Optimal Control of Epidemiological SEIR models with L1-Objectives and Control-State Constraints

Abstract : Optimal control is an important tool to determine vaccination poli-cies for infectious diseases. For diseases transmitted horizontally, SEIR com-partment models have been used. Most of the literature on SEIR models deals with cost functions that are quadratic with respect to the control variable, the rate of vaccination. In this paper, we consider L 1 –type objectives that are linear with respect to the control variable. Various pure control, mixed control–state and pure state constraints are imposed. For all constraints, we discuss the necessary optimality conditions of the Maximum Principle and determine optimal control strategies that satisfy the necessary optimality con-ditions with high accuracy. Since the control variable appears linearly in the Hamiltonian, the optimal control is a concatenation of bang-bang arcs, singu-lar arcs and boundary arcs. For pure bang-bang controls, we are able to check second-order sufficient conditions.
Type de document :
Pré-publication, Document de travail
Submitted, 21 pages. 2014
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01101291
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 8 janvier 2015 - 12:17:38
Dernière modification le : lundi 21 mars 2016 - 11:33:26
Document(s) archivé(s) le : jeudi 9 avril 2015 - 10:35:22

Fichier

Maurer-dePinho-SEIR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01101291, version 1

Collections

Citation

Helmut Maurer, Maria Do Rosário De Pinho. Optimal Control of Epidemiological SEIR models with L1-Objectives and Control-State Constraints. Submitted, 21 pages. 2014. 〈hal-01101291〉

Partager

Métriques

Consultations de la notice

170

Téléchargements de fichiers

807