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Abstract: The recent rapid uptake of residential solar photovoltaic (PV) installations provides
many challenges for electricity distribution networks designed for one-way power flow from the
distribution company to the residential customer. In particular, for grid-connected installations,
intermittent generation as well as large amounts of generation during low load periods can lead
to a degradation of power quality and even outages due to overvoltage conditions. In this paper
we present two approaches to mitigate these difficulties using small-scale distributed battery
storage. The first is a decentralized model predictive control (MPC) approach while the second
is a hierarchical distributed MPC approach using a so-called market maker. These approaches
are validated and compared using data on load and generation profiles from customers in an
Australian electricity distribution network.

1. INTRODUCTION

Recent years have seen dramatic worldwide growth in
residential solar photovoltaic (PV) distributed generation.
In Australia, for example, the National Electricity Market
(NEM) has seen estimated installed capacity rise from just
23 MW in 2008 to 1450 MW in 2012, and is forecast
to reach 5100 MW by 2020 (?). The key drivers for this
rapid uptake include the introduction of residential feed-
in tariffs, together with sharp falls in the capital costs of
solar PV panels.

High levels of PV penetration into the low-voltage dis-
tribution network can create significant operational prob-
lems for utilities, however, in particular reverse power
flow during daytime periods of peak generation coupled
with low residential load (?, ?). This can in turn lead
to well-recognized increases in distribution feeder voltages
(the so-called voltage rise problem), with the potential for
adverse impacts on the operation and safety of customer-
owned devices (?). The inherent intermittency of solar PV
generation further exacerbates these problems.

In response to these challenges in integrating solar PV
into the grid, the opportunities offered by distributed
battery storage devices are increasingly being recognized
by utilities looking to reinforce distribution networks and
shave peak demand without large-scale capital costs for
feeder replacement and related network upgrades (?, ?).
Likewise consumers seeking reduced electricity costs by
shifting electricity purchases away from times of peak
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tariffs, together with a desire for increased energy self-
sufficiency, are beginning to consider residential battery
storage as a viable option.

To date the high capital cost of battery systems has
made deployment of residential energy storage systems
largely uneconomic (?). This situation is set to change
in the forseeable future, however, through a confluence of
steadily rising electricity costs and projections of rapid
uptake of battery electric vehicles (BEVs) and plug-in
hybrid electric vehicles (PHEVs) over the next 5–10 years.
If realized, these projections point to opportunities for
employing retired electric vehicle batteries in residential
storage applications, over and above the storage offered
by in-service BEVs and PHEVs (?, ?).

With economically viable residential storage on the hori-
zon, researchers have in recent years moved quickly from
the analysis of relatively rudimentary and largely unco-
ordinated battery energy storage systems (?) to systems
of increasing scale and sophistication (?, ?, ?, ?, ?). A
key signature of these more recently proposed systems is
their decentralized nature, with the consequent need for
distributed control to achieve the necessary coordination.

In this paper, we propose a hierarchical distributed control
structure for residential energy systems based on the so-
called market maker concept (?; see also ?). The basic
module is the residential energy system (RES) shown in
Figure 1, consisting of the residential load, a battery, and
solar PV panels. Each RES is connected to the wider
electricity network through a point of common coupling.

Let I be the number of RESs in the network, and assume
the existence of a market maker (MM) or Local Grid
Operator (we will use market maker in what follows).
We assume that each RES can communicate with the



MM, but that the RESs do not communicate with each
other, reflecting the largely ad hoc formation of residential
energy systems. Each RES implements a model-predictive
control (MPC) strategy (?) in order to determine its grid
(voltage) profile by modulating its battery profile. The
MM implements a simple strategy in order to set prices
for buying and selling electricity within the residential
network, with a view to minimizing the aggregate impact
of the I RESs on the distribution grid.

In ?, a minimization criterion was introduced in order to
reduce the impact of a single RES on the power grid. To
achieve this goal, drawing and supplying power from/to
the grid were equally penalized. While the present paper
starts from the RES setup proposed in ?, we propose three
important extensions. The first is that we consider an
interconnected network of several RESs as opposed to a
single RES. The second is that we aim to maximize the
profit of (or minimize the cost to) each individual RES.
The third modification is that we seek in the present paper
to maximize profit in an ongoing manner by implementing
the optimization in a receding horizon (or MPC) fashion.

