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Abstract—Objects recognition in image is one of the most difficult 

problems in computer vision. It is also an important step for the 

implementation of several existing applications that require high-

level image interpretation. Therefore, there is a growing interest 

in this research area during the last years.  In this paper, we 

present an algorithm for human detection and recognition in real-

time, from images taken by a CCD camera mounted on a car-like 

mobile robot. The proposed technique is based on Histograms of 

Oriented Gradient (HOG) and SVM classifier. The 

implementation of our detector has provided good results, and 

can be used in robotics tasks. 
 

Human detection; HOG descriptor; SVM classifier; Real- time 
detection. 

I.  INTRODUCTION 

The problem of object recognition is to decide whether a 
specific object or object within a class of objects is contained in 
an image or not. This problem can be seen as a match between 
the target model and a set of descriptors, which are extracted 
from an image test. This generalization, as simple as it seems to 
be, is able to explain the existence of multiple approaches that 
depends on the choice of object descriptors, type and 
complexity of its model, and the methods used for the learning 
and matching object model. Beyond being a general problem in 
computer vision, object recognition is an important tool for 
many applications. It is used in video surveillance, digital 
image databases, and largely for complex robotic tasks as in our 
case. 

Person detection is particularly difficult, mainly because of 
the high variability of appearances and possible situations. The 
problem is to find a representation of a human that is both 
sufficiently generic to cover all types of situations, and 
sufficiently discriminative for humans. For this, we generally 
use an intermediate representation, based on the computation of 
one or more features, taken from the information contained in 
the only values of the image pixels. 

In this paper, we address the problem of person detection 
from images taken by a CCD camera, embedded on an outdoor 
mobile robot. Several approaches have been implemented in 
real-time, to perform an efficient and fast detection, in order to 
be used in autonomous navigation tasks. This work has been 
done in the context of autonomous transportation system 
project of NCRM team, in CDTA.  

The paper is organized as follow: in section II we present 
the HOG descriptor combined with the SVM classifier, used in 

this work. Section III is dedicated to show experimental tests 
and results discussion. 

II. HUMAN DETECTION APPROCH 

Early works on people detection date from the late 1990s 
[1]. In one of the first proposed methods, stereovision is used to 
detect objects using a Hough transform. The method can detect 
pedestrians, but is not exclusive to this type of object. In 1998, 
Wöhler and Heisele use leg movement to achieve the pedestrian 
detection and classification, with constraints on the location of 
pedestrians to the ground [1]. However, these methods are not 
generic. 

From the 2000s, research advances focused more on face 
detection and in particular the method of Viola & Jones, which 
has been extended in 2005 to target detection using motion [2]. 
The method allows a more generic detection, requiring no prior 
information about the structure of the scene, with a processing 
time close to the real-time. In 2005, INRIA researchers propose 
a new technique based on the histograms of oriented gradient 
(HOG) [3]. The good performances obtained by this technique 
make it few years after a standard method [4]. In 2008, 
researchers from Rutgers University have introduced a new 
descriptor built as a covariance matrix, which provides better 
performance in known environment [5]. Also in 2008, Mu & al. 
have successfully used local binary patterns (LBP), a type of 
features that had proven a good effectiveness especially when 
applied to face detection [6]. In this work, we focus our interest 
on the HOG based technique, which is detailed bellow: 

A. HOG descriptor 

HOG descriptors have been introduced by Dalal and Triggs 
in [7] and [8]. The main idea behind the histogram of oriented 
gradient is that the local appearance and shape of object in an 
image can be described by the intensity distribution of gradients 
or direction of the contours. The implementation of these 
descriptors can be obtained by dividing the image into small 
connected regions, called cells. Then, for each cell we compute 
a histogram of gradient directions or edge orientations for all 
pixels of the cell. The combination of these histograms is the 
descriptor.  

