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Abstract: This work is devoted to model the phase transition for two-phase flows with a
mechanical equilibrium model. First, a five-equation model is obtained by means of an asymptotic
development starting from a non-equilibrium model (seven-equation model), by assuming a single-
velocity and a single pressure between the two phases, and by using the Discrete Equation Method
(DEM) for the model discretization. Then, a splitting method is applied for solving the complete
system with heat and mass transfer, i.e., the solution of the model without heat and mass transfer
terms is computed and, then, updated by supposing a heat and mass exchange between the two
phases. Heat and mass transfer is modeled by applying a thermo-chemical relaxation procedure
allowing to deal with metastable states.
The interest of the proposed approach is to preserve the positivity of the solution, and to reduce
at the same time the computational cost. Moreover, it is very flexible since, as it is shown in this
paper, it can be extended easily to six (single velocity) and seven-equation models (non-equilibrium
model).
Several numerical test-cases are presented, i.e. a shock-tube and an expansion tube problems, by
using the five-equation model coupled with the cavitation model. This enables us to demonstrate,
using the standard cases for assessing algorithms for phase transition, that our method is robust,
efficient and accurate, and provides results at a lower CPU cost than existing methods. The
influence of heat and mass transfer is assessed and we validate the results by comparison with
experimental data and to the existing state-of-art methods for cavitation simulations.

Key-words: Heat and mass transfer, two-phase flows, Discrete Equation Method (DEM), seven-
equation model, six-equation model, five-equation model, cavitation.



Un modèle de transition innovant pour simuler
la cavitation à travers un modèle à 5 équations,
et généralisation aux modèles à 6 et 7 équations

Résumé : Ce travail est focalisé sur un modèle de transition de phase pour des
écoulements diphasiques avec un modèle d’équilibre mécanique. Premièrement,
un modèle à 5 équations est obtenu avec un développement asymptotique à
partir d’un modèle à 7 équations, en supposant une seule vitesse et pression
pour les deux phases, et en utilisant une méthode DEM (Discrete Equation
Method) pour la discrétisation du modèle. De plus, une méthode de splitting
est appliquée pour résoudre le système complet avec transfert de masse et de
chaleur. Donc, la solution du modèle sans transfert de masse et de chaleur est
calculée et mise à jour en supposant un transfert de masse et de chaleur. Le
transfert de masse et chaleur est modélisé en appliquant une procédure de re-
laxation thermo-chimique permettant de traiter des états metastables. L’intért
de cette approche est de préserver la positivité de la solution, et de réduire le
coût de calcul. De plus, elle est très flexible et peut facilement être étendue à
des modèles à 6 et 7 équations. Plusieurs cas-tests sont présentés, un tube à
choc et une tube de détente, en utilisant un modèle à 5 équations couplé avec
un modèle de cavitation. Cela permet de démontrer que notre méthode est ro-
buste, précise et fournit des résultats avec un coût de calcul réduit par rapport
aux méthodes existantes. L’influence du transfert de masse et de chaleur est
estimée en comparant les données expérimentales avec des résultats existants en
littérature.

Mots-clés : transferts de masse et de chaleur, écoulements diphasiques, DEM,
modèles à 7 équations, modèles à 6 équations, modèles à 5 équations, cavitation.
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1 Introduction

Modeling the heat and mass transfer between the phases is of utmost importance
when simulating flows in fuel injectors, turbo-pumps, nozzles, etc. Usually, in
some of these applications, cavitation could appear because of a strong liquid ac-
celeration, yielding a strong rarefaction wave and hence with vapor/gas bubbles
creation. In Fig. 1, the pressure-volume diagram is illustrated. The dashed line
(from ‘saturated liquid’ to ‘saturated vapor’ in Fig. 1) is the saturation curve,
where the two phases are characterized by the same pressure, temperature and
chemical potential. Following [1, 2], let us assume the liquid phase evolves
following the isotherm line (solid line), from the state A to the state B. If it is
depressurized to a pressure below the corresponding saturation pressure of state
B, it can evaporates, moving on the isothermal line (arriving to C), up to the
equilibrium condition in the gas monophasic region (for example in state E) (see
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4 Rodio & Abgrall

Figure 1: Pressure-volume diagram

[1] for more details). However, if the liquid undergoes a very strong rarefaction
wave, it can evolves from the state A to a ’metastable’ state (state D), i.e. a non-
equilibrium state. This means that, in these conditions, the liquid phase releases
its metastable energy, producing vapor and, thus, evolving in a new equilibrium
state (for example in state E). The consequences of cavitation, such as noise,
performance device reduction and wall corrosion, are extremely negative. For
these reasons, this phenomenon requires a good theoretical comprehension and,
as consequence, an accurate predictive physical model is required.

In the literature, several numerical models have been proposed for repro-
ducing the two-phase flows. The most used are (i) the Bubbly Flow Models
[3, 4, 5, 6], (ii) the Homogeneous Mixture Models [7, 8, 9, 10, 11] and (iii) the
Multiphase Models [12, 13, 14, 15, 16]. The main difference, among these fami-
lies of models, consists in the assumptions for modeling the interaction and the
behavior of the two phases.

In this paper, the focus is on the Interface diffuse Models. In one dimension,
they consist in a system of three conservation equations for each phase and
a transport equation for the vapor fraction. This system enables the explicit
treatment of the mass, momentum and energy exchanges as transfer terms.

However, these models are numerically complex, and more recent works have
proposed the introduction of relaxation procedures to reduce the system to five
equations, ensuring the possibility of dealing with explicit mass and energy
exchange [17, 18, 15]. The most important reference about the treatment of
heat and mass transfer terms, for the Interface Diffusive models, is the work
of Saurel et al. [19]. The authors proposed a phase transition modeling for a
single velocity and single pressure model (five equations model) relying on a
thermo-chemical relaxation. In fact, by obtaining the equality of temperature
and chemical potential for the two phases, this relaxation assures the evolution

Inria



Phase transition modeling for reproducing cavitation through a five-equation model5

of liquid phase from a metastable state to an equilibrium state on the saturation
curve. During this evolution, the liquid phase releases mass in order to evap-
orate before assuming a new state on the saturation curve. Then, the authors
proposed an original procedure to identify the liquid/vapor interface. In recent
years, few works have been proposed for treating phase transition modeling in
Interface Diffusive models [16, 19, 20, 21, 22, 23, 24]. Following the approach
of [19], Zein at al. [20] proposed a heat and mass transfer model for the six
equation system (single velocity model), based on three different relaxations of
pressure, temperature and chemical potential, respectively. Recently, the same
approach has been used by Wang al. in [23] and Daude et al. [22]. Nevertheless,
the original relaxation procedure of [19] and the successive modifications are af-
fected by some numerical issues. In order to preserve the positivity of volume
fraction and density, it might be necessary to integrate the system using time
steps that are fractions of the hydrodynamic time step, thus yielding an increase
of the computational cost (see [20]). Recently, Pelanti and Shyue [21] presented
a new numerical treatment of heat and mass transfer terms for a six equation
two-phase model. As in [25], they proposed, in an original way, a new procedure
in order to guarantee the positivity of the system, based on the total entropy
maximization, when the solution coming from the thermo-chemical relaxation
step, is not physically admissible.

The first idea of the present paper is to couple the treatment of heat and mass
transfer terms proposed in [19] for a five equation model, with the procedure for
solution admissibility of [21], thus preserving the positivity of the solution and
reducing consistently the computational cost. As a consequence, this method
combines a good accuracy and a reduced computational cost, as demonstrated
in the following by performing several comparisons with experimental data and
other numerical results well-known in the literature. The second innovative
point of this work is the theoretical extension of the proposed model to six and
seven-equation models, thus showing its flexibility.

The paper is organized as follows. Section 2 presents the five-equation model
with heat and mass transfer starting from a seven-equation one. Section 3 illus-
trates the main ingredients of the proposed approach for simulating cavitating
flows. In Section 5, a theoretical extension of the cavitation model to the six and
seven-equation model is presented and discussed. Section 6 illustrates several
numerical results obtained with the five-equation model, displaying the robust-
ness of the numerical method on the most used numerical configuration in the
literature. In particular, the influence of heat and mass transfer is assessed and
the results are validated by comparison with respect to the experimental data.

Finally, in Section 7, some conclusions and perspectives are drawn.