The rest of the paper is organized as follows: in Sec-
tion 2 we formalize the Residential Energy System. In
Section 3 we present a decentralized MPC scheme for
the network (i.e., a scheme without communication or
cooperation among RESs). In Section 4 we formally intro-
duce the market maker and propose a distributed MPC
scheme using the market maker. In Section 5 we apply
these algorithms to data from an Australian electricity
distribution company to investigate the behavior of the
proposed algorithms when applied to a real-world setting.
We conclude in Section 6.

2. THE RESIDENTIAL ENERGY SYSTEM

We consider a small, neighborhood-level, electricity net-
work consisting of several residences. Each residence com-
prises a Residential Energy System (RES) as shown in Fig-
ure 1, consisting of a residential load, a battery, and solar
photovoltaic panels. Each RES is connected to the wider
electricity network. Note that, in what follows, the solar
photovoltaic panels could be replaced by any residential-
scale local generation and the battery could be replaced by
any residential-scale local energy storage. The important
characteristics of these elements are that the generation
and the load are not controllable. A recent study (?)
suggests that flexible consumption represents up to 60%
of household electricity usage in the form of appliances
such as air conditioners and refrigerators. Consequently, in
future work we will include splitting the load into control-
lable and uncontrollable components but, for simplicity,
we initially restrict attention to uncontrollable loads only.

Mathematically, the RES is defined by the following
discrete-time system

x(k + 1) = f(x(k), u(k)), (1)

y(k) = h(u(k), w(k)) (2)

where x, u, w ∈ R
I and I ∈ N is the number of RESs

connected in the local area under consideration. For user
i, xi is the state of charge of the battery, ui is the battery
charge/discharge rate, wi is the residential load minus the

+   -

+   -

+   -

Fig. 1. System model where possible power transfer is in-
dicated by an arrow above. In particular, solar panels
only provide power, residential loads only draw power,
and the batteries and network can both supply and
draw power.

local generation, and yi is the power supplied by/to the
grid. Therefore, we explicitly see that the RES of user i is
given by

xi(k + 1) = xi(k) + Tui(k),
yi(k) = wi(k) + Tui(k).

(3)

Here, T represents the length of the sampling interval in
hours; e.g., T = 0.5 corresponds to 30 minutes. The state
of charge of the battery and the charge/discharge rates of
the battery are constrained in practice. In other words,
there exist Ci, ūi ∈ R>0 and ui ∈ R<0 so that

0 ≤ xi(k) ≤ Ci ∀k ∈ N0 (4)

and
ui ≤ ui(k) ≤ ūi ∀k ∈ N0. (5)

A simple approach to using a battery in an RES is as
follows: If generation exceeds load, then charge the battery.
If load exceeds generation, and if the state of charge of
the battery is not zero, then discharge the battery (see,
e.g., ?). In a scenario where power can be sold by a
residence to the grid, such as is considered herein, this
behavior can be enforced by setting the price for buying
power (slightly) higher than the price for selling power.
We assume that metering is in place to allow each RES
to purchase electricity from the grid as well as to receive
compensation for electricity delivered to the grid. This is
common practice in electricity networks where there is a
feed-in tariff for power supplied to the grid by individual
residences.

To facilitate our discussion of algorithms for decentralized
or distributed control of RESs we will make use of the
three synthetic energy profiles wi depicted in Figure 2.

3. A DECENTRALIZED RES CONTROLLER

For the simple controller proposed in the previous section,
if the load always exceeds generation then the battery will
never be used (see RES 3 in Figure 2). Intuitively, though,
a battery can be used to time-shift energy consumption
and, hence, can be used to flatten the usage profile. Con-
sequently, in this section we present a simple decentralized
MPC scheme such that each RES uses a local controller in
order to even out its profile, (yi(k))k∈N0

, i ∈ {1, 2, . . . , I},
of power supplied from/to the grid.
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Fig. 2. Energy consumption without (· · · ) and with (—)
use of a battery storage (no power management con-
troller) is shown for 24 hours. Peaks are indicated by
green lines.