The HOG descriptor has some key advantages. Since it 
operates on localized cells, the method maintains the invariance 
to geometric and photometric transformations. We implemented 
the HOG descriptor on C/C++ and using OpenCV [9] libraries 
following four steps as shown below: 
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1) Training database conception: the database used was 

the "INRIA pedestrian database" which contains images 

covering a wide variety of pedestrians. We have then updated it 

by adding images of pedestrians in different states (running, 

standstill, in front, side and back) and some images of 

pedestrians in clothes from Islamic society: women wearing 

veil of different colors and shapes.  

2) Luminance normalisation: The input images of our 

system are initially converted to grayscale. Then their 

luminance is normalized. We used then the Gamma correction. 

3) Image gradient : The gradient is a key step for the 

descriptors formation. The accuracy of computed orientations 

and histograms and the results are closely related to the method 

used to calculate the gradient of the image. Fast computation of 

the gradient can be done using, for example,     1-D simple 

derivation masks, 2-D operators like Sobel or recursive 

operators like Deriche. 
In our case, we have used the algorithm of the first 

derivative which is one of the most simple and fast operators. 
This operator uses convolution matrix to calculate an 
approximation of the horizontal and vertical derivative. Let I be 
the source image. Images which contain at each point the 
derivative approximations respectively horizontal and vertical 
are calculated as follows: 

௫ܩ  ൌ ሾെͳ Ͳ ͳሿ ൈ  (1)                 ܫ

 

௬ܩ  ൌ ሾെͳ Ͳ ͳሿԢ ൈ  (2)                     ܫ

 
At each point, the approximations of horizontal and vertical 

gradients are combined as follows to obtain an approximation 
of the gradient norm: 
 G ൌ ඥGxଶ ൅ Gyଶ                  (3) 

 

We also compute the gradient direction as follows:  
ߠ  ൌ  ሺG୷G୶ሻ                (4)݊ܽݐܿݎܽ

 

4) Gradient orientation histograms: A histogram is an 

array of numbers where each element corresponds to the 

frequency of occurrence of a range of values for a set of data. In 

a part of an image, for example, each box of the histogram may 

represent the pixels with the same color. A histogram is a 

transformation of the data space to the positive real numbers. 

From a statistical point of view, a histogram provides 

distribution of a certain type of data set. The image is divided 

into cells of 8x8 pixels size, and for each cell we compute the 

gradient orientation histogram. Each pixel of the cells 

participates in the vote. For each pixel of coordinates (x, y), the 

associated value in the histogram H is given by: 

ሺܽሻܪ  ൌ ሺܽሻܪ ൅ ,ݔሺܩܰ  ሻ              (5)ݕ

We have created 9 sub-images called binaries images, as we 
have chosen the size of the histogram box equal to 20° 
(180°/20° = 9). All pixels in these images are set to zero except 
the pixels in the original image for which the values of the 
gradient orientation correspond to the particular case. These 9 
images constitute the full histogram. For each cell of size 8 x 8 
pixels, we compute the values of the 9 boxes of gradient 
orientation histogram. For a block of 2 x 2 cells, we calculate 
the HOG descriptor for each cell, then the obtained arrays are 
assembled into a single array of 36 components, and it is 
normalized in accordance with standard L1 defined by the 
normalization factor f given by: 

  ݂ ൌ ୴ሺ||୴||₁  ା ஫ሻ    (6) 

 
were v represents the non-normalized vector containing all 

the histograms of a single block, ||v||k its k-norm and ε is a 
constant.  

This normalized vector corresponds to the HOG descriptor 
for a block. An image 64x128 pixels, contains 7 x 15 blocks 
with multiple overlap. We assemble the normalized vectors 
obtained for all blocks in a single 1-D vector of 3780 
components, which represents the final HOG descriptor for our 
case. 
 

B. SVM Classifier  

The set of descriptors (105 x 36 = 3780 values) is used to 
feed the SVM classifier, which generates a model (a set of 
support arrays). During the decision phase, the descriptors are 
calculated in an identical manner as in the learning phase. 
Decision making, regarding the class membership is made 
directly by the decision function of SVM. In our experiments, 
we use the linear kernel function to classify the descriptors 
given by the learning database. 