2 The five-equation models with heat and mass
transfer

We introduce here the general formulation of a seven-equation model and the
assumptions for yielding a five equations models, with heat and mass transfer
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6 Rodio & Abgrall

[20]:

∂α1

∂t
+ vI

∂α1

∂x
= µ(P1 − P2) + ηQ+

ρ

ρI
Ẏ

∂(α1ρ1)

∂t
+

∂(α1ρ1v1)

∂x
= ρẎ

∂(α1ρ1v1)

∂t
+

∂(α1ρ1v
2
1 + α1P1)

∂x
= PI

∂α1

∂x
+ λ(v2 − v1) + vIρẎ

∂(α1ρ1E1)

∂t
+

∂(α1(ρ1E1 + P1)v1)

∂x
= PIvI

∂α1

∂x
+ λvI(v2 − v1)+

+ µPI(P1 − P2) +Q+ EIρẎ

∂(α2ρ2)

∂t
+

∂(α2ρ2v2)

∂x
= −ρẎ

∂(α2ρ2v2)

∂t
+

∂(α2ρ2v
2
2 + α2P2)

∂x
= PI

∂α2

∂x
− λ(v2 − v1)− vIρẎ

∂(α2ρ2E2)

∂t
+

∂(α2(ρ2E2 + P2)v2)

∂x
= PIvI

∂α2

∂x
− λvI(v2 − v1)+

− µPI(P1 − P2)−Q− EIρẎ ,

(1)

where:

• Q = θ(T2−T1) is the heat transfer term, T2 and T1 are the liquid and the
gas temperature, respectively

• Ẏ = ν(g2 − g1) is the mass transfer term, g2 and g1 are the liquid and the
gas Gibbs free energy, respectively.

The symbols ρk, αk, vk and Pk represent the density, the volume fraction,
the velocity and the pressure for each phase, respectively. The terms ρI , EI ,
PI and vI are the density (see Eq. (10)), the energy (see Section 5.1.4), the
pressure and the velocity (see Section 5.1.2) at the interface, respectively. Last,
ρ = α1ρ1 + α2ρ2 is the mixture density. The coefficients λ = C/ε and µ =
C′/ε represent the relaxation velocity parameter and the dynamic compaction
viscosity. The coefficients C and C′ depend on the acoustic impedance of the
fluids (see [26] for more details). These are the so-called relaxation terms, which
yield a process inducing a pressure and velocity equilibrium.

The system (1) can be, also, expressed in vectorial form as follows:

∂U

∂t
+

∂

∂x
F (U) +B(U)

∂α1

∂x
=

R(U)

ε
+ S(U) (2)

where

U =









αk

αkρk
αkρkvk
αkρkEk









, F (U) =









0
αkρkvk

αk(ρkv
2
k) + Pk

αk(ρkEk + Pk)vk









B(U) =









vI
0

−PI

−PIvI









,
R(U)

ε
=













µ(Pk − Pk⋆)
0

λ(vk⋆ − vk)
λvI · (vk⋆ − vk)− µPI(Pk − P ⋆

k )
−µ(P1 − P2)













,
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S(U) =











α1α2

α2ρ1c21+α1ρ2c22

(

Γ1

α1
+ Γ2

α2

)

Q+ ρ
ρI
Ẏ

ρẎ

vIρẎ

Q + EIρẎ











.

In order to reduce the complexity of the system, mechanical equilibrium is
considered. The equality of pressure and velocity can be obtained through a
stiff mechanical relaxation of the system (1), as in [27, 21, 20], or through an
asymptotic development, as in [28, 15], where relaxation parameters, λ and µ,
are assumed as tending to infinity. This means that a very large interface area
is assumed. After a Chapman-Enskog like expansion, the system (1) becomes:

∂α1

∂t
+ v

∂α1

∂x
= K

∂v

∂x
+ ηQ+

ρ

ρI
Ẏ

∂α1ρ1
∂t

+
∂(α1ρ1v)

∂x
= ρẎ

∂α2ρ2
∂t

+
∂(α2ρ2v)

∂x
= −ρẎ

∂ρv

∂t
+

∂(ρv2 + P )

∂x
= 0

∂ρE

∂t
+

∂(ρE + P )v

∂x
= 0,

(3)

where E = e+ 1
2v

2 is the mixture total energy and e = (α1ρ1e1 + α2ρ2e2)/ρ is

the mixture internal energy. K =
α1α2(ρ2c

2
2−ρ1c

2
1)

(α1ρ2c22+α2ρ1c21)
. The unknowns are now : α1,

ρk, v, P , ek, Q and Ẏ . This means that, for closing the system, two equations
of state are used for defining the relation of energy as a function of pressure and
density for both phases (see Section 4 ) and a cavitation model is used in order
to define Q and Ẏ . This is detailed in Section 3.

3 The cavitation model for the five-equation model:
a splitting method

Now, let us consider the system (3). In order to compute a solution, a splitting
procedure is adopted and the following three steps are solved:

• Step 1 : compute the numerical solution of the hyperbolic part of system
(3) without heat and mass transfer term source.

Three strategies are possible. The first one is to solve the five equation
model directly, as in [19]. The second possibility is to solve the seven
equation model (system (1)) without the heat and mass transfer terms
and, then, to apply a mechanical relaxation in order to obtain the pressure
and velocity equilibrium.

The third possible strategy is the one used in this work. It consists in
following the procedure used in [14, 18], i.e. the discrete equation method
(DEM) [29] applied to the system (1). An advantage to use the DEM
method for (2) is an original way of addressing a important numerical
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8 Rodio & Abgrall

challenge: the approximation of non-conservative term, when the veloc-
ity ~v and K are simultaneously discontinuous (see [29, 18, 26] for more
details).

Then, an asymptotic development is applied, at a discrete level, in order
to impose to the semi-discrete system a mechanical relaxation. Finally, a
final semi-discrete system is obtained, that is equivalent to discretize the
five equation model (3).

• Step 2 : update the solution of system (3), by solving the temporal ODEs
system with the heat and mass transfer terms. This consists in applying a
thermo-chemical relaxation that allows, from a metastable state, to attain
a new equilibrium solution.

• Step 3 : the thermo-chemical relaxation does not guarantee that the posi-
tivity of the solution be preserved, so a positivity check of the solution is
performed.

As explained in Section 1, a thermo-chemical relaxation is required in
order to compute a new equilibrium state.

By adopting the splitting method, it is assumed that the characteristic time of a
mechanical relaxation, 1/µ, is much smaller than the characteristic time scales
1/θ and 1/ν of heat and mass transfer terms, respectively. This means that
thermal and chemical relaxation occur in a pressure equilibrium condition. In
Fig. 2, the three steps are summarized in order to give a more complete vision
of the global method.

In the following sections, the three steps are described in detail.

3.1 Step 1: Numerical solution of a five-equation model
with mechanical relaxation without heat and mass
transfer

The originality of this work is focused on the transition phase, thus for the step
1, only the main lines of the numerical method, proposed in [18], are recalled.

We assume that at time t, the computational domain Ω is divided into the
cells Ci =]xi−1/2, xi+1/2[. At a time t = t + s (with s small), the interface in
xi+1/2 moves at a velocity σi+1/2 and the interface in xi−1/2 moves at a velocity
σi−1/2. As a consequence, the cell Ci evolves in C̄i =]xi−1/2 + sσi−1/2, xi+1/2 +
sσi+1/2[ (see Fig. 3). The cell may be either smaller or larger than the original
ones Ci, depending on the signs of the velocities. So, the Godunov scheme [30] is
no longer applied on the mesh cells, but on the modified and non-uniform cells
constructed according to the position of the interface (see Fig. 3). Then, we
introduce the characteristic function Xk of the phase Σk. The function Xk(x, t)
is equal to 1, if x lies in the fluid Σk at time t and 0 otherwise. Then, we denote
with F (UL, UR) the Godunov numerical flux between the states UL and UR,
and with F lag(UL, UR) the flux across the contact interface between the states
UL and UR (see Fig. 3). The relation between the two fluxes is equal to :

F lag(UL, UR) = F (U+
LR)− σ(UL, UR)U

+
LR = F (U−

LR)− σ(UL, UR)U
−
LR, (4)

where the superscripts ± denote the state on the right and on the left of the
contact discontinuity, as in Fig. 3.

Inria



Phase transition modeling for reproducing cavitation through a five-equation model9

INPUT VARIABLES
V = (α0

k, ρ
0
k, v

0
k, P

0
k )

T

with k=1,2

STEP 1

7 EQUATION MODEL
without

heat and mass transfer terms
(see system (1))

Asymptotic
Development

5 EQUATION MODEL
without

heat and mass transfer terms
(see system (3))

DEM [18]

OUTPUT VARIABLES
V = (α∗

k, ρ
∗

k, v
∗, P ∗)T

with k=1,2

IF
ǫ1 < α∗

1 < 1− ǫ1
and

T ∗

k > Tsat

NO

YES

THERMO-CHEMICAL
RELAXATION

→ T1 = T2 and g1 = g2
→ V = (α⋆

k
, ρ⋆

k
, v⋆, P⋆) and s⋆

k

STEP 2

IF
|Smax,α1 | > |Sα1 |

and
|Smax,Y1 | > |SY1 |

YES

OUTPUT VARIABLES

V = (α∗∗

k = α⋆

k
, ρ∗∗k = ρ⋆

k
,

v∗∗ = v⋆k , P ∗∗ = P⋆

k )T with k=1,2

NO

STEP 3

If s⋆1 > s⋆2 → α⊗ = ǫ1
Otherwise → α⊗ = 1− ǫ1

SOLVE SYSTEM (13)
→ P⊗

→ V = (α⊗

k
, ρ⊗

k
, v⊗, P⊗)

OUTPUT VARIABLES
V = (α∗∗

k = α⊗

k
, ρ∗∗k = ρ⊗

k
,

v∗∗ = v⊗
k
, P ∗∗ = P⊗

k
)T with k=1,2

Figure 2: Sketch of the numerical scheme proposed in order to find the numerical
solution of system (3).
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10 Rodio & Abgrall

Figure 3: a) Subdivision of the computational domain. b) The various states
in the Riemann problem between states UL and UR.

