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Abstract—Applications on cloud infrastructures acquire vir-
tual machines (VMs) from providers when necessary. The current
interface for acquiring VMs from most providers, however, is
too limiting for the tenants, in terms of granularity in which
VMs can be acquired (e.g., small, medium, large, etc.), while
giving very limited control over their placement. The former
leads to VM underutilization, and the latter has performance
implications, both translating into higher costs for the tenants.
In this work, we leverage nested virtualization and a networking
overlay to tackle these problems. We present Kangaroo, an
OpenStack-based virtual infrastructure provider, and IPOPsm,
a virtual networking switch for communication between nested
VMs over different infrastructure VMs. In addition, we design
and implement Skippy, the realization of our proposed virtual
infrastructure API for programming Kangaroo. Our benchmarks
show that through careful mapping of nested VMs to infrastruc-
ture VMs, Kangaroo achieves up to an order of magnitude better
performance, with only half the cost on Amazon EC2. Further,
Kangaroo’s unified OpenStack API allows us to migrate an entire
application between Amazon EC2 and our local OpenNebula
deployment within a few minutes, without any downtime or
modification to the application code.

I. INTRODUCTION

Cloud applications are extraordinarily varied, ranging from
one-person projects to huge collaborative efforts, and spanning
every possible application domain. Many applications start
with modest computing resource requirements which vary
thereafter according to the success or failure of their authors.
However, they all need to define their resources as a combi-
nation of instance types selected from a standard list.

Infrastructure providers promote horizontal scaling (the
addition or removal of VMs of identical types) as a practical
solution for applications which need to vary their resource
usage over time. However, although this provides a simple
and efficient model for the infrastructure providers, it presents
stringent limitations for cloud tenants. First, standard instance
types seldom match the exact resource requirements of partic-
ular applications. As a consequence, cloud applications rarely
utilize all the resources offered by their VMs. Second, cloud
platforms offer little support for fine-grained VM placement.
However, as we show later in this paper, co-locating compat-
ible workloads in the same physical machine can bring up to
an order of magnitude performance improvements.

To address these challenges this paper proposes Kangaroo,
a tenant-centric nested infrastructure. Kangaroo executes cloud
applications in VMs running within VMs that are allocated
from the infrastructure providers. This nested infrastructure
enables fine-grained resource allocation and dynamic resizing.

When a set of nested VMs outgrow the available capacity
of their hosting VM, they can be live-migrated to another
possibly new larger VM through a programmable interface.
This also allows co-locating complementary workloads in the
same machine, which in turn increases resource utilization
while improving performance. Finally, Kangaroo runs indif-
ferently within VMs hosted by any cloud provider such as
Amazon EC2 and private clouds. It can therefore live-migrate
unmodified applications across cloud providers and across
different types of virtual machine monitors (VMMs), without
disrupting application behavior.

Our evaluations based on microbenchmarks and real-world
applications show that Kangaroo’s fine-grained resource allo-
cation can significantly reduce resource usage compared to
horizontal scaling, while co-locating compatible workloads
brings order-of-magnitude performance improvements. Live-
migrating workloads across VMs and across cloud providers
exhibits acceptable overheads, without imposing any downtime
nor application modifications.

The remainder of this paper is organized as follows:
Section II discusses the background and our motivation for
this work. Sections III and IV respectively present Kangaroo’s
architecture and implementation. Section V presents evalua-
tions and, after discussing the related work in Section VI,
Section VII concludes.

II. MOTIVATION AND BACKGROUND

We describe our motivation for this work by formulating
some important tenant requirements that are currently not
available in infrastructure providers (Section II-A). We then
discuss why it is sometimes difficult or against the interest of
the providers to implement these requirements (Section II-B).
After establishing our motivation, we take a detailed look at
nested virtualization, the driving technology behind Kangaroo
that provides the desired tenant requirements (Section II-C).

A. Tenant requirements

There are three desired tenant requirements that current
providers do not support.

1) Fine-grained VM Allocation: Currently, whenever a
tenant needs to scale out, she has the choice between a number
of instance types that provide the tenant with various amount of
resources. These instance types are defined statically, and they
reflect resource requirements of various classes of applications.
For example, a tenant with a compute-bound workload can
acquire a VM from the class of instance types that provide a



high number of cores, or a number of GPUs if the workload
can run on GPUs.

This “instance type” abstraction creates a static granularity
in which resources can be acquired from a provider. From the
tenant’s point of view, the static nature of this abstraction is
limiting: It does not capture the requirements of all possible
applications, and for the ones that it does, it is often not
an exact match. This results in provisioning of unnecessary
resources for the sake of the ones necessary.

As an example, assume that a tenant needs to allocate 10
cores with 2 GB of memory for a certain application. Since
this amount of resources is asymmetrical, it is very unlikely
that the provider has an instance type with these exact resource
requirements. The tenant has two choices: 1) Either allocate
one VM from an instance type with the same number of cores,
but excessive amount of memory, or 2) a number of VMs
from smaller instance types that provide the same number of
cores. The former results in over-provisioning of memory and
hence waste of money, and the later results in high core-to-core
latency, possibly affecting performance. Even with balanced
resource requirements, it can easily be that there is no matching
instance type.

Since the tenant knows the requirements of her application
the best, she should be able to define instance types dynami-
cally, and be able to allocate VMs from it.

