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Simon J. Gay Nils Gesbert
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Behavioural type systems ensure more than the usual safatpgiees of static analysis. They are
based on the idea of “types-as-processes”, providing desticype algebras for particular properties,
ranging from protocol compatibility to race-freedom, leftkedom, or even responsiveness. Two
successful, although rather different, approaches, as@etypes and process types. The former
allows to specify and verify (distributed) communicatiaofocols using specific type (proof) sys-
tems; the latter allows to infer from a system specificatipnazess abstraction on which it is simpler
to verify properties, using a generic type (proof) systenhai\is the relationship between these ap-
proaches? Can the generic one subsume the specific one? tyinde® And can the former be used
as a compiler for the latter? The work presented herein is@tstvards answers to such questions.
Concretely, we define a stepwise encoding af@alculus with sessions and session types (the sys-
tem of Gay and Hole |4]) into &-calculus with process types (the Generic Type System ohkia
and Kobayashi [6]). We encode session type environmentarifies (which distinguish session
channels end-points), and labelled sums. We show forwatdeuerse operational correspondences
for the encodings, as well as typing correspondences. Tfdiliy encode session subtyping in pro-
cess types subtyping, one needs to add to the target langeaye constructors and new subtyping
rules. In conclusion, the programming convenience of eassipes as protocol abstractions can
be combined with the simplicity and power of thecalculus, taking advantage in particular of the
framework provided by the Generic Type System.

1 Introduction

This work is a contribution to the understanding of the fetathip between two different type disciplines
for concurrent processes, aiming as well at compiling ote time other (considering thus the specific
session constructors @asmacros).

Session types [5, 12] are an increasingly popular technique for specifying andiyieg protocols in
concurrent and distributed systems. In a setting of pairdint private-channel-based communication,
the session type of a channel describes the sequence andftgpessages that can be sent on it. For
example

S= & (service : ?[int] .![bool] . end, quit : end)

describes the server’s view of a channel on which a clientsedect eitheservice or quit. In the former
case, the client then sends an integer and receives a bpaldhe latter case, the protocol ends. From
the client’s viewpoint, the channel has a dual type in whighdirection of messages is reversed:

S= @ (service : ! [int] .?[bool] . end, quit : end)

Session types provide concise specifications of protocalsaiow certain properties of protocol imple-
mentations to be verified by static type-checking. The thebisession types was developed in order to
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analyse a particular correctness criterion for concursgstems: that every message is of the type ex-
pected by the receiver, and that whenever a client seleei/es, the server offers a matching service.

The generic type system (GTS, from now on) of Igarashi and Kobayadhi [6] is a diffdrapproach
to type-theoretic specifications of concurrent systememfia single generic type system for the
calculus [10/ 11], inferring a generic type abstracting tiedaviour of the process, it is possible to
enforce specific properties by varying certain paramet@tweir motivation is to express the common
aspects of a range of type systems, enabling much of the watksagning typing rules and proving
type soundness to be packaged into a general theory instdming worked out for each case. In the
generic type system, types are abstractions of processdlatsthe typing rules display a very direct
correspondence between the structure of processes anautiei® of types. There is also a subtyping
relation, which can be maodified in order to obtain specificetgystems; this allows, for example, a
choice of retaining or discarding information about theesraf communications. A logic is provided in
which to define awk predicate that is interpreted both as a desired runtimesptyppf processes and as a
correctness condition for typings. This double intergretaallows a generic type soundness theorem to
be proved, but means that type checking becomes more likelrabecking unless the specific subtyping
relation can be exploited to yield an efficient type checlatgprithm.

GTS vs. session types. There is no doubt today of the usefulness of session typgsessing protocols
as type abstractions and verifying statically their impdemations is very relevant in a society of ubiquit-
ous computing. Process types, instead, are somehow mavdeél@l” and are supported by powerful
type systems able of ensuring a wider range of behaviouogigpties. Therefore, it would be beneficial
to use process types as an executable intermediate lanfjwagssions-based ones.

Kobayashil[7, Section 10] has stated that GTS subsume®gdgpis, although without presenting a
specific construction or giving a precise technical meaitortpe term “subsumes”. It is clearly possible,
within GTS, to define a type system similar to session typ#sdrsense that types specify certain allowed
sequences of messages. A somewhat different questiorty wiei@im to answer in the present paper, is
whether a specific existing system of session types can lpedeged within GTS.