In [29], a semi-discrete equation for the discretization of a seven-equation
model (see Eq. (1)) has been developed. Then, in [26], an asymptotic devel-
opment has been applied on the numerical approximation of [29], obtaining the
semi-discrete equation for the reduced model (see Eq. (3)). This last one is
used in this work and its formulation is the following:

∂α1

∂t
= FTα(U1) +

α1α2

α2ρ1a2
1 + α1ρ2a2

2

{

FTα(U8)

α2ρ2χ2
−

u2FTα(U7)

α2ρ2χ2
+

+
u2

2

2
− e2 − ρ2κ2

α2ρ2χ2
FTα(U6) +

ρ22κ2FTα(U1)

α2ρ2χ2
−

FTα(U4)

α1ρ1χ1
+

+
u1FTα(U3)

α1ρ1χ1
−

u1
2

2
− e1 − ρ1κ1

α1ρ1χ1
FTα(U2)−

ρ21κ1FTα(U5)

α1ρ1χ1

}

∂α1ρ1

∂t
= FTα1ρ1(U2)

∂α2ρ2

∂t
= FTα2ρ2(U6)

∂ρu

∂t
= FT∂ρu(U3) + FT∂ρu(U7)

∂ρE

∂t
= FTρE(U4) + FTρE(U8)

(5)

The vector FT (Uj) = (FTα, FTα1ρ1
, FTα2ρ2

, FTρu, FTρE), with j = 1, ..., 8, is
defined by

FT (Uj) =
1

△x
E
(

X(xi+1/2, t)F (U⋆
i+1/2)−X(xi−1/2, t)F (U⋆

i−1/2)
)

+

+
1

△x

(

E([X ]j=0)F
lag(U−

i , U+
i−1)− E([X ]j=N )F lag(U+

i , U−
i+1)

)

, (6)
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Flow Patterns Jump indicator Flux Indicator

Σ1 −Σ2 [X]1,1 = 0
(

β
(1,2)
i+1/2

)

=

{

1 if σ(Ul
i , U

r
i+1) ≥ 0

−1 if σ(Ul
i , U

r
i+1) < 0

Σ1 −Σ1 [X]1,2 =
{

−1 if σ(1, 2) > 0
0 otherwise

1

Σ2 −Σ1 [X]2,1 =
{

1 if σ(2, 1) > 0
0 otherwise

(

β
(2,1)
i+1/2

)

=

{

1 if σ(Ul
i , U

r
i+1) ≥ 0

−1 if σ(Ul
i , U

r
i+1) < 0

Σ2 −Σ2 [X]2,2 = 0 0

Table 1: The various flow configurations at cell boundary i+ 1/2.

where U⋆
i+1/2 (or U⋆

i+1/2) denotes the solution of Riemann problem between

U+
i and U−

i+1 (respectively, U+
i−1 and U−

i ). The quantities [X ]j=0 and [X ]j=N

are the jumps of X at the beginning and at the end of the computational cell,
respectively.

Note that the correspondence of the semi-discrete system (5) with the model
(3) has been demonstrated in [26]. We notice that this method assumes initially
two different thermodynamic states of phases, and at the end of the time step,
the states have relaxed to a mechanical equilibrium. On the contrary, a direct
discretization of the system (3) assumes directly the equality of initial pressure
and velocity of the phases. Following [29, 26], the idea of DEM method is to
avoid the introduction of an approximated estimation of fluxes expectancy, E(·).
So, this is estimated from the probability to find in two neighbor cells, the same
phase or two different phases (see the ”flow patterns” in the Table 1). Then,
conservative and non-conservative terms of the system (5) can be developed
assuming the four possible types of fluid phase discontinuities.

The terms of the vector FT (Uj) of equation (5) can be computed as follows:

E
(

X(xi+ 1
2
, t)F (U⋆

i+ 1
2

)
)

= Pi+ 1
2
(Σ1,Σ1)F (U

(1)
i , U

(1)
i+1)+

+ Pi+ 1
2
(Σ1,Σ2)

(

β
(1,2)

i+ 1
2

)

F (U
(1)
i , U

(2)
i+1)

+ Pi+ 1
2
(Σ2,Σ1)

(

β
(2,1)

i+ 1
2

)

F (U
(2)
i , U

(1)
i+1)

E
(

X(xi− 1
2
, t)F (U⋆

i− 1
2

)
)

= Pi− 1
2
(Σ1,Σ1)F (U

(1)
i−1, U

(1)
i )+

+ Pi− 1
2
(Σ1,Σ2)

(

β
(1,2)

i− 1
2

)

F (U
(1)
i−1, U

(2)
i )

+ Pi− 1
2
(Σ2,Σ1)

(

β
(2,1)

i− 1
2

)

F (U
(2)
i−1, U

(1)
i )

E
(

[X ]NF lag(U
N(w)
i , U−

i+1)
)

= P1+1/2(Σ1,Σ2)
(

β
(1,2)
i+1/2

)

F lag(U
(1)
i , U

(2)
i+1)

− P1+1/2(Σ2,Σ1)
(

β
(2,1)
i+1/2

)

F lag(U
(2)
i , U

(1)
i+1)

E
(

[X ]0F
lag(U+

i−1, U
0
i )
)

= −P1−1/2(Σ1,Σ2)
(

β
(1,2)
i−1/2

)

F lag(U
(1)
i−1, U

(2)
i )+

+ P1−1/2(Σ2,Σ1)
(

β
(2,1)
i+1/2

)

F lag(U
(2)
i−1, U

(1)
i )

where χk and κk are defined as follows:

χk =

(

∂ek
∂Pk

)

ρk

, κk =

(

∂ek
∂ρk

)

Pk

, (7)
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12 Rodio & Abgrall

ek is the phase internal energy.
It remains to evaluate the probabilities Pi±1/2(Σp,Σq) (see [29]). For sim-

plicity, we only show the final formulation for i+ 1/2:

Pi+1/2(Σ1,Σ1) = min
(

α
(1)
i , α

(1)
i+1

)

, Pi+1/2(Σ2,Σ1) = max
(

α
(2)
i − α

(2)
i+1, 0

)

Pi+1/2(Σ1,Σ2) = min
(

α
(2)
i , α

(2)
i+1

)

, Pi+1/2(Σ1,Σ2) = max
(

α
(1)
i − α

(1)
i+1, 0

)

(8)

where Σk indicates the phase, with k = 1, 2.
The numerical flux F (U) is approximated via an approximate Riemann

solver which can define the contact speed σ(UL, UR), allowing to define also
the Lagrangian flux F lag (see Eq. (4)). In this paper, we have used the re-
laxation solver [31] for all computations (see [26] for more details). A second
order has been applied by means of a predictor-corrector approach that is an
extension to a multiphase flows of the MUSCL method shown in [32]. It has
been extensively explained in [29]. The time step is constrained by

|λmax|
∆x

∆t
6

1

2
.

The semi-discrete equation (5) is solved in order to find the solution of the
hyperbolic system with mechanical equilibrium. This strategy allows to start
from two completely different thermodynamic states as in the seven-equation
models, but finally, to find the mechanical equilibrium solution of a five equation
model.

We denote with superscript “0” the initial quantities at time t=0 and with
superscript ⋆ the quantities computed by solving Step 1. In Table 2, the input
and output quantities of the first step are reported. In order to close the system
(3), an equation of state (EOS) for each phase and for the mixture is used (see
Section 4, and for more details Ref. [14]).

Step 1

IN variables OUT variables
α0
1 (α0

2 = 1− α0
1) α⋆

1 (α⋆
2 = 1− α⋆

1)
ρ01 and ρ02 ρ⋆1 and ρ⋆2
v01 and v02 v⋆

P 0
1 and P 0

2 P ⋆

e01 and e02 e⋆1 and e⋆2
T 0
1 and T 0

2 T ⋆
1 and T ⋆

2

g01 and g02 g⋆1 and g⋆2

Table 2: Variables used in the Step 1.

3.2 Step 2: Numerical solution of the temporal ODEs
with heat and mass transfer terms

After considering the hydrodynamic evolution, let us focus now on the numerical
treatment of heat and mass transfer terms. The following ODEs equation system

Inria



Phase transition modeling for reproducing cavitation through a five-equation model13

allows to let evolve the solution, considering the new source terms:

∂α1

∂t
= ηQ+

ρ

ρI
Ẏ := Sα1

∂α1ρ1
∂t

= ρẎ := SY1

∂α2ρ2
∂t

= −ρẎ := −SY1

∂ρv

∂t
= 0,

∂ρE

∂t
= 0.

