “wife” vs “dbp:spouse”.
In other cases, a verb has to be replaced by a noun, which requires changes in the syntac-
tic structure: e.g., “Who developed Minecraft?” vs “Who is the developer of res:Minecraft?”.
An interesting example is “Who is the daughter of Bill Clinton married to?” vs “Who is
the dbp:spouse of the child of res:Bill_Clinton?”. The former question could be expressed in
SQUALL if “marriedTo” was made an equivalent property to “dbp:spouse”, and if “daugh-
ter” was made a subproperty of “child”. In fact, this kind of discrepancy could be resolved,
either by enriching the ontology with related words, or by preprocessing user sentences
to replace spontaneous words by URIs. Alternately, the replacement could be done on
the intermediate representation of even SPARQL query, with the benefit that the se-
mantic role of words (e.g., class, property) would be explicit. The latter approach is
analogue to and could reuse the techniques of ontology-based query answering systems
(see Section 8).

Some discrepancies are deeper in that they exhibit conceptual differences between natural
language and the ontology. We shortly discuss three cases:

e “List all episodes of the first season of the HBO television series The Sopranos!” vs “List
all TelevisionEpisode-s whose series is res: The_Sopranos and whose seasonNumber is 1.”. In
natural language, an episode is linked to a season, which in turn is linked to a
series. In DBpedia, an episode is linked to a series, on one hand, and to a season
number, on the other hand. In DBpedia, a season is not an entity, but only an
attribute of episodes.
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e “Which caves have more than 3 entrances?” vs “Which Cave-s have an dbp:entranceCount
greater than 37?”. The natural question is a grammatical sentence in SQUALL, but
it assumes that each cave is linked to each of its entrances. However, DBpedia only
has a property “dbp:entranceCount” from a cave to its number of entrances.

e “Which classis does the Millepede belong to?”  vs “What is the dbp:classis of
res:Millipede?”. The natural question is again a valid SQUALL sentence (after mov-
ing 'to’ at the beginning), but it assumes that res:Millipede is an instance of a
class that is itself an instance of dbp:classis. DBpedia does not define classes of
classes, and therefore uses dbp:classis as a property from a species to its classis.

Those discrepancies are more difficult to solve. A first solution is to make the ontology
better fit usage in natural language. A second solution is to apply transformations on the
intermediate representation of natural SQUALL sentences so that it matches the ontology
(e.g., transforming a count of entrances into the value of property dbp:entranceCount).

7.8. Performance in QALD-3 challenge

We here report on the results of our system SQUALL2SPARQL in QALD-3 challenge.
They are published on the official website of the challenge. Other QALD-3 participants
and their results are discussed in Section 8 (they are much lower but not directly com-
parable). We submitted the SPARQL translations produced by our system from our
reformulations of the test questions to the QALD evaluation tool. Out of the 99 ques-
tions, we got the right answers for 80 questions (including the three OUT OF SCOPE
questions), and partial answers for 13. Recall was 0.88, precision was 0.93, and the
F-measure was 0.90. The errors come from:

e data heterogeneity (12 errors, questions 1, 6, 17, 19, 29, 33, 39, 60, 63, 72, 93, 96),
e the reformulation in SQUALL (2 errors, questions 14, 43),

e SQUALL2SPARQL (2 errors, questions 49, 59),

e the gold standard (2 errors, question 16, 75),

e the QALD endpoint (1 error, question 92).

Looking at heterogeneity errors in detail, it appears that most of them could be solved
simply by: either adding generic super-properties in the DBpedia ontology, or by expand-
ing common words (e.g., location, date) into UNION graph patterns. For example, in
question 39 “Give me all companies in Munich.”, the implicit relation “has location” can
be translated in any of the three RDF properties: dbo:location, dbo:headquarter,
dbo:locationCity. This explains why our reformulation in SQUALL “Give me all
Company-es whose location is res:Munich.” has recall 0.6 only (the default prefix was used for
DBpedia ontology, so that location stands for dbo:location). If location, or another
property, was defined as a super-property of the other properties, the same SQUALL
question would have recall 1. Alternatively, assuming linguistic knowledge, the word
“location” could be mapped to the graph pattern

{ 7?x dbo:location 7y }
UNION { ?x dbo:headquarter 7y }
UNION { ?x dbo:locationCity ?y }
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where 7x and 7y respectively stand for the subject and object of the relation. Such graph
patterns could easily be exploited in the translation from the intermediate representation
to SPARQL without the need to change the SQUALL language and its parsing.