 

III. EXPERIMENTAL RESULTS 

We have implemented the HOG based detection technique 
in real-time on the mobile robot “Robucar” available in CDTA, 
under two different environments: a wide corridor (indoor 
environment) and a parking (outdoor environment). For that, 
we have used our database (called CDTA base), composed by 
112 images of 320x240 pixels, and containing 216 human 
targets. In this case, we have considered as being a good 
detection if the frame covers more than the half of the human 
body. Images acquisitions and processing management are 
performed within a modular LAAS-CNRS architecture called 
“GenoM” [10], using C/C++ and the library OpenCV on a 
laptop with 2 GHz Core-i5 processor and 4 GB Ram.  

Detection parameters of the proposed technique have been 
tested: Gamma correction of the image, gradient filter type, 
blocks and cells sizes and the global threshold. The goal is to 
identify the best parameters to increase the detection rate, and 
decrease the processing time. 

 
 



A. Image Gamma correction 

TABLE I.  DETECTION RATE & GAMMA 

 Detection 
False 

positive 

With 

Correction 
125 (58%) 17 (8%) 

Without 

Correction 
105 (49%) 11 (5%) 

Figure 1. Human detection without (left) and w

correction 

We notice that introducing the Gamma
image enhances the detection rate. 

 

B. Gradient filter 

We have tested two gradient filters, and h

TABLE II.  DETECTION RATE & GRADIEN

Gradient filter Detection False 

positive 

Sobel 127 (59%) 16 (7.5%) 

1-D Derivator   125 (58%) 17 (8%) 

 

Note that the Sobel filter gives slightly 

with less processing time. We chose then

differentiator, because it is faster. 

 

C. Cells& Blocks sizes : 

TABLE III.  DETECTION RATE & CEL

Cells size 

(pixel) 
Detection 

False 

positive 

6 x 6 162 (75%) 20 (9%) 

7 x 7 163 (75%) 17 (8%) 

8 x 8 158 (73%) 17 (8%) 

9 x 9 158 (73%) 16 (7%) 

10 x 10 138 (64%) 13 (6%) 

 

The cells size selected affects the quality

even more on the detection time. We chose 

reasonable amount of time. The sizes below 

but their computation time does not a

application. 
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a correction of the 
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are slightly better, 

allow a real-time 
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We have then tried several c
cells size. The one which 
blocks of 36x36 pixels, 9x9 
execution time to be near to 3 s
robotics tasks), we have chosen
as it gives a quite good detec
(135ms ≈ 7 frames/second). 

D. Global threshold 

Figure 2. Detection rate 

From this figure, we notice 
bleu) are between thresholds v
rate of false detection is quite lo

Figure 3. Detection tim

In the second figure, we can

lowest values when the thres

results, we have chosen the val

high detection rate. The fals
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Detection 
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Processing  
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After parameters evaluations and tunings, we have tested 

our programs on several databases. Among them, one 
downloaded from the Internet (INRIA database). Here are 
presented some detection results applied on images taken from 
this database.  

Figure 4. HOG based detector on INRIA database 

Figure 5. HOG based detector on CDTA database 

 

 Figure 5 presents detection results applied on images taken 
from our base. Are summarized in this table statistics on 
detection rates and false detections taken from tests on the two 
cited databases. 

TABLE V.   TABLE OF RESULTS 

 

IV. CONCLUSION 

In this paper, we present fast humans detection system 

implemented, with our own database, using histograms of 

oriented gradient (HOG) combined with the SVM classifier. 

Several tests have been performed to identify optimal 

parameters. Global detection rate is quite interesting, form 

results of detector application on two different databases. 

Processing time is suitable for embedded applications, but can 

be enhanced by detector combination. Future works will focus 

on integrating this technique in complex robotic task. 
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Databases Image 

number  

Target 

number 

Detected 

target 

False 

detection 

Rate 

detection 

INRIA 900 1178 1012 170 (17%) 86% 

CDTA 1689 4031 3491 712 (17%) 87% 

All 2589 5209 4503 822 (17%) 86% 

 