Related work. Kobayashi’s paper also defines an encodingraalculus with session types into
calculus with a linear type systeim [8] and record types, dmboves that with this encoding, subtyping
for session types [4] arises from the standard subtypingsridr records. That encoding is interesting:
the target language is the-calculus with additional process constructs that are algoatch for the
branching and selection operators of session construatat$ypes.

Dardhaet al.[1] show an operational and a typing correspondence, pgdiia correctness of Kobay-
ashi's encoding, and illustrate its robustness by testiwith respect to session subtyping, polymorphism
and higher-order communication. Concretely, the targejuage is ther-calculus with boolean and vari-
ant values and with a case constructor; the types contaarlivariant, and product types. Session type
duality is captured by passing opposite capabilities iedinchannel types, and the linearised (or linearly
sequential) behaviour of a session is enforced by passiagdh communication a fresh channel where
the subsequent communications of the session should tage.plot surprisingly, branching is encoded
using the case constructor and branch and select types@rdeshusing variant types. Naturally, session
subtyping coincides with variant subtyping.

Demangeon and Hondal[2] study a subtyping theory forealculus augmented with branch and
select constructors (obtaining thus a fully abstract emgpdf a session calculus). In the case of this
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work, the source and target languages are quite close.

How to encode session types in process types, using GTSsislwious; the types are more general
and powerful, and the process language is simpler — justsgnousrr, i.e., has no extra features. Our
aim is two relate the two different behavioural type disicies as they were defined, without adding extra
features to the target language. This is relevant to theydexdiprogramming languages for distributed
systems. For example: if one wants to design a distributgetbbriented language with static typing of
protocols, can one work directly with session types instdfatbveloping an object-oriented formulation
of process types, and “compile” (features of) the languate GTS?

Results. We assume that “GTS subsumes session types” means definiagséation[-] from pro-
cesses and type environments in the source language intg $ali§fying as many of the (usual) fol-
lowing conditions as possible: (1) the encoding functioaudti be compositional; (2)P] should have
a similar structure t® (the encoding should be uniform); (3) there should be a spmedence in both
directions between the operational semantics, idéaly- Q if and only if [P] — [Q]; (4) there should
be a correspondence in both directions between typingatéms, ideallyi” + P if and only if [I'] > [P];
(5) type soundness for session types follows from the GT& $gpundness theorem.

Defining a translation between the languages, enjoyinglibeeaproperties, is the aim of this paper.
We start by introducing the calculi under study: the nextisacpresents the source and the target
languages (syntax and operational semantics), and S&fisents the types and type systems of both
languages. Then, we address three key issues: (1) tragsthg polarities in the source language:
andx™ refer to the two endpoints of channe(Sectior#); (2) translating the labels used in branching
and selection— external and internal choice (Sedtlon §)c¢&paring the subtyping disciplines of the
source and the target languages (Sedtion 6). Finally, @€@ticoncludes the paper, summarising the
achievements, contributions, and future work.

For all encodings hold forward and reverse operationalespondences, as well as typing corres-
pondences. The encodings respect the properties iderdlfi@ee, do not restrict neither the source nor
the target language, and the operational correspondemeessanuch as possible independent of the
type system. Due to space limitations, we do not presenirhdre failed attempts to define the transla-
tions with the envisaged properties, nor proofs (which, &y, are all straightforward inductions over
reduction rules and typing rules; the difficulty was in folating the definitions).

2 Languages

We take the source language to be the version of session tigiesed by Gay and Hole [4]. This
language uses-calculusv to establish sessions, instead of spestkpt/request primitives [5,[12],
and does not consider progress propertiés [3]. Also, we vemecursive types, for simplicity, and we
make some changes to the structural congruence relatiampio inessential differences compared with
GTS. From now on we refer to the source language — the pothrimenadicri-calculus — asession
processesnd to the target language — the polyadicalculus — aggeneric processesThe source
language is monadic, for simplicity, but the target languegpolyadic by demand of the encodiE]g.