MPC is a control strategy that aims at improving system
behavior by iteratively minimizing an optimization crite-
rion with respect to predicted trajectories and implement-
ing the first part of the resulting optimal control sequence
until the next optimization is performed, see ? for details.
We propose such a predictive controller for (3). In order to
do this, we assume that we have predictions of the residen-
tial load and generation some time into the future that is
coincident with the horizon of the predictive controller. In
other words, given a prediction horizon N ∈ N, we assume
knowledge of wi(j) for all j ∈ {k, . . . , k + N − 1}, where
k ∈ N0 is the current time. If the prediction horizon is
less than a day, i.e. NT ≤ 24, such an assumption is not
initially unreasonable as residential loads tend to follow
daily patterns and one-day ahead weather predictions can
be fairly accurate. Future work will involve investigating
sensitivity of the proposed scheme to the accuracy of these
predictions as well as to the prediction horizon length.

A straightforward option in order to flatten the energy
profile of the i-th RES is to penalize deviations from its
(anticipated) average “consumption”, defined as

ζi(k) :=
1

N

N−1∑

j=0

wi(k + j).

With a quadratic cost function, this leads to the finite-
horizon optimal control problem

min
ûi(·)

N−1∑

j=0

(ŷi(k + j)− ζi(k))
2

subject to the system dynamics (3), the initial state, and
the battery constraints (4)-(5). Throughout this paper
we set x(0) = 0.5, Ci = 4, ui = −0.5, and ūi = 0.5.
In comparison with the simple controller of the previous
section, this decentralized control algorithm reduces the
maximum aggregate demand to 1.7785 (from 2.2785) and
reduces the maximum aggregate supply from the RESs
to 0.8259 (from 1.1683), see also Table 1 in Section 4. In
particular, the peak energy consumption is reduced by 0.5
which corresponds to the maximal charging rate, see also
Figure 3 on the left.

Furthermore, a look at the corresponding state trajectories
on the right in Figure 3 reveals that all subsystems make
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Fig. 3. Decentralized MPC with one day prediction horizon:
output (left) and state (right) trajectories yi(k) and
xi(k), k = 0, 1, . . . , 47, respectively.

use of their batteries in order to flatten their individual
energy profiles. In particular, we note that using the simple
controller of the previous section, RES 3 did not use
its battery at all, whereas using the decentralized MPC
scheme RES 3 always discharges its battery during its
period of peak demand.

4. A DISTRIBUTED APPROACH

In the decentralized approach of the previous section
there is no coordination between RESs. In this section,
we propose a hierarchical distributed control approach
where each RES can communicate with a centralized
entity, called the market maker (MM) (?), with the aim of
achieving some network-wide objective. The objective we
pursue in this work is to flatten the aggregate power usage
of the network.

In what follows the price of buying or selling power from
or to the grid, respectively, for an RES is discussed.
It is important in this context to note that these need
not be monetary prices, but, rather, can be viewed as
a mechanism to enforce reasonable cooperation between
RESs within the network. However, in applications such
as isolated or islanded microgrids, the distributed control
approach we propose herein may indeed form the basis of
an electricity market.

Denote the price for buying power from the grid by p :
N0 → R≥0 and the price to sell power to the grid by
q : N0 → R≥0. In many current electricity markets the
values of p and q are constant; i.e., they do not depend
on the time index k. In markets that implement time-of-
use pricing, the p and q are periodic with a period of 24
hours and with higher values at times of predicted high
usage and lower values at times of predicted low usage. In
the sequel, these prices will be manipulated by the market
maker in real-time in order to obtain desirable behavior
from the residential network. To this end, the quantities

y+(k)
.
=max{y(k), 0}, and

y−(k)
.
=max{−y(k), 0}.

are defined. We observe that only one of y+(k) or y−(k)
can be nonzero at each k. We also observe that y+(k) is
the power drawn from the grid at time k while y−(k) is
the power supplied to the grid at time k.

We define the finite-horizon optimal control problem for
each RES so as to minimize the cost of an individual
residence over an N -step horizon; i.e.,



min
ûi(·)

k+N−1∑

j=k

p(j)ŷ+i (j)− q(j)ŷ−i (j)

︸ ︷︷ ︸

=0T û+pT ŷ+−qT ŷ−

(6)

subject to the constraints (4) representing the battery
capacities and system dynamics (3); i.e.,
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as well as the box constraints (5); i.e., u ≤ u ≤ ū (charging
rates). Here, the optimization variables are

u = (u(0), . . . , u(N − 1))T ,

y+ = (y+(0), . . . , y+(N − 1))T ,

y− = (y−(0), . . . , y−(N − 1))T .