2) Control over VM placement: A tenant has the best
knowledge about how the components of her application com-
municate with each other. Naturally, the closer the components
that communicate with each other are, the better networking
performance they observe. This means that the tenants should
have control over the mapping of their VMs to the underlying
infrastructure. Further, the flexibility of controlling VM place-
ment opens up interesting resource management possibilities
that we will discuss in Section IV-C.

Currently, there is no or very limited support for controlled
placement of VMs on the infrastructure’s physical resources.
For example, Amazon EC2 does not provide any support
for co-location of most of its instance types. There is some
support for placement of cluster compute instance types within
a network switch, but these instance types are only targeted
towards very specific high performance computing applications
that can afford the premium price of these instance types [1].
Google Compute Engine has recently announced some support
for migrating VMs between physical resources, but this feature
is currently only exposed to the provider (i.e., Google) for
maintenance, rather than the tenants [2].

Ideally, the tenant should be informed about how her VMs
are mapped to physical resources of the provider, and be able
to migrate them whenever necessary.

3) Unified Provider API: Different infrastructure providers
expose different set of APIs for allocating VMs on their
resources. While there is substantial effort in standardization
of this API [3], [4], it takes a long time for providers to adopt
a new standardized API. Abstracting away this API through
a library (e.g., libcloud [5], boto [6]) only partially solves
this problem; Applications still need to be aware of low-level
details of the provider as the libraries cannot abstract away the
complete API, and not all providers support the same features.

As a direct result, usually it is tedious to port an application
that is written for one provider to another. To make the matter
worse, different providers have adopted different virtualization
technologies (e.g., Xen, KVM, Hyper-V, etc.) which means
that it is typically not possible to run a VM using a certain
virtualization technology on another. Thus, even if the API is
standardized and adopted by providers, it is still not straight-
forward to simply migrate an application from one provider to
another.

The final requirement is the ability to avoid vendor lock-in
by using a unified API for allocating VMs, and the possibility
for migrating an application without changing its code or any
downtime.

B. Infrastructure Provider Conflicts

Implementing the tenants’ requirements is not always
straightforward for the providers. As we shall see, it may also
not be in their interest.

1) Fine-grained VM Allocation: Static instance types allow
for simpler scheduling, physical resource provisioning, and
pricing. Providing support for fine-grained VM allocation
means more engineering effort, and possibly less flexibility
in physical resource management that directly translates into
higher operational cost.

2) Control over VM placement: Without tenant support for
VM migration, the provider has the complete control over
the location of all tenants’ VMs. It can migrate the VMs
at will for resource management purposes such as scaling
out/in its physical resources. Supporting tenant-controlled VM
placement makes it difficult, if not impossible, to perform these
simple resource management tasks.

3) Unified Provider API: Infrastructure providers started
appearing before any coordinated standardization effort, and so
did the virtualization technologies that the providers adopted. It
will be a substantial engineering effort to provide a new set of
API while preserving and maintaining the old one. Further, the
vendor lock-in helps keeping a stable user base that a standard
API threatens.

Given these facts, we propose a tenant-centric architecture
that implements the desired high-level tenant requirements.
The basic building-block for our architecture is nested vir-
tualization, which we discuss next.

C. Nested Virtualization

Nested virtualization enables the execution of virtual exe-
cution units in an already virtualized environment by running
a VMM inside a VM. While nested virtualization intro-
duces performance overhead compared to a UNIX process,
it can provide better isolation, security [7], reproducibility [8],
more control over VMs acquired from the infrastructure
providers [9], and support for VMM development and migra-
tion [10].

For running the second layer VMs, the user can choose
between full virtualization or operating system virtualization
(i.e., containers). Each choice come with different possible
technologies that can be deployed. We first discuss the non-
functional properties that are important for this work, and then
compare different technologies according to these properties.



Hardware
support

Stack
modification Performance Migration

LXC no ++ ++ no
QEMU no ++ – yes
HVX no ++ ++ yes
Turtles yes – ++ yes
Xen-blanket yes + + yes

TABLE I: Comparison of different technologies for nested virtualization.

We consider four non-functional properties to be of impor-
tance to Kangaroo:

1) Hardware support: Recently, processors have started
exposing specific mechanisms to support virtualization (e.g.,
Extended Page-tables [11] and EPT) and nested virtualization
(e.g., nested EPT [10]). While hardware-assisted (nested) vir-
tualization is attractive in terms of delivering close to bare-
metal performance, it is not yet available on all infrastruc-
ture providers. Hence, a nested virtualization technology that
adopts these hardware technologies is limited to providers that
offer VMs executing on supported hardware.

2) Stack modification: Different technologies make differ-
ent assumptions on the extent to which the provider’s software
stack can be modified to accommodate their requirements.
Tenants obviously have a preference for technologies that
requires fewer (or no) software modifications, to be able to
adopt as many providers as possible.

3) Performance: “All problems in computer science can be
solved by another level of indirection”1, but there is (almost)
always an associated trade-off. Here, there is a performance
penalty associated with nesting. By adding yet another layer
of virtualization, the application performance inside the nested
VM degrades. An ideal solution has minimal impact on the
application performance.

4) Migration: Virtualization enables migration by abstract-
ing away the underlying hardware. VM (live) migration
provides endless possibilities in terms of resource manage-
ment [12], [13]. The ability of a nested VMM to migrate its
VMs is important for a tenant-centric approach to infrastruc-
ture resource management.