(9)

where: Q = θ(T2 − T1) and Ẏ = ν(g2 − g1). The Gibbs free energy (chemical
potential), gk, are defined for a stiffened gas equation of state, as follows:

gk(P, Tk) = (γkCvk − q′)Tk − CvkTk log

(

T
(γk)
k

(P + P∞,k)γk−1

)

.

The interface density has been defined in [19] and it has been determined as-
suming an isentropic behavior of acoustic waves, as follows:

ρI =

ρ1c
2
1

α1
+

ρ2c
2
2

α2

c2
1

α1
+

c2
2

α2

(10)

Parameters θ and ν are the thermal and chemical relaxation parameters, re-
spectively.

To identify the liquid/vapor interface, the method proposed in [19] and then
in [20, 21] is used. In particular, the relaxation parameters θ and ν are set to
zero far from the interfaces, and they are taken as infinite in order to fulfill
equilibrium interface conditions with mass transfer:

θ, ν =

{

+∞ if ǫ ≤ α1 ≤ 1− ǫ

0 otherwise,
(11)

where ǫ is a very low value. In order to define this value, we first remember that
a limit of this model is that a phase can not completely disappear. This means
that in all cells, the two phases always coexist. Anyway, a cell is considered
filled by a pure fluid, when its volume and mass fraction is equal to 1 − ǫ1,
with typically ǫ1 = 10−8. In other words, in all cells, the gas phase can have
a volume fraction value included in ǫ1 < αg < 1 − ǫ1 and the liquid phase a
complementary volume fraction, αl = 1 − alphag, in order to assure that also
the other phase exists.

As a consequence, for identifying the interface, ǫ = 10−6 is taken, and the
interface corresponds to mixture cells when volume fractions range is between
ǫ and 1− ǫ. If ǫ and ǫ1 are too close, evaporation may occur too early and not
only in the interfacial zone.

Moreover, we impose that the mass transfer is allowed only if metastable
state is fulfilled, i.e. if Tk > Tsat(P

⋆). The saturation temperature has been
defined in Section 4.

Let us denote with superscript ‘⋆⋆’ the final quantities computed by solving
Step 1. In Table (3), the input and output quantities of the second step and the
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14 Rodio & Abgrall

variables that are not influenced by the heat or mass transfer are reported. In
fact, from system (11), it is clear that thanks to mass conservation, the mixture
density is constant (ρ⋆⋆ = ρ⋆) and thus, the velocity (v⋆⋆ = v⋆) and the mixture
total and internal energy (E⋆⋆ = E⋆ and e⋆⋆ = e⋆).

Remembering that α2 = 1 − α1, the unknowns of the system (9) are α1,
ρk, v, P , ek, Q and Ẏ . Then, in order to close the system, two ingredients are
required : (i) an equation of state for defining the energy as function of pressure
and density for both phases (see Section 4) (ii) a thermo-chemical relaxation for
finding Q and Ẏ . The thermo-chemical relaxation is described in the following
sections (Sections 3.2.1 and 3.2.2).

Step 2 (Only at the interface: if ǫ1 < α1 < 1− ǫ1 and Tk > Tsat(P ⋆))

IN variables OUT variables Constant MIXTURE variables
α⋆
1 (α⋆

2 = 1− α⋆
1) α⋆⋆

1 (α⋆⋆
2 = 1− α⋆⋆

1 )
ρ⋆1 and ρ⋆2 ρ⋆⋆1 and ρ⋆⋆2

v⋆ v⋆⋆ ρ⋆⋆ = ρ⋆

P ⋆ P ⋆⋆ e⋆⋆ = e⋆

e⋆1 and e⋆2 e⋆⋆1 and e⋆⋆2 E⋆⋆ = E⋆

T ⋆
1 and T ⋆

2 T ⋆⋆

g⋆1 and g⋆2 g⋆⋆

Table 3: Variables used in Step 2. ρ = (α1ρ1)+(α2ρ2); ρe = (α1ρ1e1)+(α2ρ2e2);
E = e+ 1

2v
2.

3.2.1 Stiff thermo-chemical solver for computing Q and Ẏ

It is well-known that, physically, the single phase in metastable state evolves
in a new equilibrium liquid/vapor state with a heat and mass exchange. Thus,
the mass transfer can stop, only when a new state on the saturation curve is
attained, since the liquid and its vapor are in equilibrium. In order to estimate if
the two phases are in equilibrium on the saturation curve, it should be assured
that, in all time steps, the system achieves the temperature and Gibbs free
energy equilibrium between the phases (T1 = T2 and g1 = g2).

For solving this issue, a procedure similar to [19] is used. The temperature
and the Gibbs time derivatives are computed, that can be written in terms of Q
and Ẏ , using the mass equations and the energy mixture equation (see Section
3.2.2 for details), as follows:







∂∆T

∂t
= AQ+BẎ

∂∆g

∂t
= A

′

Q+B
′

Ẏ

(12)

where A, B, A′ and B′ should be defined. Assuming that thermodynamic equi-
librium is reached at the end of each time step, the simplest numerical approx-
imation of Eq. (12) can be written as follows:

∂∆T

∂t
=

∆T n+1 −∆T n

∆t
=

0−∆T n

∆t
= AnQn +BnẎ n
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Phase transition modeling for reproducing cavitation through a five-equation model15

∂∆g

∂t
=

∆gn+1 −∆gn

∆t
=

0−∆gn

∆t
= A′nQn +B′nẎ n.

Thus, finally, we can determine the heat and mass transfer terms that are com-
puted as follows :











Q = −

B′

AB′
− A′B

(∆T )n

∆t
+

B

AB′
− A′B

(∆g)n

∆t

Ẏ =
A′

AB′
−A′B

(∆T )n

∆t
+

A

AB′
− A′B

(∆g)n

∆t

(13)

To compute Q and Ẏ , A, B, A′ and B′ for a five-equation model should be
provided. This permits to finalize Step 2. The definitions of these coefficients
are provided in the following section.

3.2.2 Definition of A, B, A′ and B′

From classical thermodynamical identities, the temporal derivatives of temper-
ature and Gibbs free energy differences can be written as follows :

∂∆T

∂t
=

∂T2

∂t
−

∂T1

∂t
∂∆g

∂t
=

∂(h2 − T2S2)

∂t
−

∂(h1 − T1S1)

∂t
=

=
1

ρ2

∂P

∂t
− S2

∂T2

∂t
−

1

ρ1

∂P

∂t
+ S1

∂T1

∂t

(14)

The temporal derivatives of temperatures and pressure can be defined thanks
to mass conservation equations of each phase and to the mixture total energy
conservation equation (9). From ρk = ρ(P, Tk), the vapor mass conservation
equation can be written as :

∂α1ρ1
∂t

= α1
∂ρ1
∂t

+ ρ1
∂α1

∂t
= α1

(

∂ρ1
∂T1

∣

∣

∣

∣

P

∂T1

∂t
+

∂ρ1
∂P

∣

∣

∣

∣

T1

∂P

∂t

)

+ ρ1
∂α1

∂t
= ρẎ

(15)
If a stiffened gas equation of state is used (for the equation 29c), it follows that:

∂ρ1
∂T1

∣

∣

∣

∣

P

= −
ρ1
T1

and
∂ρ1
∂P

∣

∣

∣

∣

T1

=
1

(γ1 − 1)Cv1T1
=

γ1
c21

,

where ck is the phase speed of sound. Thus, after some manipulations, the
equation (15) becomes:

∂P

∂t
=

c21
α1γ1

(

ρẎ − ρ1
∂α1

∂t
+

α1ρ1
T1

∂T1

∂t

)

. (16)

The same procedure can be applied to liquid mass conservation equation of (9),
obtaining:

−
α2ρ2
T2

∂T2

∂t
+

α2γ2
c22

∂P

∂t
− ρ2

∂α2

∂t
= −ρẎ (17)

Now, using (16) in (17), the partial derivative of liquid temperature can be
obtained :

∂T2

∂t
=

T2

α2ρ2

(

D2

D1

α1ρ1
T1

∂T1

∂t
+ C2Ẏ − C1

∂α1

∂t

)

(18)
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16 Rodio & Abgrall

where:

D1 = α1γ1c
2
2

D2 = α2γ2c
2
1

C1 =
D2ρ1 +D1ρ2

D1

C2 =

(

D2 +D1

D1

)

ρ

Another equation is required to determine the partial derivative of vapor tem-
perature. Remembering that in Step 2 the mixture ρ, ρv and ρE are constant,
the following expression can be written:

∂ρe

∂t
= e1

∂α1ρ1
∂t

+ e2
∂α2ρ2
∂t

+ α1ρ1
∂e1
∂t

+ α2ρ2
∂e2
∂t

= 0. (19)

Since (∂α1ρ1/∂t = ρẎ ) and ∂α2ρ2/∂t = −ρẎ and by supposing that ek =
e(ρk, Tk), Eq. (19) can be written as:

(e1−e2)ρẎ+Y1ρ

(

∂e1
∂T1

∣

∣

∣

∣

ρ1

∂T1

∂t
+

∂e1
∂ρ1

∣

∣

∣

∣

T1

∂ρ1
∂t

)

+Y2ρ

(

∂e2
∂T2

∣

∣

∣

∣

ρ2

∂T2

∂t
+

∂e2
∂ρ2

∣

∣

∣

∣

T2

∂ρ2
∂t

)

= 0,

(20)
where Yk = αkρk/ρ. The Eq.29b allows an easy computation of the partial
derivatives, as follows:

∂ek
∂Tk

∣

∣

∣

∣

ρk

= Cvk

∂ek
∂ρk

∣

∣

∣

∣

Tk

= −
P∞,k

ρ2k
.