The languages share several common process construatardion, parallel composition, scope
restriction, and replication. There are two differencdsstfFin session processes, channels are decorated
with polarities which are absent from generic processes, and processesyochronise when channel

1The syntax and the (static and dynamic) semantics of thesand target languages are taken from [4] and [6].
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Choice-free source language (synchronous moreaialculus with polarities):

Choice-Free Session Processes,Ji= 0| (H|J) | (vxX)H | xH | xP?y].H | xPI[y9].H
Polarites pqg:=+|—|¢

Full source language: ad@isanchingandselection
Session Processes ,@::= 0| (P|Q) | (vX)P | «P [ xP2ly] .P | xPI[y9].P | xP>{l; : R}, | XP<l.P
Full target language (synchronous polyadicalculus with mixed guarded sums):

Generic Processes 2= 0| (P|Q) | (VX)P | xP | 3i¢ G
Guarded Processes G= x![y].P | x?[y].P

Figure 1. Syntax of the source and the target languages

names have complementary polarities. Second, sessioagsex have constructors fsanch an input-
labelled external choice, argklect to choose a branch of the choice. Generic processes inséead
mixed guarded sums (but no labels), and input and outpudrectre decorated wittventdaken from a
countable set. Since these tags are only relevant for piepdike deadlock-freedom, which we do not
address herein, we omit them.

Syntax. Considerx,y,z from a countable se?” of channels Assume that is a non-empty finite
indexing set. The source and target languages are indlyctleéned by the grammars in Figure 1. As
usual,X'abbreviates a sequenkge - - X, andvX abbreviatevx; - - - vxn, for somen > 0.

To illustrate the session language, we present a simple@gahat we incrementally develop, using
it throughout the paper to also clarify aspects of the emgxli To have a more “realistic” example,
we assume available in the languages basic numerical ydloetean expressions and boolean types.
These are not in the syntax (which is minimal, following thgpiple of Occam’s razor), but can be
straightforwardly added without affecting the encodings.

The following code, parameterised on changdéiplements the service branch of the server referred
to in the introduction:

serviceBody(x) E'x2fi] . x! [i = 3].0
The complete server, containing code to implement betfice andquit, is below (the code foquit is
trivial).
server(X) R {service : serviceBody(X), quit: 0} (1)

A client first selects one of the two options — in this caseyice — and then follows the corresponding
protocol. The definition is parameterised on chamnel

client(x) 2l aservice . ! [3].x?[b].0

In a complete system, the client and server will be instéediavith opposite endpoints of a common
channel:
server(c™) | client(c™)
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Common rules (for session and generic processes):

P—Q P—Q

R-RES R-ParR
PR N EIRS QIR W
PP P-Q Q=Q
P50 (R-SP)
Consider auality function on polarities, defined as follows: = —, — = +, and€ = ¢.

Channel communication in session processes:
(*?2.P | X*1Y1.Q) — (Qy/Z | Q) with pg#e (R-S-Com)
Labelled communication in session processes:
(XP>{li: R} | XP<lk.P) — (A | P) if kel andwithp#£¢e (R-S-COMLAB)
Communication in generic processes:

(432 Ptoo) | (X15.Q+-)) = (PF/2 | Q) (R-G-Comm)

Figure 2: Reduction rules for processes

This configuration is reached by one participant — in thisnepde, the client — creating the common
channel and sending one endpoint to the other participamt. channek on which this initial commu-
nication takes place is defined byz) at the top level.

system d:ef(vz)((vc)zﬂ [c*] .client(c™) | z ?[X] . server(x)) 2

Operational semantics. Let both languages be equipped with a structural pre-odigrdted=<), along
the lines of that of the generic processes, inductively @eftoy the rules in Figuife 10 (Paige 109), where
P = Qstands folP <QandQ < P.

The computational mechanism of the languages is a reduptiation on processes, inductively
defined by the rules in Figuté 2. The axioms sabstitutionof polarized names for unpolarized names
in processes. The definition is standard, renaming bounahles if necessary in order to avoid capture:
P[yP/x] denotes the substitution gP for the free occurrences afin P, andP [yP/%] denotes the sim-
ultaneous substitution of the polarized channelgifor the respective free occurrences of the channels
in X in P (assumingX| = |yP|, where|%| denotes the length of the sequenocef thannels). Recall that
the operators of the languages which introduce bindingsesteiction and the input actions. Lei(P)
denote the set of channels occurring fre®in

3 Types and Type Systems

We define now the type systems of both languages, and sunentlagisesults for each system.
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Session Types :S=end |?2(S].S |![S1]. S| & (li : S)ic) | B (i : S)ie
Typing Environments A ::= xfl 'S xS, n>0

Assume that is a non-empty finite indexing set. Consider a countable fdabelsl,m, 14, etc, dis-
joint from the set of channels. In a branch tygel; : S),., and in a select type (l; : §);,, consider
all labels pairwise disjoint. Letlbs(S) denote the set of all labels occuring at top level in a ses-
sion type:tlbs(& (li : S)ic;) =tlbs(® (li : S)ic)) = {li |i € 1} andtlbs(S) = @ in the remaining cases

Consider auality function on session types, defined as follows:
end=end, 75].5 =![S].51, [S]. 5 =751,
& (Ii : S>i6| = 69<|i :S>iel , and @(h : S>ie| =& <|i :§>iel

A typing environment is a mapping from polarised channels gession types. A balanced typin
environment requireA(x™) = A(x~) whenever{x",x”} C dom(A). The following rule defines a
transition relation on balanced typing environments.