Another problem related to heterogeneity is that some expected domain and range
axioms are not verified in some cases. For example, in question 19 “Give me all people that
were born in Vienna and died in Berlin.”, 2 out of the 6 expected answers are not instances
of the class Person. This is why our reformulation “Give me all Person-s whose birthPlace is
res:Vienna and whose deathPlace is res:Berlin.” missed 2 answers, even though it is arguably
equivalent to the original formulation.

The errors coming from the reformulation of questions are due to the misspelling or
misunderstanding of URIs. In question 14, res:Prodigy was used instead of res:The_Prodigy.
In question 43, the property dbp:breed was used in the wrong direction.

The errors coming from SQUALL2SPARQL are due to an incorrect translation of the
special verb “share”. For example, Question 49 “Which other weapons did the designer of
the Uzi develop?” was reformulated as “Which Weapon shares the dbp:designer with res:Uzi?”,
which returns Uzi itself as an answer. Another possible reformulation is “Which Weapon
has the same dbp:designer as res:Uzi?” | but it exhibits the same error.

The error from the endpoint is because the BIND construct of SPARQL is not (yet)
supported by the QALD-3 endpoint. It is possible to write the SPARQL query to avoid
it, but SQUALL2SPARQL relies on it to simplify the translation from SQUALL. Note that
the correct answers are returned when using the official DBpedia endpoint.

8. Related work

In their evaluation of Natural Language Interfaces (NLI) and interfaces for the Seman-
tic Web, Kaufmann and Bernstein [12] compare the usability of different approaches on
a natural-formal scale (the Formality Continuum). This scale ranges from spontaneous
natural language to formal query language, with Controlled Natural Language (CNL)
in between. For formal languages (e.g., SPARQL) or CNLs, the lack of naturalness
is compensated by assisting users in the formulation of queries (e.g., auto-completion).
Interestingly, the participants of the QALD-3 challenge [14] cover a wide range of the for-
mality continuum, even if most of them (4/6) fall in the “spontaneous natural language”
category. We discuss each category in turn, starting with QALD-3 participants.

Spontaneous natural language. QALD-3 participants in this category are: CASTA [35]
(F-measure = 0.36), RTV [36] (F-measure = 0.33), Intui2 [37] (F-measure = 0.32), and
SWIP [38, 39] (F-measure = 0.17). Many other systems have been developed: e.g., Pow-
erAqua [11], QAKIS [40], FREyA [10]. While they differ a lot in the details, they all share
a similar architecture. First, a syntactic analysis is performed, usually based on standard
NLP tools (e.g., Stanford NLP tools), in order to identify entities and relationships, and
to generate a few triples. Second, a mapping from lexical forms to semantic forms is
searched with the help of external resources, which are both linguistic (e.g., WordNet,
Wikipedia, relational patterns), and ontologic (e.g., fixed ontology, Watson). Finally,
one or several SPARQL queries are generated and ranked. In some cases, answers are
directly produced and ranked without using a SPARQL query explicitly. Most of the
effort is generally spent on the semantic mapping, and only a shallow syntactic parsing
is performed. From QALD-3 results, CASIA and SWIP generate only 2-triples queries
36



(which cover 74 test questions), and RDF and Intui2 only 1-triple queries (60 questions).
Only RTV supports counting (4 questions), and none of them supports comparatives (6
questions) or superlatives (6 questions). Among their wrong or missing results, roughly
half can be accounted on syntax, and half on semantic mapping.

Controlled natural language. SQUALL is the only QALD-3 participant in this category (a
former version of SWIP took part in QALD-1 as a CNL). It focuses on syntactic analysis,
and SPARQL generation, and completely ignores (so far) semantic mapping. Therefore, it
relies on a reformulation of original questions in the vocabulary of the target RDF dataset,
and its score in the challenge (F-measure = 0.90) is hence not directly comparable to
other participants’ score. However, it demonstrates that complex natural questions can
be reliably translated to SPARQL. SQUALL better handles complex syntactic constructs
such as nested relative clauses, and coordinations. It can generate arbitrarily many
triples, it supports all features of QALD questions (comparatives, superlatives, counting),
and more (disjunction, negation, other aggregations, updates, etc.). Many CNLs have
been defined in the past decades [17], but SQUALL is the only one that targets SPARQL
queries and updates. Other CNLs for the Semantic Web rather target ontological axioms
(facts and rules). ACE [19] is a general purpose CNL that can target various formalisms,
and there are a number of more specialized CNLs targeting OWL axioms (e.g., SOS,
Rabbit) [20]. In Kuhn’s survey [17], SQUALL is evaluated as having: a high precision
(P%), a medium expressiveness compared to NL (E%), natural sentences (N*), and a
short description (S*). In comparison, a natural language is evaluated as P1E°N°S?,
i.e., maximally expressive and natural, but minimally precise and short-defined; and
SPARQL is evaluated as PP E3N1S5.