Table I summarizes virtualization solutions according to
these criteria. While HVX, Xen-blanket and Turtles have been
explicitly designed for nested scenarios, LXC and QEMU are
used in non-nested environments as well. In the rest of this
section, we describe these solutions in detail.

1) LXC: Linux Containers [14] are a light-weight operat-
ing system-level solution for running multiple isolated Linux
systems on the same host. An LXC container does not own
an entire OS stack, but it reuses functionalities provided by
its host’s kernel. Each container runs in a virtual environment
characterized by its own CPU, memory, block I/O access and
network bandwidth. As no actual VMM is available, resource
management, isolation, and security are provided directly
by the Linux kernel using cgroups [15], namespaces [16],
SELinux [17], and AppArmor [18].

LXCs represent a low-overhead alternative to full-fledged
VMs, suitable for nested scenarios. In [19], the authors show

1David Wheeler

that regardless of the type of workload, LXC containers exhibit
similar performance to that of native execution. However, as
containers share the kernel with their host, usage scenarios are
restricted to Linux guests. Although currently live-migration is
not included in the LXC framework yet, this feature is already
provided by the CRIU project [20] and awaits integration with
popular cloud projects such as OpenStack.

2) QEMU: An alternative approach is emulation.
QEMU [21] is a popular open-source virtualization solution
available in Linux and Windows environments. It implements
hardware virtualization, where an application sees an abstract
interface which completely hides the physical characteristics of
a platform. This gives the VM’s OS the illusion it is running
on its own hardware. While QEMU supports hardware
acceleration via KVM, its emulation capabilities makes it a
good candidate for running nested VMs without relying on
any hardware support or the first layer VMM. In order to
execute guest code, instructions are dynamically interpreted
at runtime using a method called binary translation. QEMU
however provides portability at the expense of significant
performance degradation.

3) HVX: QEMU’s dynamic binary translation model is
also leveraged by the HVX [22] nested VMM for running
unmodified VMWare, KVM and Hyper-V VMs over virtual
resources. In single-layer virtualization scenarios, VMMs often
utilize the hardware extensions to efficiently execute a VM.
However, in a virtual environment, these extensions are no
longer available. To preserve performance, HVX translates the
nested VM’s ring-0 code to enforce security and correctness,
and directly executes unprivileged nested VM’s ring-3 code.

Designed specifically for nested environments, HVX rep-
resents a competitive alternative for container-based solutions.
However, this is a proprietary solution that would increase the
cost incurred by the end users.

4) Turtles: The Turtles project optimizes nested executions
by modifying the first-layer VMM [23]. Turtles is an extension
to KVM, which is integrated in Linux, making it a popular
virtualization solution. Turtles follows the single-level support
for nested virtualization. All the privileged operations gen-
erated by the layer two VMM are recursively trapped and
forwarded to the lowest one. Normally, this approach would
add a significant overhead, but in Turtles’ case, it is limited
by the use of a series of optimizations at CPU, memory and
I/O level such as multi-dimensional page tables and multi-level
device assignment. Although KVM is a widely used VMM, the
constraint of modifying the first level VMM limits its usability
to private data-centers, making this solution unsuitable for
scenarios that also target public providers.

5) Xen-blanket: Xen-blanket proposes a tenant-centric ap-
proach for efficiently implementing nested virtualization [9].
The second layer VMM is represented by a modified Xen
implementation capable of running paravirtualized VMs on
top of hardware-assisted VMs. The solution preserves existing
Xen functionalities, such as VM migration, but it also enforces
the paravirtualized specific limitation of being unable to run
unmodified VMs. Xen-blanket obtains good performance for
the nested VMs at the expense of requiring specific drivers for
each type of first layer VMM.
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Fig. 1: A nested architecture that virtualizes an infrastructure provider and satisfies the
desired tenant requirements not available in infrastructure providers today.

6) Hardware Support for Nested Virtualization: The per-
formance of nested environments can be significantly improved
with recent progress in processor architecture from both Intel
and AMD. For example, Intel’s new Haswell line introduces
VMCS shadowing, a feature which allows a nested VMM
to access processor virtualization extensions directly, which
improves the performance of nested VMs.

While these nested extensions seem to primarily target
security and reliability of cloud services, we believe that they
can also be leveraged to provide better resource management
support for tenants without the associated performance penalty.

D. Discussion

We discussed our motivations for this work in this section.
We then looked at nested virtualization, an important building
block for Kangaroo. After comparing existing solutions, we
decided to use LXCs for our nested infrastructure to preserve
performance. LXCs also start up faster than VMs, potentially
benefiting soft real-time cloud applications (e.g. autoscalers)
that would otherwise require support for scalable VM start
up from the providers [24], [25]. However, since LXCs do
not have proper support for migration yet, we have used
QEMU for our cross-provider migration benchmarks described
in Section V-C.

III. ARCHITECTURE

In this section, we first describe our nested architecture,
and then formulate some research questions that come with it.

The tenant requirements discussed in Section II-A rely on
basic infrastructure support. We employ nested virtualization
as discussed in Section II to enable the possibility of a
“virtual infrastructure” that can potentially provide the users
this necessary support.