Since this is a linear optimization problem, the optimum
is attained in each minimization — although it may not be
unique. Note that the minimization problem to be solved
encompasses 3N variables and 4N constraints yielding
linear growth of the optimization variables and constraints
in the prediction horizon. Furthermore, it can be observed
that any solution necessarily exhibits xi(k + N − 1) = 0.
This is intuitively obvious since there is no benefit to
having a charge left in the battery at the end of the
horizon. However, this does not necessarily imply that,
for a fixed k, xi(k +N − 1) is necessarily zero due to the
receding horizon nature of MPC.

4.1 The Market Maker

In order to set prices, we propose an iterative negotiation
before prices are set. This negotiation is operated by the
market maker, who sets initial prices from the current
time k to the end of the prediction horizon k + N − 1
and broadcasts these to the residential network. Each
RES will then solve its own MPC problem based on the
cost functional given by (6) and then communicate its

desired grid profile, {ŷi(j)}
k+N−1
j=k , to the market maker.

The market maker uses the aggregated grid profile to
update prices, which are then broadcast to the residential
network. This process is iterated until (hopefully) a steady-
state is reached. Note that in a slight modification to the
original definition of a market maker proposed in ? we
allow multiple iterations of the market maker setting prices
and receiving bids whereas in ? the market maker receives
bids once and sets prices once (i.e., there is only a single
iteration per sampling instant). Herein we propose a simple
algorithm for the setting of prices by the market maker.
However many algorithms are possible (see, e.g., ?) and
investigating these alternatives is the subject of ongoing
work.

Denote the negotiation iteration index by ℓ ∈ N0 and
the predicted grid profile for RES i, i ∈ {1, . . . , I},

at negotiation iteration ℓ by {ŷi,ℓ(j)}
k+N−1
j=k . Denote the

predicted demand of the residential network at time j and
negotiation iteration ℓ by

Πℓ(j)
.
=

1

I

I∑

i=1

ŷi,ℓ(j) ∀ j ∈ {k, . . . , k +N − 1} (7)

and the average predicted demand as

Π̄
.
=

1

N

k+N−1∑

j=k

Πℓ(j). (8)

Remark 1. Note that since the predicted residential load
and generation is fixed for the prediction horizon, the av-
erage predicted demand, Π̄, is independent of the iterative
negotiation process.

Let p, p ∈ R≥0 be the minimum and maximum buying
prices, respectively. The buying price pℓ+1(j) of the suc-
cessor iteration is set by the market maker as

pℓ+1(j) = max{p,min{p̄, pℓ(j) + θ
(
Πℓ(j)− Π̄

)
}}

where θ ∈ R>0 is a selectable parameter. The selling
price qℓ+1(j) is set to a fraction of pℓ+1(j); i.e. qℓ+1(j) =
κpℓ+1(j), κ ∈ (0, 1). This convention ensures that cer-
tain pathological arbitrage-type behavior is avoided since
pℓ(j) ≥ qℓ(j) for all ℓ and j. In other words, buying
electricity at a particular time is always more expensive
than what can be obtained by selling electricity at that
time. This inhibits an RES short-selling electricity; i.e.,
buying a lot of power to charge its battery at one time
instant and then turning around and selling that power
at the next time instant at a profit. Note that in the
presence of realistic charging/discharging rate constraints
this may not be a problem. In the following simulations
we set θ = 0.05, κ = 0.95, p = 0, and p̄ = 10.

We see that when network demand at time j exceeds the
average predicted demand, the market maker increases
both the selling and buying price at time k and, con-
versely, if the network demand is less than the average
predicted demand the market maker decreases the prices.
Intuitively, this should have the effect of flattening the
aggregate power drawn or supplied from the residential
energy network, cf. Figure 4.
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Fig. 4. Distributed MPC with one day prediction horizon:
output trajectories yi(k), k = 0, 1, . . . , 47.



peak (high) peak (low) variation

No Battery Storage 2.2785 -1.1683 3.4468

Simple Controller 2.2785 -0.8350 3.1135

Decentralized MPC 1.7785 -0.8259 2.6044

Distributed MPC 1.7785 -0.6683 2.4468

Table 1. Comparison of energy demand peak
values for different control techniques.