Moreover, from the phase mass equations and the vapor volume fraction equa-
tion, we can determine ∂ρk/∂t as follows :

∂ρ1
∂t

= ρẎ

(

1

α1
−

ρ1
α1ρI

)

−
ρ1
α1

ηQ

∂ρ2
∂t

= −ρẎ

(

1

α2
−

ρ2
α2ρI

)

+
ρ2
α2

ηQ,

where

η =
α1α2

α2ρ1c21 + α1ρ2c22

(

Γ1

α1
+

Γ2

α2

)

.

By replacing all derivatives in Eq. (20), we obtain:

{

(e1 − e2) + ρ

[

P∞,2Y2

ρ22

(

1

α2
−

ρ2
α2ρI

)

−
P∞,1Y1

ρ21

(

1

α1
−

ρ1
α1ρI

)]}

Ẏ+

+

[

Y1
P∞,1

ρ1α1
− Y2

P∞,2

ρ2α2

]

ηQ + Y1Cv1

∂T1

∂t
+ Y2Cv2

∂T2

∂t
=

= θ1Ẏ + Z1ηQ+ Y1Cv1

∂T1

∂t
+ Y2Cv2

∂T2

∂t
= 0,

(21)
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Phase transition modeling for reproducing cavitation through a five-equation model17

where

θ1 = (e1 − e2) + ρ

[

P∞,2Y2

ρ22

(

1

α2
−

ρ2
α2ρI

)

−
P∞,1Y1

ρ21

(

1

α1
−

ρ1
α1ρI

)]

and

Z1 = Y1
P∞,1

ρ1α1
− Y2

P∞,2

ρ2α2
.

We can replace, now, the partial derivative of liquid temperature T2 (see Eq.
18):

∂T1

∂t
=

T1D1

Y1(Cv1T1D1 + Cv2T2D2)

{

− Ẏ

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]

−Qη

(

Z1 −
T2Cv2

ρ
C1

)}

.

(22)

Let us consider the system composed by the equations (16), (18) and (22):

∂P

∂t
=

c21
α1γ1

(

ρẎ − ρ1
∂α1

∂t
+

α1ρ1
T1

∂T1

∂t

)

∂T2

∂t
=

T2

α2ρ2

(

D2

D1

α1ρ1
T1

∂T1

∂t
+ C2Ẏ − C1

∂α1

∂t

)

∂T1

∂t
=

T1D1

Y1(Cv1T1D1 + Cv2T2D2)

{

− Ẏ

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]

−Qη

(

Z1−
T2Cv2

ρ
C1

)}

.

(23)

By replacing the temporal derivative of the vapor volume fraction (∂α1

∂t =

ηQ + ρ
ρI
Ẏ ), the temporal derivatives of the phase temperatures and pressure

can be obtained as a function of Ẏ and Q:

∂T1

∂t
= ξ

{

− Ẏ

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]

−Qη

(

Z1 −
T2Cv2

ρ
C1

)}

∂T2

∂t
=

T2D2Y1

T1D1Y2

∂T1

∂t
+

T2

α2ρ2

[

Ẏ

(

C2 − C1
ρ

ρI

)

− C1ηQ

]

∂P

∂t
=

c21ρ1
γ1T1

∂T1

∂t
+

c21
α1γ1

[

Ẏ

(

ρ− ρ1
ρ

ρI

)

− ρ1ηQ

]

,

(24)
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where ξ = T1D1
Y1(Cv1

T1D1+Cv2
T2D2)

. Finally, substituting (24) in (14), it follows:

AQ +BẎ = −Q

[

ξ

(

T2D2Y1

T1D1Y2
− 1

)(

Z1η −
T2Cv2

ρ
C1η

)

+
T2

α2ρ2
C1η

]

+

+ Ẏ

[

−ξ

(

T2D2Y1

T1D1Y2
− 1

)(

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

))

+
T2

α2ρ2

(

C2 − C1
ρ

ρI

)]

,

A′Q +B′Ẏ = Q

[

−

(

1

ρ2
−

1

ρ1

)

c21
α1γ1

ρ1η +
S2T2

α2ρ2
C1η − ξδ1

(

Z1η −
T2Cv2

ρ
C1η

)]

+ Ẏ

{(

1

ρ2
−

1

ρ1

)

c21
α1γ1

(

ρ− ρ1
ρ

ρI

)

−
S2T2

α2ρ2

(

C2 − C1
ρ

ρI

)

− ξδ1

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]}

,

(25)

where

δ1 =

(

1

ρ2
−

1

ρ1

)

c21ρ1
T1γ1

+ S1 − S2
T2D2Y1

T1D1Y2
.

Considering the system (25), we can define the coefficients A, B, A′, B′ as
follows:

A = −ξ

[(

T2D2Y1

T1D1Y2
− 1

)(

Z1η −
T2Cv2

ρ
C1η

)

+
T2

α2ρ2
C1η

]

B = −ξ

(

T2D2Y1

T1D1Y2
− 1

)[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]

+
T2

α2ρ2

(

C2 − C1
ρ

ρI

)

A′ = −

(

1

ρ2
−

1

ρ1

)

c21
α1γ1

ρ1η +
S2T2

α2ρ2
C1η − ξδ1

(

Z1η −
T2Cv2

ρ
C1η

)

B′ =

(

1

ρ2
−

1

ρ1

)

c21
α1γ1

(

ρ− ρ1
ρ

ρI

)

−
S2T2

α2ρ2

(

C2 − C1
ρ

ρI

)

+

− ξδ1

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI

)]

(26)

3.3 Step 3: Mass fraction and density positivity

The approximation of heat and mass transfer terms allow the calculation of
source terms of volume fraction and mass conservative equations, but there is no
guarantee that positivity of the solution be preserved. Assuming an evaporation
process for example, the mass source terms estimated can be larger than the
liquid mass fraction that can evaporate. So, as in [19], a limitation is placed on
the source terms, by determining the maximum admissible values, as follows:

Smax,α1
=

{

1−α1

∆t if Smax > 0
−α1

∆t otherwise,
Smax,Y1

=

{

(1−α1)ρ2

∆t if Smax > 0
−α1ρ1

∆t otherwise.
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Phase transition modeling for reproducing cavitation through a five-equation model19

Thus, if |Smax,α1
| > |Sα1

| and |Smax,Y1
| > |SY1

|, the source terms is used.
Otherwise, if the limit value is not respected, a new method is introduced in

order to avoid an integration of the system over a fractional hydrodynamic time
step, as it is done in [19, 20]. We assumed that the mixture is composed nearly
of the species k that has the highest entropy, using an idea similar to [21, 33].
In particular, let us indicate with ⋆ the variable value at the end of positivity
system check control:

• if s⋆g > s⋆l , then the vapor volume fraction, α⋆⋆, is fixed to 1− ǫ1,

• otherwise, if s⋆g < s⋆l , then α⋆⋆ is fixed to ǫ1,

where, as explained in Section 3.2, ǫ1 = 10−8.
Knowing α⋆⋆, it can be used in the following system in order to find the new

equilibrium pressure, P ⋆⋆, and temperature, T ⋆⋆, and, then the other thermo-
dynamic variables (a stiffened equation of state is assumed) :

ρ⋆⋆ =(α1ρ1)
⋆⋆ + (α2ρ2)

⋆⋆ = ρ⋆

(ρe)⋆⋆ =(α1ρ1e1)
⋆⋆ + (α2ρ2e2)

⋆⋆ = (ρe)⋆

ρ⋆⋆k (P ⋆⋆, T ⋆⋆) =
P ⋆⋆ + P∞,k

CvkΓkT ⋆⋆

(ρe)⋆⋆k (P ⋆⋆, T ⋆⋆) =
P ⋆⋆ + P∞,kγk

Γk
+ ρ⋆⋆k q

(27)

where Γ = γ − 1. By replacing the phase density, ρ⋆⋆k , and the phase energy
(ρe)⋆⋆k , in the first two equations of system (27), we obtain a single quadratic
equation for P ⋆⋆:

T ⋆⋆ =
α⋆⋆
1 Cv2Γ2(P

⋆⋆ + P∞,1) + α⋆⋆
2 Cv1Γ1(P

⋆⋆ + P∞,2)

ρ⋆Cv1Γ1Cv2Γ2

0 = (P ⋆⋆)2 + bP ⋆⋆ + d

(28)

and:

b =
F1

F2
+
q1(α

⋆⋆
1 Cv2Γ2) + q2(α

⋆⋆
2 Cv1Γ1)

Z2
+F2

P∞,1(α
⋆⋆
1 Cv2Γ2) + P∞,2(α

⋆⋆
2 Cv1Γ1)

ρ⋆Γ1Γ2

d =
F1

Z2

P∞,1(α
⋆⋆
1 Cv2Γ2) + P∞,2(α

⋆⋆
2 Cv1Γ1)

ρ⋆Γ1Γ2
+
P∞,1q1(α

⋆⋆
1 Cv2Γ2) + P∞,2q2(α

⋆⋆
2 Cv1Γ1)

Z2

where

F1 = P∞,1γ1
(α⋆⋆

1 Cv2Γ2)

Cv2

+ P∞,2γ2
(α⋆⋆

2 Cv1Γ1)

Cv1

− (ρe)⋆Γ1Γ2

F2 = α⋆⋆
1 Γ2 + α⋆⋆

2 Γ1

Z2 = F2
(α⋆⋆

1 Cv2Γ2) + (α⋆⋆
2 Cv1Γ1)

ρ⋆⋆Γ1Γ2
.