Figure 1 shows our proposed architecture. In this architec-
ture, VMs of different instance types from different infrastruc-
ture providers are allocated to back our virtual infrastructure.
On top of this virtual infrastructure, we allocate nested VMs
from tenant-defined instance types, effectively resolving the
first tenant requirement (fine-grained VM allocation).

Further, the tenant is in control of the mapping between
nested VMs and infrastructure VMs. She can choose the
infrastructure VM for allocating nested VMs, and if necessary
migrate nested VMs from one infrastructure VM to another,
effectively providing support for the second tenant requirement
(control over VM placement).

To manage this virtual infrastructure, we expose a common
API to the tenants, and translate it to that of the “real”
infrastructure providers. This translation effort is done only
once for the virtual infrastructure, and then reused by all
tenants through the single virtual infrastructure API. Writing
applications against this unified virtual infrastructure API al-
lows tenants to run their applications on different infrastructure
providers without any change to the code. Further, since the
tenant is in control of the virtualization technology of the
nested VMs, she can migrate an entire application across
providers without downtime, effectively satisfying the third
tenant requirement (unified provider API).

Our nested architecture should implement all requirements
discussed in Section II-A. To that end, we need to address a
number of research challenges:

• What are the trade-offs in implementing a virtual
infrastructure? (Section IV-A)

• What kind of networking primitive is necessary to
provide connectivity between nested VMs? (Sec-
tion IV-B).

• How does a virtual infrastructure API look like?
(Section IV-C).

• What are the performance implications of running a
virtual infrastructure? (Section V).

In the next section, we describe our implementation of this
proposed architecture to address these questions.

IV. IMPLEMENTATION

Our implementation of the proposed architecture in Sec-
tion III consists of three main components:

1) Kangaroo creates a tenant-centric virtual infrastruc-
ture on top of VMs allocated from different providers
by configuring these VMs as OpenStack compute
nodes [26], and creating nested VMs on tenants’
requests. We elaborate further on Kangaroo in Sec-
tion IV-A.

2) IPOPsm provides network connectivity between
nested VMs, by implementing a virtual switch and
an overlay spanning various providers’ IP networks.
IPOPsm is a fork of the IPOP project [27] that
extends the functionalities of a peer-to-peer IP over-
lay to a virtual layer-2 switch by forwarding ARP
messages in its controller. We discuss the reasons for
choosing a switch-based virtual overlay and the high-
level details of our implementation in Section IV-B.

3) Skippy implements the virtual infrastructure provider
API by extending libcloud’s OpenStack plugin [28].
We elaborate on this API and the implementation of
Skippy in Section IV-C.

A. Kangaroo

Our virtual infrastructure exposes an interface to its tenants
for allocating (nested) VMs. This interface is then implemented
by the infrastructure cloud middleware. Instead of designing
and implementing our own API and middleware, we decided
to reuse an existing API (OpenStack compute API [29]) and
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Fig. 2: Kangaroo configures infrastructure VMs as its compute nodes by running Open-
Stack compute and network services as part of VMs’ contextualization. Communication
between nested VMs located on different infrastructure VMs is made possible with
IPOPsm, discussed in Section IV-B

its implementation (OpenStack). The benefits of doing so
are twofold: 1) tenant applications that are written against
OpenStack are backwards-compatible, and 2) we do not need
a new middleware implementation, and we can reuse features
from an existing implementation.

Kangaroo is a “configuration” of OpenStack, with a number
of scripts to 1) prepare an infrastructure VM to be configured
as an OpenStack compute node by running OpenStack’s com-
pute and network services on top of that VM, or 2) to prepare
an infrastructure VM to be removed from OpenStack when
necessary.

Figure 2 shows the high-level architecture of Kangaroo. We
use one infrastructure VM hosting an OpenStack controller.
This controller can also be configured to run nested VMs
if desired. Kangaroo can either be scaled out/in manually or
programmatically through Skippy, discussed in Section IV-C.
We need a network interface for management traffic be-
tween the OpenStack controller and its compute (VM) nodes.
In situations where there is no direct connectivity between
OpenStack’s controller and the compute VMs, we can reuse
the same facility that we have developed for nested VM
communication, discussed in Section IV-B.

B. IPOPsm

We first discuss the requirements for communication
among nested VMs, and then we describe IPOPsm, a network
overlay implementation that meets these requirements.

Since in Kangaroo the tenant is in control of VM place-
ment, naturally, the nested VMs that communicate the most
should be placed as close to each other as possible. Thus, the
network overlay should optimize for the cases when nested
VMs are co-located (i.e., running on the same infrastructure
VM). The second requirement is to provide seamless connec-
tivity between nested VMs when they are not placed on the
same infrastructure VM, and when they migrate.

IPOPsm addresses these requirements without requiring
any modifications or privileged access to infrastructure VMs.
IPOPsm supports the ARP layer-2 protocol by intercepting and
tunneling packets through a peer-to-peer overlay. IPOPsm uses
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Fig. 3: IPOPsm’s architecture. Each bridge is controlled by one IPOP endpoint (ipop0).
Tap interfaces (nested VMs) on the same bridge communicate through their bridge, and
through ipop0 to tap interfaces on other bridges.

VM to VM LXC to LXC
eth0 IPOPsm same VM diff VMs

bandwidth(Mb/s) 938,3 69,70 8442,36 19,63
standard deviation 1,18 4,61 79,61 0,54

TABLE II: Comparison of qperf performance between different virtualized environment.