«

X,lk

AXP & (li:S)ig XPr@(li: ), — AXP:SXP:§ ifkel (RST-Comm)

Finally, the rules below inductively define the type systdrthe source language.

VxP € dom(A),A(xP) = end FP_ o+ AP MobER o
A0 (T-NIL)  —F (T-REP) DA (PP (T-PAR)
AXxT:Sx :SFP AXP:Sy:SHP :
Ar (P (O NEW) AP 7S] e oy P N
AXP:SFHP
T-O
(B 1S5 1y S Py P 0ouT)
Viel,(AxP:SER) (T-OFFER) kel | =g AXP:S P (T-CHoOSB)

AXP:& (i1 S)ig FxPe{li : B}ig AXP: (i1 S)g FxPal.P

Figure 3: Types and typing rules for session processes

Session types. Figurel3 defines the syntax of session types and type envaotanand the correspond-

ing typing rules. Several rules use theoperation on type environments (Definitionl3.1). This opera

is defined for a type environment and a typed identifier, amd t#xtended inductively. It is a partial

operation, and if it occurs in a rule then definedness of tlegaifwn is an implicit hypothesis of the rule.

Definition 3.1 (from [4]) 1. LetA,xP:S=A,ifxP:Sc A, andA,xP: S=AU{xP: S}, if xP ¢ dom(A).
Otherwise the operation is undefined.

2. Consider p£ €. LetA+xP:S=AXP: S, if {xP,x*} Ndom(A) = &; let A+x* : S=A,X*: S, if

{xt,x",x¢} Ndom(A) = @. Otherwise the operation is undefined.

One easily concludes that the system presented in Sé¢t®PRBaess (2) is well-typed: system. More
interesting is the typing of the process below the restnicti

Z":1[S.end,z :?[§.end,c" : Sc” :Skz"![ct] . server(c") | z ?[x]. client(X)
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Process TypesT ::= 0|« | (F1|M2) | (T1&2) | Tic ¥
Guarded Types y::= x![1].[ | x?[1].T | t.[
Tuple Types 1 ::= (X)I

Assume that is a non-empty finite indexing set. The tuple type binds thancdels (variables)
Xin . The definition of the set of free channelslin(denotedfv(I")) is then straightforward. A
tuple or process type ©osedif it contains no free channels. A typing environment is acgss type.

Let SC #. Consider thak|g is x if it occurs in S and ist otherwise. Then the operatiafy
is defined homomorphically on closed tuple and process typrsept in the following case
(R)Ms= ()T lgz. Moreover s =T1y\s.

Generic subtyping relation: base rules.
(F0) ~T (SuB-NiL) (F1|F2) =~ (M2|1) (SuB-COMM) «[ ~ (I'|«I") (SuB-UNFOLD)

(M1 (F2|T3)) ~((F1|F2)|T3) (SuB-Assoq (M1&T ) <Ti(i € {1,2}) (SuB-ICHOICE)

r<r’ r<r’ r<r’
——— (SuB-REP ——— (SuB-ABS ——— (SuB-RESTRIC
w[ <« ( ) Xr<xr’ ( ) MNs<r'lg ( 7
r<r/ F1<F’ rg_r/
(SuB-SuBS) SuB-PAR
R <P /R (FF) < (P31 )

Generic subtyping relation: additional rules.

x0~ 0 (SuB-INACT) N~t.I (SuB-TPREF) My |y <T (SuB-DIVIDE)

Generic typing rules:

ov0 (TN 225 (Ren) 2t (rear) TER =T (rosus)
TP p (N ErrmEmeaE e (o
z\ifilewtyz.i:eé ~ (rcnorce [op Ok(rﬁl»(v;\)/;wm{i}zg (TN

Figure 4: Types, subtyping and typing for generic processes
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<71
(XHT1g] . T1|X?[12].T2) — (F1]T2)
r—r’ (RPT-RR) r<rj r—rs r,<rs
(MTy) — (M) (F1]T2) < (M|TY)

(RPT-ComMm) t.r > (RPT-EVT)

(RPT-UB)

Figure 5: Reduction on process types

where the session typ&andSare defined in Sectidd 1.