Then, by solving the single quadratic equation of P ⋆⋆, we select the physically
admissible solution of the quadratic equation that maximizes the total entropy
s⋆⋆ = Y ⋆⋆

1 s⋆⋆1 + Y ⋆⋆
2 s⋆⋆2 , where Y ⋆⋆

k = (α⋆⋆
k ρ⋆⋆k )/ρ⋆⋆

This procedure allows to reduce the computational cost compared to [19, 20]:
it is not necessary to integrate over a fractional hydrodynamic time step.
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4 Thermodynamic closure

As we have previously mentioned, we deal with pure fluid and artificial mixture
zone, thus the EOS must be able to describe flows both in pure fluids and
mixture zones.

In order to clarify this point, let us remember that, in the system (3), the
last two equations are the momentum and energy conservation equations for the
mixture, in which, a mixture pressure P appears. For this reason, a mixture
EOS for extrapolating the value of P, is required.

4.1 Stiffened Gas EOS for pure fluid

The Stiffened Gas EOS is usually used for shock dynamics and its robustness
for simulating two-phase flow with or without mass transfer has been amply
demonstrated (see for example [29, 15, 34, 26, 35]). It can be written as follows:

P (ρ, e) = (γ − 1)(e − q)ρ− γP∞, (29a)

e(ρ, T ) = Tcv +
P∞

ρ
+ q (29b)

ρ(P, T ) =
P + P∞

(γ − 1)cvT
(29c)

h(T ) = γcvT, (29d)

s(P, T ) = cvln
T γ

(P + P∞)(γ−1)
+ q′, (29e)

g(P, T ) = h(T )− Ts(P, T ), (29f)

where P , ρ and e are the pressure, the density and the energy, respectively. The
polytropic coefficient γ is the constant ratio of specific heat capacities γ = cp/cv,
P∞ is a constant reference pressure and q is the energy of the fluid at a given
reference state. Moreover, T , cv and h are the temperature, the specific heat at
constant volume and the enthalpy, respectively. The speed of sound, defined as
c2 = (∂P∂ρ )s can be computed as follows:

c2 = γ
P + P∞

ρ
= (γ − 1)cpT (30)

where c2 remains strictly positive (for γ > 1). It ensures the hyperbolicity of
the system and the existence of a convex mathematical entropy [36].

4.2 SG EOS based mixture

The EOS for the mixture can be easily obtained using the EOS of the single
phase. The aim is now to obtain the mixture pressure. The starting point is
the mixture energy equation:

ρe = α1ρ1e1 + α2ρ2e2. (31)
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The energy of each phase, ek = P+P∞γ
ρk(γk−1) , can be replaced obtaining the mixture

total energy as a function of the phase pressures. Under pressure equilibrium,
the following expression for the pressure mixture can be obtained:

P (ρ, e, αk) =

ρ(e−
α1ρ1q1

ρ
−

α2ρ2q2
ρ

)−

(

α1γ1P∞,1

γ1 − 1
+

α2γ2P∞,2

γ2 − 1

)

α1

γ1 − 1
+

α2

γ2 − 1

(32)

4.3 Definition of χk and κk

For the SG EOS, it is trivial to compute the coefficients of the semi-discrete
equation (5) as follows:

χk =

(

∂ek
∂Pk

)

ρk

=
1

(γ − 1)ρ
, (33)

κk =

(

∂ek
∂ρk

)

Pk

= −
P + γP∞

(γ − 1)ρ2
. (34)

5 Extension to six and seven-equation model

In this section, the cavitation model is extended to more complex systems of
equations. Some hypothesis used in the previous sections are no more valid. In
particular, the attention is focused on six (single velocity) and seven-equation
models, respectively. Note that step 1 consists always in finding the solution for
the hyperbolic part of the model, i.e. without the heat and mass transfer terms.
As a consequence, a different model is associated to a different discretization of
the hyperbolic part. We see that step 1 remains unchanged, contrarily to steps
2 and 3.

5.1 Modeling cavitation with the seven-equation model

For clearly explaining the natural extension of the model proposed in the pre-
vious section to the seven-equation model, let us define the different steps, as
follows.

5.1.1 Step 1 for a seven-equation model

Let us suppose here that each phase has its own pressure and velocity (see see
system (1)). However, during the mass transfer, the two phases have the same
pressure, that is equal to the saturation pressure. So, a relaxation procedure
should be applied in order to obtain a single pressure system as in [27, 21].

We have assumed that the pressure relaxation is faster than the temperature
and the Gibbs free energy relaxation: Step 1 is necessary to find the solution
of the system (1) without the heat and mass transfer terms and to apply a
pressure relaxation procedure. In this way, variables summarized in Table 4 are
obtained.

RR n° 8664



22 Rodio & Abgrall

Step 1 for a seven-equation model

IN OUT
α0
1 (α0

2 = 1− α0
1) α⋆

1 (α⋆
2 = 1− α⋆

1)
ρ01 and ρ02 ρ⋆1 and ρ⋆2
v01 and v02 v⋆1 and v⋆2
P 0
1 and P 0

2 P ⋆

e01 and e02 e⋆1 and e⋆2
T 0
1 and T 0

2 T ⋆
1 and T ⋆

2

g01 and g02 g⋆1 and g⋆2

Table 4: Variables used in Step 1 for a seven-equation model

5.1.2 Step 2 for a seven-equation model

As in the five-equation model, if the system is in metastable conditions, i.e.
(Tk > Tsat) and at the interface ǫ1 < α1 < 1 − ǫ1, the ODE system for the
seven-equation model (see system (1)) is as follows:

∂α1

∂t
=

α1α2

α2ρ1c21 + α1ρ2c22

(

Γ1

α1
+

Γ2

α2

)

Q+
ρ

ρI
Ẏ

∂(α1ρ1)

∂t
= ρẎ

∂(α1ρ1v1)

∂t
= vIρẎ

∂(α1ρ1E1)

∂t
= Q+ EIρẎ

∂(α2ρ2)

∂t
= −ρẎ

∂(α2ρ2v2)

∂t
= −vIρẎ

∂(α2ρ2E2)

∂t
= −Q− EIρẎ .

(35)

Several definitions of the interface pressure, PI , and velocity, vI , exist in the
literature [29, 37]. For example, in [12], vI is assumed equal to liquid velocity,
v2, and PI equal to vapor pressure, P1. Otherwise, more complex definitions
can be used, as in [38]:

{

PI = Z1P2+Z2P1

Z1+Z2
+ sign

(

∂α1

∂x

) (u2−u1)
Z1+Z2

uI = Z1u1+Z2u2

Z1+Z2
+ sign

(

∂α1

∂x

)

P2+P1

Z1+Z2

(36)

where Z = ρc represents the acoustic impedance and c is the speed of sound.
The variable ρI is the interface density and it is defined by means of the

equation (10). Remembering that α2 = 1 − α1, the unknowns of the system
(35) are α1, ρk, vk, P , ek, Q, Ẏ , EI . Then, to close the system, the equation of
state for defining the energy as function of pressure and density is used for both
phases. The interface energy, EI , will be developed in section 5.1.4. Moreover,
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a thermo-chemical relaxation for finding Q and Ẏ is imposed, as follows:

∂∆T

∂t
= AQ +BẎ

∂∆g

∂t
= A′Q+B′Ẏ .

(37)

The procedure described in Section 3.2.2 can be applied in this case without
problem, i.e. the mass conservation equations and the mixture internal energy
ones can be used in order to find the value of the four coefficients A, B, A′ and
B′. However, the only mixture variable that remains constant from the step
1 to the step 2 is ρ (see Table (5)). This means that, as in Section 3.2.2, the
development of equations (15) and (17) do not change and equations (16) and
(18) can be obtained. Note also that Eq. (19) is not valid anymore. Then,
remembering that, for a seven-equation model,

α1ρ1
∂u1

∂t
= ρẎ (uI − u1) (38)

and

α2ρ2
∂u2

∂t
= ρẎ (uI − u2), (39)

the mixture energy equation can be written as follows:

∂ρe

∂t
=

∂(α1ρ1E1 + α2ρ2E2)

∂t
−

∂[α1ρ1
(

1
2u

2
1

)

+ α2ρ2
(

1
2u

2
1

)

]

∂t
=

= −
1

2
ρẎ
(

u2
2 − 2u2uI + 2u1uI − u2

1

)

= −βẎ .