Linux bridges for providing connectivity between nested VMs
running on the same infrastructure VM, and an ethernet over
peer-to-peer overlay to provide connectivity between nested
VMs running on different infrastructure VMs. IPOPsm reuses
most of IPOP’s functionality to automatically establish, mon-
itor, and maintain peer-to-peer tunnels to provide connectivity
between endpoints that are behind NATs — in this case, our
nested VMs. As shown in Figure 2, by configuring OpenStack
to treat IPOPsm’s interface as the (nested) VMs network, and
infrastructure provider interface as the management network,
we accomplish seamless integration of IPOPsm with Open-
Stack. We now focus on the internal details of IPOPsm.

Figure 3 overviews ARP handling in IPOPsm. Each
IPOPsm’s endpoint can be slaved to a Linux bridge that
connects multiple interfaces. IPOPsm’s endpoint listens on
the ARP traffic over the bridge, and reacts to ARP requests
whenever necessary. There are four types of ARP traffic that
the IPOPsm’s endpoint needs to deal with:

1) Local ARP request: forward this request to others.
2) Local ARP response: forward this response to the

other endpoints, and cache this response for a certain
period of time.

3) Remote ARP request: If the information is available
in the local cache (i.e., IP is located in the local
bridge), send a response for that IP while changing
the destination MAC address to that of its own. All
traffic for the local (nested VM) interface slaved by
the bridge will be received by the endpoint and will
be forwarded to the right interface. If the information
is not available in the cache, forward the request to
the local bridge.

4) Remote ARP response: change the source MAC
address of the response and forward it to the bridge.
From this point, the endpoint will receive all the local
traffic for this IP, and will forward it to the appropriate
endpoint.

These ARP handling mechanisms provide the abstraction
that all nested VMs are located on the same LAN. Since the
endpoint is not in the path for local nested VMs communi-



add compute node(provider, typep) Adds an infrastructure VM of typep from provider as a compute node to Kangaroo.

remove compute node(compute node)
Removes the specified infrastructure VM from Kangaroo.

This call might trigger migration of nested VMs from this infrastructure VM.
add type(core,memory, etc.) Adds a VM type with the specified resource requirements to Kangaroo.
allocate(compute node, type) Allocates a nested VM from the specified type on the specified compute node (i.e. infrastructure VM).

migrate(vm id, compute node) Migrates the specified nested VM to the specified compute node.

TABLE III: The extended infrastructure management API implemented by Skippy.

cation, their packets will directly go though the infrastructure
VM’s memory. This means that the communication between
nested VMs hosted on the same infrastructure VM goes
through memory, without virtualization overhead, satisfying
the first requirement discussed earlier. Further, in cases where
the communicating nested VMs are hosted on different in-
frastructure VMs, they can still communicate with each other
through this IP overlay, satisfying the second requirement.

Table II shows the network bandwidth achieved with qperf
in different scenarios on two VMs on the DAS4 cluster
connected via 1 GbE (details in Section V). Two LXCs running
on the same VM achieve up to about one order of magnitude
better networking performance compared to two VMs located
on different physical hosts. The former is the common case
in Kangaroo, whereas the latter is the common case in infras-
tructure providers today. We have left optimizing nested VM
communication over IPOPsm as future work. We will show in
Section V-B1, how this improved networking performance can
benefit overall performance of co-located services.

C. Skippy

As discussed earlier, we use OpenStack as our infras-
tructure middleware. Hence, regardless of the infrastructure
provider, the tenant will use this unified API for allocating
(nested) VMs. We extend this API to support the management
operations on the tenant’s virtual infrastructure provider. These
operations include scaling out/in the virtual infrastructure,
support for creating VM types dynamically (Section II-A1),
and control over (nested) VM placement and migration (Sec-
tion II-A2). This extension effectively provides the tenants with
a software-defined virtual infrastructure.

Table III explains the details of our proposed virtual
infrastructure management API. Using this API, the tenant can
scale up her virtual infrastructure by attaching new infrastruc-
ture VMs from different providers as new compute nodes to
Kangaroo. New VM types can be created by specifying the
required resources such as cores, memory, etc. Using these
VM types, the tenant can ask for nested VMs, on the specified
compute node. Finally, the tenant can initiate migration of
nested VMs from a source infrastructure VM to a destination
infrastructure VM, potentially migrating her workload from a
certain provider to another.

Skippy is our implementation of this proposed API as a
library that cloud applications can use. Skippy is implemented
as an extension of libcloud’s OpenStack plugin [29]. libcloud
provides us with the basis for scaling out/in Kangaroo on dif-
ferent infrastructure providers (the first two calls in Table III),
and the OpenStack plugin that Skippy is based upon, provides
us with the original OpenStack API (The last three calls in
Table III).

D. Summary

We described our implementation of Kangaroo and
IPOPsm that follows the nested architecture discussed in
Section III. We also discussed Skippy, our implementation of
a software-defined virtual infrastructure provider for scaling
out/in Kangaroo, allocation of nested VMs on desired compute
nodes (i.e., infrastructure VMs), and migration of nested
VMs across compute nodes. Skippy provides the necessary
mechanisms for efficient resource management to a higher-
level entity with the knowledge of applications’ resource
requirements (e.g. a Platform-as-a-Service).