Guided navigation. Scalewelis [41] (F-measure = 0.33) is the only QALD-3 participant
based on guided navigation. Like SQUALL, it is based on a reformulation of original
queries, but users are guided step by step, and do not have to actually write the query.
Guidance is based on actual data in the RDF store, and follows the principles of Query-
based Faceted Search (QFS) [8], which allows for more expressiveness than other seman-
tic faceted search systems (e.g., SlashFacet [6], BrowseRDF [7]). At each step, users are
given a choice of relevant classes, properties, and entities to be inserted in the query
under construction. Scalewelis’ query language is a subset of SQUALL that supports
nested relative clauses and conjunctive coordinations, but none of comparisons, superla-
tives, and aggregations. FErrors in the QALD-3 challenge are explained by the lack of
expressivity, and by the high heterogeneity of DBpedia’s vocabulary. Ginseng [13], resp.
GINO [42], guides users in the input of queries, resp. resource descriptions, through auto-
completion of CNL sentences. However, their expressiveness is lower than SQUALL, and
their guidance is based on an ontology rather than on actual data, which is less precise
and requires a well-defined ontology.

9. Conclusion and perspectives

In the spectrum that goes from full natural language to formal languages like
SPARQL, SQUALL (Semantic Query and Update High-Level Language) occupies a
unique position. It offers the same expressiveness as SPARQL for querying and up-
dating RDF data, and still qualifies as a controlled natural language (CNL). This means
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that among the natural language interfaces, SQUALL is the one that is by far the most
expressive; and that among the formal languages, SQUALL is the one that is the most
natural. The current limit of SQUALL is that end-users have to comply with its con-
trolled syntax, and have to know the RDF vocabulary (i.e., Which are the classes and
properties?). However, the important result is that SQUALL can be used as a substitute
for SPARQL because this entails no loss, neither in expressiveness, nor in precision.

Most existing systems try and solve the query answering challenge by addressing
all aspects at once: syntactic analysis, mapping from lexical forms to semantic forms,
contextual disambiguation, and SPARQL generation. We think that it may be more
efficient, and that it would facilitate collaboration, to address those aspects separately.
We have shown in this paper that syntactic analysis and SPARQL generation can reach
the expressivity of SPARQL, while retaining a high level of naturalness (at the syntactic
level). Future work will consist in integrating SQUALL with existing results about other
aspects:

e using domain-specific lexicons instead of the default one. Such lexicons may be con-
structed manually, or generated automatically [43]. There is an RDF vocabulary,
Lemon [44], to represent and share such lexicons.

e applying mapping techniques on the intermediate representation. SQUALL’s inter-
mediate representation is compatible with those of OQA systems, only being more
complex combinations of triple patterns. In simple cases, mapping simply replaces
words by URIs (e.g., “mayor” by dbo:leader). In more complex cases, mapping
may replace combinations of triples by other combinations of triples (e.g., a count
of “entrances” by the property dbp:entranceCount).

o using SQUALL as an intermediate representation. If full natural language is to be
accepted as input, a solution is to use mature NLP tools (e.g., Stanford NLP parser)
to parse a spontaneous sentence, and then translate the resulting dependency graph
to SQUALL, which is arguably much closer to NL than SPARQL is.

e using guided input and dialog. Grammar-based guided input (auto-completion)
ensures that only syntactically correct sentences are entered by users [13]. Another
possible approach is to use query-based faceted search, which combines the guided
exploration of faceted search and the expressivity of query languages [8]. If a lexicon
is available, it can also ensures that only known words, and hence known concepts,
are used. Finally, if data is available during guided input, it can be queried to
rule out invalid interpretations, and the user can be asked to choose among the
remaining interpretations. The combination of those mechanisms open the door
for a rich dialog between the user and the system, but remains challenging in terms
of complexity and scalability.
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