(40)

By coupling the equation (20) and its developments (until the equation (22))
with the equation (40), this last one can be written as follows:

∂ρe

∂t
= θ1Ẏ + Z1ηQ+ Y1Cv1

∂T1

∂t
+ Y2Cv2

∂T2

∂t
= −βẎ . (41)

As a consequence, by coupling equations (41), (16) and (18), the following new
values for the coefficients A, B, A′ and B′ for the seven-equation model can be
obtained:

A = −

[

ξ

(

T2D2Y1

T1D1Y2
− 1

)(

Z1η −
T2Cv2

ρ
C1η

)

+
T2

α2ρ2
C1η

]

B = −ξ

(

T2D2Y1

T1D1Y2
− 1

)[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI
+ β

)]

+
T2

α2ρ2

(

C2 − C1
ρ

ρI

)

A′ = −

(

1

ρ2
−

1

ρ1

)

c21
α1γ1

ρ1η +
S2T2

α2ρ2
C1η − ξδ1

(

Z1η −
T2Cv2

ρ
C1η

)

B′ =

(

1

ρ2
−

1

ρ1

)

c21
α1γ1

(

ρ− ρ1
ρ

ρI

)

−
S2T2

α2ρ2

(

C2 − C1
ρ

ρI

)

+

− ξδ1

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI
+ β

)]

.

Remark that coefficients A and A′ are equal to the coefficients of Section 3.2.2.
Instead, coefficients B and B′ are different only for the term β.
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Step 2 for the seven-equation model
(Only on the interface, if ǫ1 < α1 < 1− ǫ1 and Tk > Tsat(P ⋆))

IN OUT Constant mixture variables
α⋆
1 (α⋆

2 = 1− α⋆
1) α⋆⋆

1 (α⋆⋆
2 = 1− α⋆⋆

1 )
ρ⋆1 and ρ⋆2 ρ⋆⋆1 and ρ⋆⋆2

v⋆ v⋆⋆1 and v⋆⋆2
P ⋆ P ⋆⋆ ρ⋆⋆ = ρ⋆

e⋆1 and e⋆2 e⋆⋆1 and e⋆⋆2
T ⋆
1 and T ⋆

2 T ⋆⋆

g⋆1 and g⋆2 g⋆⋆

Table 5: Variables used in Step 2 for a seven-equation model. ρ = (α1ρ1) +
(α2ρ2); ρe = (α1ρ1e1) + (α2ρ2e2); E = e+ 1

2v
2.

5.1.3 Step 3 for a seven-equation model

For the seven-equation model, Step 3 is equal to the one described in Section
3.3, without other modifications.

5.1.4 Determination of EI

Let us now focus the attention on the definition of the variable EI (see system of
equations 35). Let us start the demonstration from the gas total energy relation:

∂(α1ρ1E1)

∂t
= α1ρ1

∂(e1 +
1
2u

2
1)

∂t
+ E1ρẎ = Q + EIρẎ . (42)

By substituting equation (38) in the equation (42), this last one becomes:

α1ρ1
∂e1
∂t

+ u1(uI − u1)ρẎ + E1ρẎ = Q+ EIρẎ . (43)

The energy can be written as a function of density and temperature, e1(T1, ρ1),
so the temporal derivative can be written as follows:

∂e1
∂t

(T1, ρ1)) =
∂e1
∂T1

∣

∣

∣

∣

ρ1

∂T1

∂t
+

∂e1
∂ρ1

∣

∣

∣

∣

T1

∂ρ1
∂t

=

= cv,1ξ

{

− Ẏ

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI
+ β

)]

+

−Q

(

Z1η −
T2Cv2

ρ
C1η

)}

.

(44)

Then, by replacing the equation (45) into the equation (43), after some manip-
ulations, the interface energy can be defined as follows:

EI = −α1ρ1cv,1
ξ

ρ

[

θ1 +
T2Cv2

ρ

(

C2 −
ρ

ρI
+ β

)]

+

+ P∞,1

(

1

ρI
−

1

ρ1

)

(u1uI −
1

2
u2
1 + e1)+

+
Q

ρẎ

[

P∞,1η − α1ρ1cv,1ξ

(

Z1η −
T2Cv2

ρ
C1η

)

− 1

]

.

(45)
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5.2 Modeling cavitation for a six-equation model

The six-equation model is based on the assumption that the phase velocities are
equal. This can be represented by the following system of equations:

∂α1

∂t
+ vI

∂α1

∂x
= µ(P1 − P2) + ηQ+

ρ

ρI
Ẏ

∂(α1ρ1)

∂t
+

∂(α1ρ1v1)

∂x
= ρẎ

∂(α2ρ2)

∂t
+

∂(α2ρ2v2)

∂x
= −ρẎ

∂(ρv)

∂t
+

∂(ρv2 + α1P1 + α2P2)

∂x
= 0

∂(α1ρ1E1)

∂t
+

∂(α1(ρ1E1 + P1)v1)

∂x
= PIvI

∂α1

∂x
+ λvI(v2 − v1)+

+ µPI(P1 − P2) +Q+ EIρẎ

∂(α2ρ2E2)

∂t
+

∂(α2(ρ2E2 + P2)v2)

∂x
= PIvI

∂α2

∂x
− λvI(v2 − v1)+

− µPI(P1 − P2)−Q− EIρẎ .

(46)

In this case also, it is assumed that, during the mass transfer, the two phases
have the same pressure, equal to the saturation pressure. So, a relaxation
procedure should be applied in order to obtain a single pressure system as
in [21, 20]. This means, that, close to the interface, it is equivalent to a five
equation model. As a consequence, all the considerations developed in Section
3.2, and coefficients A, B, A′ and B′ found in Section 3.2.2, can be equally used
for a six-equation model.

6 Results

All the numerical simulations presented in this paper are performed by means
of a five equation model coupled with the cavitation model of section 3.2.2. Sev-
eral numerical test-case are performed. Then, the robustness of the numerical
method is assessed on some of the most used numerical configuration in the
literature for estimating efficiency of two-phase compressible models. In partic-
ular, the aim is to i) show the influence of heat and mass transfer, ii) validate
the results by comparison with respect to the experimental data and to the ex-
isting state-of-art in terms of numerical simulation, iii) estimate the prediction
in terms of important quantities from a physical point of view.

All the numerical test-cases are performed by using liquid and vapor of
dodecane or of water. Physical parameters for each test-case are summarized
in Table 6. A second order has been performed for all the numercial test-cases
by means a Muscl scheme (see [29] for more details), coupled with a Relaxation
solver ([31, 26]) and a Minmod limiter. Note also that a mesh-convergence study
has been done for each test-case, even if it is not reported here for brevity.
The first test case is a classical two phase shock-tube that allows to observe
the appearance of the evaporation wave and is a classical test-case in literature.
Secondly, the experiment of Simoes-Moreira [39] is reproduced. It reproduces an
experimental two phase shock-tube that allows to validate the cavitation model
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with respect to the experimental data. The last two test cases are associated
to a two-phase expansion tube with different initial phase velocities, which is
widely used in literature [21]. These test cases allow to observe the appearance
of the evaporation wave in a mixture and not in a pure liquid as in the case of
a shock-tube problem.

TEST CASE FLUID
SG EOS

γ P∞ [Pa] Cp [ J
KgK

] Cv [ J
KgK

] q q′

1 Liq. Dodecane 2.35 4×108 2534 1077 -755×103 0
Shock tube Vap. Dodecane 1.025 0 2005 1956 -237×103 -24.2×103

2
Shock tube Liq. Dodecane 2.35 4×108 2534 1077 -755×103 0
experiments Vap. Dodecane 1.025 0 2005 1956 -237×103 -24.2×103

3-4 Liq. Water 2.35 109 4267 1816 -1167×103 0
Expansion tube Vap. Water 1.43 0 1487 1040 2030×103 -23×103

Table 6: EOS coefficients for liquid and gas phases.

6.1 TC1: Two-phase shock tube with mass transfer

In this test-case, the shock tube is filled out with liquid dodecane on the left at
high pressure pl = 108 and vapor dodecane on the right at atmospheric pressure
pg = 105. Note that, for numerical reasons, each chamber contains a weak
volume of the other fluid (αk = 10−8). The diaphragm is located at x = 0.75 m
(the tube is 1 m long) and the results are shown at a time of t = 473 µs. The
computation are performed by using a 1000 mesh grid.

A comparison between the numerical solutions obtained with and without
heat and mass transfer is performed for estimating the influence of these terms.
Moreover, results are compared with the ones obtained by Pelanti and Shyue
[21] (considering a pressure relaxation coupled with a pressure-thermo-chemical
relaxation). These comparisons are reported in Fig. 4.