V. EVALUATION

We evaluate various aspects of our nested infrastructure in
this section. In Section V-A, we briefly describe our use-case
ConPaaS [30], an open-source Platform-as-a-Service (PaaS),
that we have ported to Kangaroo. We show that ConPaaS
services on top of Kangaroo can benefit from 1) better re-
source utilization (Section V-B2), 2) better performance due
to co-location, and 3) with minimal interference with other
independent workloads (Section V-B1). Further, we show that
Kangaroo can live-migrate nested VMs with an acceptable
overhead (Section V-C1), and it can live-migrate a real-world
application consisting of two ConPaaS services between Ama-
zon EC2 and our local OpenNebula provider within a matter
of minutes without any change to the services (Section V-C2).

Our experiments were conducted on two cloud platforms:
a private OpenNebula environment available on the DAS4/VU
cluster [31] and Amazon EC2. On DAS4 we utilized medium
instances equipped with 4 GB of memory and 4 cores running
on physical nodes connected via 1 Gb/s Ethernet. For the EC2
experiments, we utilized different instance types, so we specify
their flavor for each experiment. On the infrastructure VMs,
we are running Ubuntu 14.04, and for the nested VMs, we are
running Debian Squeeze. For the experiments in Sections V-B,
we have used LXCs for nesting, and for the experiments in
Section V-C, we have used QEMU emulation. We are planning
to repeat the migration experiments with LXCs, as soon as
CRIU [20] is properly integrated in libvirt-lxc [32].

A. ConPaaS and Integration with Kangaroo

ConPaaS is an open-source framework that provides a
runtime environment for hosting applications on infrastructure
clouds. Addressing both high performance and Web appli-
cations, ConPaaS supports a broad range of services: web
hosting services (PHP, Java), storage services (MySQL DB,
Scalarix NoSQL, XtreemFS POSIX FS), high performance ser-
vices (MapReduce, TaskFarming, High-Throughput Condor),
In addition, the service catalog can be complemented by user
defined implementations.
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Fig. 4: ConPaaS architecture.

Figure 4 shows the architecture of ConPaaS. Each service
consists of a manager VM, and a set of agent VMs. The
manager VM performs management tasks for the service such
as scaling decisions, and the agent VMs perform the actual
work. The agent VMs are scaled out/in by the managers
in response to variation in workload. In ConPaaS terms, an
application is an orchestration of a number of services. For
example, a WordPress application consists of a web service and
a database service. The application logic (i.e., the management
of service managers), as well as user authentication, and
accounting are implemented by the ConPaaS director.

While the careful separation of duties in ConPaaS has
resulted in a clean and robust design, resource allocation can
become wasteful on a public infrastructure provider since the
instance types do not match the requirements of different
components. Hence, we believe ConPaaS is a good candidate
to benefit from the resource management flexibility that Kan-
garoo provides.

We have ported ConPaaS to Kangaroo with minimal efforts
since ConPaaS supported OpenStack already. We just exposed
Skippy’s API for adding and removing virtual compute nodes,
as well as defining new instance types to ConPaaS director
and to ConPaaS managers. We further exposed a mechanism
to migrate ConPaaS services and applications using Skippy’s
migration capabilities. In the rest of this section, we show how
ConPaaS benefits from these new mechanisms.

B. Co-location

One of the privileged operations that is possible in a nested
platform such as Kangaroo is control over VM placement.
Consequently, ConPaaS can implement co-location policies
that can maximize resource utilization to reduce cost, while
improving performance due to improved networking perfor-
mance. We show these improvements using a number of
ConPaaS services.

1) Performance: We compare the performance of Word-
Press, a real-world ConPaaS application using VMs acquired
from Amazon EC2 and from Kangaroo running on top of a VM
that is also acquired from Amazon EC2. WordPress consists of
two ConPaaS services: PHP and MySQL. Each of the services
require two VMs (four VMs in total).

When running directly on top of Amazon EC2, we chose
m1.small for VM allocation, the smallest instance type with

sustained performance. At the time of writing this paper, this
translates into 0.104 $ monetary cost per hour (4 × 0.026 $).
When running on Kangaroo, we chose a single t2.medium to
run all nested containers. This translates into 0.052 $ monetary
cost per hour, which is half of the non-nested case.
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Fig. 5: Mean resp. time of WordPress under an increasing number of concurrent requests.

Figure 5 shows the mean response time of WordPress when
increasing the number of concurrent requests using the AB
benchmark [33]. The response time of ConPaaS using Kanga-
roo is about an order of magnitude better than the response
time of ConPaaS when using Amazon EC2 VMs directly and
remains constant till a hundred concurrent requests. The reason
for this improvement is mostly due to co-location of the PHP
service and MySQL that avoids a round trip network delay
between these services.

In the next section, we look at the resource utilization of
WordPress application in both scenarios to better understand
why such performance numbers are achievable despite 50%
saving in cost.

2) Resource Utilization: We look at the resource utiliza-
tion of the aforementioned WordPress application. We have
measured the amount of idle CPU cycles and memory while
executing the same benchmark that we discussed in the previ-
ous section.
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Fig. 6: Idle resources of WordPress under an increasing number of concurrent requests.

Figure 6 shows the results for both CPU and memory.
It is clear that the ConPaaS WordPress is wasting resources
when using Amazon EC2’s VMs. This is because the smallest
suitable instance type is not a match for different components
of the ConPaaS services. In the case of Kangaroo however, the
resources are more efficiently utilized.