Gay and Hole[[4] proved Type Preservation and Type Safetye(nars in well-typed processes).
Appendix[A presents the results adapted to the setting whersin (Theorenis Al2 and A.3).

Generic types. GTS is parameterized by a subtyping relation and a consigteondition on types:
instantiating them yields a particular type system, enguai given (safety) property on processes. These
“generic” conditions occur in the typing rules. Type souesresults depend on the particular semantic
property on processes one is interested in. We presenthitysatticular subtyping relation and consist-
ency predicate used in this work: Figlide 4 defines the syritgemeric process types, and presents the
rules defining the subtyping and the typing relations. Maststructors are fairly standard in process
algebras: *' stands for replication, ‘&’ for internal choe, ‘+’ for external choice, and’*for a synchon-
isation event. The subtyping relatighis the preorder satisfying the rules presented in the figuihere
Mi~loifM<lyandlMy, <TI7.

Since types are themselves processes, one needs to defiperatiomal semantics to describe their
evolution. Letl [§/X] denote the simultaneous capture-avoiding substitutidhethannels ity for the
respective free occurrences of the channebsiml™. Reduction on process types is inductively defined
by the rules in Figurgl5. Write;* for the reflexive and transitive closure -6f.

The process types that “behave correctly” are those thavelidormed

Definition 3.2 (from [6]) A process typé& is well-formed written WF(I"), if wheneverl™ —* (x![1q] .
M1 |x?[12].T2|3) thenty < 12 holds.

To ensure particular conditions on the behaviour of pro¢gsss, GTS introduces the notion of
consistency predicatelt uses the auxiliary notion of non-active process typethm form of aNULL
predicate.

Definition 3.3 (from [6]) LetNULL(I") hold ifI" has no subprocess input or output guarded. A predicate
ok on process types isgroper consistency predicafet is preserved by reduction, &k (") thenWF(I"),
and ifok(I") andNULL(T"") thenok(I" |T").

The particular consistency condition we are interested limearity: a process type has no parallel
sends or receives on a given channel.

Definition 3.4 A process typ€ is linear, written LIN(I"), if WF(I"), if T —* (x![11].[1|2) implies
) 7L>* (X! [Tg] I3 | F4), and ifr —* (X?[T]_] I | F2) impIiest 7L>* (X?[Tg] I3 | F4).

Lemma 3.5 LIN(I") is a proper consistency predicate.

Igarashi and Kobayashi proved Subject Reduction — as psesas/olve “their” (well-formed) pro-
cess types evolve accordingly — and, as a corollary, a ptppeeservation result relating properties on
processes and on process typesplbe an invariant predicate on processes and considek predicate
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Let ¢ be a name translation function. The translation of proceissagefined by the following axiomg
(herep, g may be+, — or €), assuming the nameasandv fresh, being homomorphic in the cases
omitted.

DY Pl = DY, - [PT, [P21y] - Pls = P2V - [Pyt s uy
[(vx) Pﬂq& = (vu,v) [[P]]¢+{x»—>(u.v)}

The translation of prefixes is defined as follows, wheng+ ¢.

XPLY ] = @P 00! [99(y), 99(y)] Py = ¢P (0! (97 (v), &~ (¥)]
X! Y] = ¢~ (x)! [09(y), 09(y)] XYy =0~ () 9 (), (¥)]
[XP2AYI]S = ¢P(x)?[u,v] (X215 = ¢ (x)2[u,v

Figure 6: Process translation

that is its correspondent on process types; a consequerBugbfEct Reduction is that, if a process type
typing a given process satisfies ak predicate, the process satisfies the invarjufTheoreniA.b in
Appendix(A). Hereafter . IN(I") is ourok predicate.

The counterpart of an error session process is a generieggodth an arity mismatch or with races
(parallel sends or receives on the same channel).

Definition 3.6 (Error process) A generic process P &n error if one of the three conditions below hold.
1. Whenever B= (vX) (x?[Z . Py | x![§].P2| Q) itis the case thalZ| # |J];
2. P= (v (x![7.P. | X![]]. P | Q);
3. P= (vR) (x?[7.PL | x?§].P2| Q).

