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Introduction

We consider the acoustic Helmholtz equation
with constant density
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u−∆u = f in Ω,

∇u · n−
iω

c
u = 0 on ΓA,

u = 0 on ΓD,

(1)

where u is the pressure, ω is the angular fre-
quency, f is the source of excitation and c is the
heterogeneous velocity parameter.
When discretizing problem (1) with a finite ele-
ment method, the mesh induces an approxima-
tion of the velocity parameter c if it does not
fit the interfaces. This is troublesome for high
order methods, where a coarse mesh is usually
used, with several degrees of freedom per cell.
We improve the performance of high order meth-
ods in highly heterogeneous media, by refin-
ing the approximation of the velocity parameter
without changing the finite element mesh (see
figure 1 and 2).

Basic FEM

The basic finite element technique to assemble
the associated linear system consists in assum-
ing that the velocity is constant on each cell K.
That way, one can store the reference values

M̂ij =

∫

K̂

φ̂j φ̂i,

where K̂ is the reference cell and φ̂j , φ̂i are the
shape functions, and use the linear mapping
onto the actual cell K to compute the entries

∫

K

1

c2
φjφi = area (K)

1

c2K
M̂ij .

Medium approximation

We improve the basic methodology by subdivid-
ing the reference cell into a submesh {Âl}

ns

l=1
,

and storing the reference values

M̂ l
ij =

∫

Âl

φ̂j φ̂i.

for l ∈ {1, . . . , ns}. Therefore, we only need to
assume that c is constant on the images of the
subcells (yielding a finer approximation of the
medium) and compute the entries with

∫

K

1

c2
φjφi = area (K)

ns
∑

l=1

1

c2K,l

M̂ l
ij .

That way, we keep the usual stencil of the linear
system of the basic FEM, but each coefficient is
weighted differently because the approximation
of c is improved.
It follows that the inversion of the linear system
has the same cost. Only the time for matrix
assembling is multiplied by ns, but this prepro-
cessing step can be easily parallelised.
Figure 1 and 2 illustrate the improvement that
our methodology can bring on coarse meshes.

Marmousi test-case

We present our methodology on the Marmousi test-case at the fequency f = 10Hz and a Dirac
source term at (2000, 100). We use a coarse mesh of 2342 triangles and P6 elements. Figure 1 shows
how well the velocity model is handled by the mesh without subdision (ns = 1) and with ns = 64
subdivisions of the reference cell.

Figure 1: Basic medium approximation (left); 64 subcells (right)

Figure 2 shows a zoom. We see that the finite element mesh is preserved, but each cell is subdivided
into ns = 64 subcells.

Figure 2: Basic medium approximation (left); 64 subcells (right)

In order to compare the two methodologies, we compute a reference solution with P6 elements on a
much finer mesh of 95488 triangles. Figure 3 presents a cut of the three differents solutions. We see
that the numerical solution computed with ns = 64 subcells is much closer to the reference solution.
Yet, the computational cost for this solution is roughly the same as the basic FEM. As a conclusion,
Table 1 confirms that the quality of the solution is increased when the velocity approximation is
refined.

Figure 3: Cut of the numerical solutions at 100m depth (imaginary part)

ns relative L2 error ns relative L2 error

1 70.9% 64 11.2%
4 36.7% 256 8.24%
16 14.5% 1024 7.91%

Table 1: Relative error on the cut