In spite of the cost reduction due to more efficient resource
utilization, performance is not affected, as the two services
target different resources: PHP is a CPU bound service,
while MySQL under high load stresses storage and memory.
Consolidating services with different resource requirements by
means of nesting is directly reflected in the price paid by the
end user, opening opportunities for new pricing models for
PaaS environments.

3) Disjoint Workloads: Service co-location is not only
useful for tightly coupled services, but also in the case of
disjoint workloads. We have conducted tests in which a PHP
service (CPU bound) is running along with a memcached
(memory bound) service, sharing the same first layer VM
(t2.medium instance). Both services are tested against heavy
load using AB and memslap [34] benchmarks.
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Fig. 7: Benchmarking co-located services with disjoint workloads.

As shown in Figure 7, there is no performance degradation
for any of the services as a result of their co-location. The
PHP service maintains the mean response time close to 25 ms
(for a hundred concurrent requests), even when increasing the
concurrency level of the memslap client. At the same time,
the linear trend shown by running the memcached service in
isolation is not affected by the additional computational load
incurred by the PHP service. The mean response time in this
benchmark is smaller than the benchmark described in Figure 5
since there is no MySQL service in the loop.

C. Migration

One of the interesting possibilities with Kangaroo is the
possibility of migrating tenant’s workload between infrastruc-
ture VMs without support from the providers. This opens up
interesting possibilities in terms of resource management, and
cross provider migration. In this section, we first quantify
migration times of nested VMs via synthetic microbenchmarks
(Section V-C1), and then we explore a scenario where an
entire application is live-migrated across providers without any
change to the application’s code (Section V-C2).

1) Single VM: As described earlier, Kangaroo supports
provider-independent live-migration of the nested VMs. We
ran a series of microbenchmarks to measure the migration
time of a nested VM with 1 GB of memory under different
workloads. We used stress [35] as a synthetic workload gener-
ator inside the nested VM. We varied the amount of consumed
memory by stress and with and without an I/O bound thread.

Our nested VMs use a 3.2 GB virtual disk. OpenStack
offers two options for sharing the disk contents of the mi-

grated VM: 1) block migration (the disk is copied during the
migration process), and 2) shared file systems (the images of
the guests are accessible for all the compute nodes through a
shared file system). We opted for block migration so that the
VM is not impacted by the overhead of accessing the image
over the network. In addition, OpenStack was configured to
utilize qcow2 images, so that the transferred data is limited
only to the blocks that were changed during the life time of
the nested VM. Finally, we configured Kangaroo to use the
QEMU’s pre-copy live-migration.
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Fig. 8: Migration of a single nested VM under different workloads.

Figure 8 shows the migration time of a nested VM between
two VMs running on different DAS4/VU physical hosts. In the
case of memory-bound workloads the migration time increases
linearly, and peaks in I/O intensive scenarios. In all cases, the
nested VM could live-migrate within a few minutes. These
numbers can be easily improved by means of more advanced
migration facilities such as post-copy migration [13], but they
are sufficiently small for our proof-of-concept prototype.

2) Entire Application: One of the important aspects related
to migrating an application from one infrastructure provider
to another is the downtime encountered by the end users.
Currently, the process for performing cross provider migration
includes shutting down the application, updating the VM
images to make it compatible with the VMM of the new
provider, and then starting the application again in the new
environment. Along with the downtime incurred by this cold
migration process, this approach raises significant technical
challenges on the end user side. For example, the end user may
need to rewrite parts of her application to make it compatible
with the new provider’s environment. Kangaroo’s unified API,
complemented by its support for VM placement, solves the
cross provider migration problem and can migrate an entire
application from one provider to another without downtime or
change to the application code.

We experimented with cross-provider migration by deploy-
ing WordPress, a real-world application, and live-migrated it
from Amazon EC2 to our local DAS4 OpenNebula provider.
The migration was initiated with a single ConPaaS command
that identifies the application, and the destination provider.

As mentioned before, WordPress utilizes two of the Con-
PaaS services, PHP and MySQL. Each service runs with two
nested VMs (a manager and an agent) so in total the application
used four VMs. The nested VMs were using 1 GB of memory
and a single core. Initially the nested guests were running
on a single infrastructure VM on Amazon EC2 (t2.medium).



Upon the migration request, ConPaaS started a VM on the
OpenNebula deployment on DAS4, and contextualized it as
an OpenStack compute node. As soon the VM became online,
ConPaaS initiated the nested VMs migration to the new VM.

The total time from the moment the application migration
command was issued to the moment when the last nested VM
finished its migration was a little under 10 minutes (8m54s,
9m42s, 8m5s for successive executions). Without Kangaroo,
migrating a PaaS environment from EC2 to a private Open-
Stack cloud took about 30 minutes of application downtime
and about 45 minutes of total migration time [36], while
relying heavily on user intervention for performing all the
cold migration steps. Our approach is fully automated and
significantly reduces the total migration time.

D. Summary

We evaluated the Kangaroo framework and showed that
service co-location and careful management of resources pro-
vides up to an order-of-magnitude performance improvement
while also reducing the monetary costs due to efficient uti-
lization of infrastructure resources. Further, access to the
second-layer VMM enables applications such as ConPaaS to
utilize previously unavailable operations like migration. We
have successfully live-migrated a WordPress application from
Amazon EC2 to our local DAS4 in less than 10 minutes.