Looking at Fig. 4, the influence of heat and mass transfer can be observed.
In fact, an additional evaporation wave appears between the rarefaction wave
(at 0.05 < x < 0.12m) and the contact discontinuity (at 0.87 < x < 0.9m) (see
Fig. 4c-d). The evaporation wave determines a strong increase of velocity (see
Fig. 4b) and an increase of pressure at 0.12 < x < 0.8 m (see Fig. 4a). Note
that this value of pressure corresponds to the saturation pressure.

From the comparison with Pelanti and Shyue [21], a very good agreement
can be observed in terms of pressure and mixture density (Fig. 4a-c). The
maximum value of velocity obtained by means of the present model is higher
than the one obtained in [21] (nearly 7% of difference). Nevertheless, it does
agree quantitatively with Saurel et al. solution given in [19] (Fig. 4b). In fact,
in terms of vapor mass fraction, Yv, the three models provide three different
results (Fig. 4d).

6.2 TC2: Simoes-Moreira shock tube experiments

This test case reproduce the experiments that have been carried out by Simoes-
Moreira and Shepherd [39]. The shock tube is filled out with dodecane on the
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left at high pressure and vapor dodecane on the right at low pressure chamber
(p = 102 Pa and 10−4 [kg/m3]). The diaphragm is located at x = 0.75 m (the
tube is 1 m long) and all computations were performed by using a 1000 mesh
grid.

The velocity of an evaporation wave that propagates in metastable liquid,
is measured for different initial temperatures of liquid dodecane. The pressures
before and after the evaporation wave were measured in [39]. The same strategy
proposed by Zein et al. [20] is followed here for identifying the pressure value
on the left hand side of the shock tube. In particular, the initial pressure is
fixed so that the pressure in the state before the evaporation front is equal to
the measured value (see Table 7).

The front velocity is computed by measuring the space traced by the evap-
oration wave at different times. In particular, the evolution of starting point of
the evaporation wave at 400 µs and 500 µs is observed for all computations.

These results are compared with the experimental data and the results ob-
tained by Saurel et al. [19] and by Zein et al. [20] in Fig. 5. As for [20], these
results are closer to the experimental points, by displaying a trend of increase
of temperature. Moreover, a better agreement than Saurel et al. [19] can be
observed. Nevertheless, an overestimation of the velocity front is obtained. This
could be due to a strong influence of the variability of the initial conditions (that
are affected by a non-negligible uncertainty) and to the coefficients of the EOS
that could influence the computations. Nevertheless, remark that, with respect
to the cavitation model proposed in Zein et al. [20], the present model has a
lower computation cost as explained in Section 3.3, since it is not necessary to
integrate over a fractional hydrodynamic time step. This aspects is highlighted
in sections 6.3 and 6.4.

Note also that experimental measurements are affected by an uncertainty,
then, it is questionable which numerical solution is the most accurate.

Tl pl
pexp uEF (m/s) uEF (m/s)

(Before evaporation) (Experimental) (Computed)
453 1.5 0.24 0.253 0.23851
473 2.2 0.33 0.309 0.37501
489 3.0 0.44 0.390 0.42073
503 3.9 0.59 0.472 0.55698
523 5.0 0.83 0.648 0.75894
543 7.5 1.19 0.837 0.9548
563 11.0 1.91 1.381 1.6398
573 13.0 2.12 1.578 1.8369

Table 7: Initial liquid temperature on the left side, left liquid pressure, ex-
perimental pressure measured before the evaporation front, evaporation front
velocity measured and computed front velocity.

RR n° 8664



28 Rodio & Abgrall

6.3 TC3: two-phase expansion tube with mixture initial
velocities v = ±2 m/s

Now, let us consider a tube of unit length, filled out with liquid water of density
ρ2 = 1150 kg/m3 at an atmospheric pressure P = 105 Pa. The liquid is assumed
to contain a uniformly distributed small amount of vapor, α1 = 10−2 in the
whole domain. The liquid temperature is equal to T2 = 354.728 K and hence
the vapor density ρ1 = 0.63 kg/m3, by assuming the flow in thermal equilibrium
T2 = T1. The solution is shown at a time t=3.2 ms in Fig. 6. The computation
is performed by using a mesh of 5000 cells. A velocity discontinuity is set at
x=0.5 m at initial time. We set v = −2 m/s on the left and v = 2 m/s on the
right of the discontinuity.

As it can be observed in Fig. 6c-d, the vapor volume fraction increase is
located in the center of the tube, where a mechanical expansion exists. It
corresponds to a region, where the pressure attain the saturation value of about
0.5 Pa (see Fig. 6a). Also in this test case, the comparison with the results
obtained by Pelanti and Shyue [21] and by Zein et al. [20], shows a very good
agreement in terms of pressure and velocity (Fig. 6a-b). Some differences can
be observed in terms of vapor volume fraction and vapor mass fraction, Yv,
(see Fig. 6c-d), for which the present model provides a maximum value that is
between those ones obtained by the other two cavitation models.

Nevertheless, as in [21], our results are obtained with a reduction of the
computational cost with respect to Zein et al. [20]. In fact, in the case of heat
and mass transfer, the CPU time is reduced of nearly 9 times with respect to the
method proposed in [20] (with respect to our implementation of the method).
In fact, the CPU time is of 2.15 h (32000 time steps and dt=1.0 ∗ 10−7) and of
18.838 h (763550 time steps) for our computation and for [20], respectively. Note
that computational cost description in [20] makes not possible a more accurate
comparison.

6.4 TC4: two-phase expansion tube with mixture initial
velocities v = ±500 m/s

In this section, the analogous test of Section 6.3 but with different initial condi-
tions is presented. In particular, the rarefaction effects are increased by setting
the initial velocity v = −500 m/s on the left and v = 500 m/s on the right.
The computation is performed by using a mesh of 5000 cells and the solution is
shown at a time t=0.58 ms (see Fig. 6).

Since the initial velocity is very large (Fig. 6b), the evaporation is conse-
quently much more intense in the center of the tube, where the vapor volume
fraction attains the value of 1 (see Fig. 6c).

The comparison with the results obtained by Pelanti and Shyue [21] and
Zein et al. [20] shows a very good agreement in terms of pressure, velocity
and vapor volume fraction (Fig. 6a-c). As in the TC3 (see Section 6.3), some
differences can be observed in terms of vapor mass fraction, Yv, (see Fig. 6d).
In particular, a difference of nearly 20% can be observed for the maximum.
Since no experimental data are available for this test-case, it should be useful
to perform a sensitivity analysis by characterizing the amount of uncertainty to
consider for the initial conditions.

Also in this test case, a reduction of the computational cost is observed with
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respect to Zein et al. [20]. In fact, when considering heat and mass transfer,
the CPU time is reduced of nearly 2.5 times with respect to [20]. In particular,
the CPU time is of 1.45 h (5800 time steps and dt=1.0 ∗ 10−7) and of 3.372
h (186601 time steps) for our computation and for [20], respectively. Note
that computational cost description in [20] makes not possible a more accurate
comparison.

7 Conclusions and perspective

The present work is devoted to the development of a new cavitation model in
order to reproduce compressible two-phase flow with mass transfer. In par-
ticular, starting from the model developed in [19] for a five equation model,
the present model permits to reduce the computational cost by coupling the
treatment of heat and mass transfer terms proposed in [19] for a five-equation
model, with the solution admissibility procedure of [21]. This allows to reduce
the computational cost by preserving, always, the positivity of solution.

Moreover, the model has been theoretically extended to more complex mod-
els, such as the six and seven-equation models, showing the flexibility of the
present cavitation model, a good accuracy and a reduced computational cost.

Several results have been presented for highlighting the main contributions
of the proposed approach. Well-known numerical configurations used in the
literature for assessing robustness of compressible two-phase models have been
considered. The proposed method yields very good results in terms of accuracy
with respect to the experimental data and numerical solutions known in litera-
ture. In some results, the effect of the heat and mass transfer have been assessed
and evaluated. In particular, shock tube and two-phase expansion tube prob-
lems have been computed. The appearance of the evaporation wave has been
observed in the case of pure liquid phase and not-pure phase. The comparison
with experimental data and other numerical methods known in the literature
[21, 19, 20] showed a very good agreement, thus assessing the proposed model.

Note that for some quantities of interest, slight differences with respect to
other numerical solutions have been observed. Since no experimental data are
available, it is difficult to determine the reason for this difference. Future works
will be oriented towards sensitivity analysis for assessing the influence of initial
conditions and empirical coefficients in order to assess the variability of the
numerical solution. Other actions will be focused on the extension of the present
methods to multi-dimensional problems.

8 Acknowledgement
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Figure 4: Pressure, velocity, mixture density and Y = α1ρ1/ρ obtained at a
time of t = 473 µs
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Figure 6: Pressure profile, velocity profile, vapor volume fraction and vapor
mass fraction Y = α1ρ1/ρ, obtained at time t=3.2 ms
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