For the load/generation profiles presented in Figure 2,
the maximal achievable reduction with respect to the
peaks is attained and the decentralized MPC algorithm
is outperformed, cf. Table 1. In order to explain this
performance improvement, the corresponding charge levels
of the batteries are considered, see Figure 5.
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Fig. 5. State trajectories resulting from distributed MPC,
i.e. battery levels of the individual subsystems.

In particular, it is remarkable that the decisions of indi-
vidual subsystems are more ‘in line’. In the decentralized
MPC setting, subsystem RES 3 discharged its battery after
noon (14–15 hours) but now charges during this period
of time since the overall energy demand is far below the
average, as can be seen in Figure 4.

Remark 2. The storage capacity of the individual sub-
systems does not have to be equal. This restriction was
employed in order to simplify the presentation of our
numerical findings.

5. AUSTRALIAN DATA

In this section, we compare the three previously discussed
controllers by considering the load and generation profiles
for 10 customers drawn from the Australian electricity
distribution company Ausgrid, a state-owned corporation
servicing approximately 1.6 million customers across New
South Wales from Sydney to Newcastle. The data from
these customers was collected as part of the Smart Grid,
Smart City project and covers the period 1–7 March 2011.

The difference of load and generation is illustrated in
Figure 6. Here, the mean consumption is +0.230820 while
the peaks of the depicted average trajectory are +1.054000
(high) and −0.445400 (low). Note that this then acts as
the no battery case.

Applying the decentralized MPC scheme of Section 3
yields the load/generation and battery profiles shown in
Figure 7. Applying the market maker based distributed
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Fig. 6. Energy drawn from / supplied to the grid for ten
RESs during the first week of March 2011.

peak (high) peak (low) variation

No Battery Storage 1.0540 -0.4454 1.4994

Simple Controller 1.1040 -0.2360 1.3400

Decentralized MPC 0.8747 -0.0308 0.9055

Distributed MPC 0.7209 -0.0329 0.7538

Table 2. Comparison of energy demand peak
values for different control techniques.

MPC scheme of Section 4 yields the load/generation and
battery profiles shown in Figure 8. The peak values are
shown in Table 2. We observe that for a network com-
posed solely of these customers, the peak power demand
and the peak power the network needs to absorb are
both significantly reduced by both the decentralized and
market maker based distributed MPC schemes, with the
distributed MPC scheme outperforming the decentralized
MPC scheme.
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Fig. 7. Decentralized MPC applied to RESs depicted in
Figure 6: Energy drawn from / supplied to the grid
(left) and battery state of charge (right).
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Fig. 8. Distributed MPC applied for RESs depicted in
Figure 6: Energy drawn from / supplied to the grid
(left) and battery state of charge (right).



We note that the distributed MPC scheme appears to
better utilize the available battery storage when compared
with the decentralized scheme in the sense that for the
decentralized scheme the batteries are on average never
empty. In contrast to this, in the distributed setting their
capacity is completely employed in order to further flatten
the aggregate grid profile.

6. CONCLUSIONS

Residences with small-scale solar generation, such as roof-
mounted solar photovoltaics, are becoming increasingly
common and battery storage has been frequently cited
as a technology to mitigate some of the negative network
impacts that come with widespread uptake of distributed
electricity generation. In this paper we have presented de-
centralized and distributed MPC schemes for control of a
network of residences, each of which comprises a residential
energy system having a load, local generation, and a local
storage element. Our proposed distributed MPC scheme
relies on an idea from the economics literature: the market
maker (?). The effectiveness of both the decentralized and
distributed MPC schemes was demonstrated on data from
customers in New South Wales, Australia.

Both the model and approach taken herein are intention-
ally simple, in order to verify the soundness of the broad
algorithmic approach. There are, of course, many compli-
cations to be overcome to move the proposed distributed
MPC implementation into practice. A non-exhaustive list
includes: investigating the sensitivity of the algorithm to
imperfect prediction of load and generation; investigat-
ing the communication requirements of the algorithm, in
particular the sensitivity to communicating only coarsely
quantized trajectories to the market maker and coarsely
quantized prices to the customers; and making use of
more realistic battery models in which preferred operating
modes of different battery types are taken into account
(?). Furthermore, investigating different algorithms for
the operation of the market maker may lead to improved
performance.
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