VI. RELATED WORK

There has been a number of efforts to create nested
infrastructures to complement the properties of current infras-
tructure providers, which we study in Section VI-A. Containers
have also been extensively employed to build better PaaS
architectures, which we look at in Section VI-B.

A. Nested Infrastructures

Inception [37] lays the ground for a new infrastructure
model where VMs acquired from public providers are used as
an infrastructure layer for a second infrastructure middleware.
The authors emphasize the reduced constraints on the new
(virtual) provider with regard to deploying and running the
infrastructure, and the increased flexibility in resource manage-
ment. Inception proposes a layer-2 network overlay to provide
connectivity between the nested VMs. HVX [22] proposes a
similar nested model, and uses hSwitch for providing layer-2
connectivity between the nested VMs.

Kangaroo’s architecture is similar to both Inception and
HVX, but it offers much more: 1) it provides dynamic
membership for the infrastructure VMs, making it possible
to scale out/in the virtual infrastructure whenever necessary.
This has been made possible by IPOPsm’s support for join-
ing/leaving the layer-2 overlay network without any need for
(re)configurations, even when infrastructure VMs are behind
NAT. 2) Skippy provides a convenient API for programming
the virtual infrastructure, paving way for a new era of software-
defined infrastructures for the tenants. Further, to the best of
our knowledge, this is the first study to extensively evaluate
real-world applications on top of these nested infrastructures.

Spilllner et al. analyze the feasibility of using a resource
broker in a nested cloud environment in order to optimize

resource allocation in relation to the utilization cost [38].
They show that nesting does not degrade the performance of
applications considerably, and argue that tenants can resell
the extra resources that they do not need to increase their
resource utilization and decrease the cost. Kangaroo takes a
different approach by allowing the tenants to partition the
rented resources according to the needs of their applications.

Nesting has also been employed to improve the security
and reliability of infrastructure clouds. CloudVisor [7] builds
a thin VMM inside a VM to protect the application workload
against breaches in the first level VMM (controlled by the in-
frastructure provider). RetroVisor [39] replicates user workload
inside multiple nested VMs, each running inside a nested but
different VMM. In this model, if any of the VMMs is exposed
to a vulnerability, it can be seamlessly replaced by another.

B. Container-based platforms

Platform providers have long noticed that the interface
exposed by current infrastructure providers does not allow for
flexible resource management. Further, handling more than a
single infrastructure API results in extra development efforts
and makes maintenance difficult. To address these issues, they
often rely on containers (e.g., LXC).

Heroku [40] is a platform provider that can be used in
order to run web services on top of Amazon EC2. The
services run in LXCs, which are managed both by the end
user for scaling purposes and by the Heroku engine in order
to detect and restart when failed. While similar to Kangaroo,
Heroku applications need to be written in certain programming
languages, while Kangaroo is an infrastructure provider and
agnostic to the type of applications that it runs.

Docker [41] is a deployment tool that eases environment
replication using LXCs. A user-space API allows bundling an
application and all its dependencies in order to be run in an
isolated container on another physical host or VM. Docker
is compatible with Kangaroo, and Kangaroo users can use
Docker for building the environment for their applications.

Deploying Docker, Heroku, and other similar platform
providers (e.g., Cloud Foundry [36], OpenShift [42], etc.) over
a cloud infrastructure, and then using these solutions to create
services that run in separate containers build up to a nested
architecture similar to our solution. Infrastructure providers
such as Amazon [43], Microsoft [44], and Google [45] are
also beginning to offer native container support over their
VMs. However, Kangaroo enables more extensive features
such as cross cloud migration, seamless integration of multiple
providers, and the ability to allocate resources that match
tenants’ requirements through tenant-controlled co-location.

VII. CONCLUSIONS

Infrastructure clouds revolve around the notion of pay-per-
use, where tenants only pay for the resources that they use. In
reality however, the providers only allow VM allocation from
a fixed number of instance types (e.g., small, medium, large,
etc.). This typically creates a mismatch between tenants’ re-
quirements and the resource allocation policy, which results in
the underutilization of tenant resources. Further, providers do
not allow co-location or migration of tenants’ VMs that could



potentially improve the performance of their applications, and
in turn reduce their operation costs.

To address these issues, we designed and implemented
a tenant-centric software-defined cloud infrastructure named
Kangaroo. Kangaroo is based on running OpenStack on top of
VMs acquired from infrastructure providers. According to their
application requirements, the tenants can allocate nested VMs
from Kangaroo. To provide connectivity between these nested
VMs, we designed and implemented IPOPsm, a layer-2 overlay
network based on the IPOP project. Through our proposed
infrastructure management API, tenants can programmatically
scale out/in the size of their virtual infrastructure, define new
instance types, and co-locate or migrate their nested VMs
within their software-defined virtual infrastructure.

Through deployment of real-world applications on Amazon
EC2, we showed that Kangaroo can provide an order of
magnitude performance improvements while cutting down the
operation cost of the applications by half. We also successfully
migrated an entire WordPress application, consisting of several
VMs, from Amazon EC2 to our local OpenNebula cloud in
under ten minutes using a single command, without downtime,
or change to the application code.
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