The counterpart of session type safety is simply linearity he absence of arity mismatches. Lin-
earity implies the absence of races, as ensured usuallysbiosdypes; the definition of well-formedness
(Definition[3.2 above) implies no arity mismatches, allogvirowever a channel to change its arity after
a reduction step. The predicdtéN states these conditions on process types: in the origioakgs and
after each reduction step, there are no parallel sendseivesoon the same channel nor arity mismatches
(this last condition resulting frorhIN being a consistency predicate — Lemmd 3.5).

To ensure that well-typed generic processes are type $aféffices to show that absence of errors
in generic processes (an invariant property) correspamdtl$N. The result is a corollary of a theorem
proved by Igarashi and Kobayashi.

Proposition 3.7 (Resulting from Theorem 5.1 of{[6]) If ' >P andLIN(I") then P is not an error.

4 Encoding Polarities

The first question in defining a translation from session @sees to generic processes is how to represent
polarities. It is easy to see that a non-trivial encodingasassary. Simply erasing polarities would lead
to reductions in the target language that are not possittleeisource language; this is clear from R-S-
CoM and R-G-MM. We do not restrict the encoding to well-typed processeweasant to show that it
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Let ¢ be the mapping from names to pairs of names, introduced i €.
Consider(§) = (u,V)[y: Sy uv1ug- Whereu, v, andy are fresh.

[O4" Sty ZSn}]]¢ = [[X‘fl:sl]]q) | | DX Sl

[xP:end], =0
xS ] = ¢~ (XS] [X: S [x: 7S] - Sy = ¢ () ?[(S1]- [x: S
[x" :2S1]. S5, = ¢ (07A(S] . [x s 2], [ S Sl = @ (02AS]. [x < S
[x" 1SS, = ¢ 00tiS]. [xT s Se], [ :tSi S, = 07 00! (S [x < 2]

X

Figure 7: Type environment translation

is possible to define a translation where the session tytsmyand an instance of GTS yield the same
classification of typable processes.

The translation guarantees an operational and a typing@smondence. To state the former in the
reverse direction, we need to restrict the result to weletyprocesses.

To simplify the presentation in this section we consideryafioice-free i(e., non-branching, using
only sequence and parallel) processes and types.

The process translation function maps each free name of the process into two newttaagaes,
according to the rules in Figuré 6. The translation usesae translatiorfpartial)functiong from names
to pairs of names. Writ¢ ™ and ¢~ for the compositions o with the first and second projections,
respectively. We requir¢ ™ and¢ ~ to be injective and have disjoint images. Whiem (¢ ) anddom(y)
are disjoint, we writap + ( to denote the union of the name translation functigrend ¢ (otherwise,
this operation is undefined).

To illustrate this encoding, consider the procggsem (Proces§ 2 in Page 98). The encoding of the

process is below, considerin¢gd:ef{x = (tu)}, x d:ef{z — (W)}, d:ef{c — (d,e)}.

[system], = (vv,w)[(vc)z"![c"] . client(c”) | Z ?[X] .server(x)]]x

= (vv,w)((vd,e)w![d,€g. [client(c)] X+w) | w2lt,u]. [server(X)] 4,

Thus, the communication betwegh andz~ becomes a communication @n
The forward operational correspondence between source and target reduction steps is one-to-one.
Let P be a choice-free session process gritk a name translation function.
Lemma4.l 1. If p#ethen[P[xP/y]]y = [Py 1y (4p09.6700)}
2. Py = [Plg 4ty 6+ 0.0 0003
Theorem 4.2 If P — Q then[P], — [Q] .
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The type translation (in Figure[T) maps sequential session types to generic deHo@e) process
types. Let us first present an example. Considering

A% et 2lint] .t [bool] . end, ¢ : ![int] .?[bool] . end}

we haveA - c?[i].c![i=3].0 | c![3].c?b].0. Then,

rd:ef[[A]]w = [{c* ;?[int].![bool].end}]]w | [{c :![int].?[bool].end}]]w

= d?[int].el[bool].0 | d!int].e?bool].0

It is easy to check that the encoded system is typable witketiceding of the type environmeritg(,

M- [[systemﬂw). However, the generic process type no longer capturesaweofithe protocol, as the two
steps (exchanging first an integer and then a boolean) haggyen different channels. If one thinks of
a process with (possibly long and complex) sessions, onerstashds that the encoding produces a large
number of new channels, requiring a partial order on thenxituitehe flow of the protocol that is clear

in each session type.

The reverse operational correspondence requires typing: a communication between, for example,
send orx~ and receive o, does not reduce in the source language (and is ill-typediréuslates into
a reduction in the target language.

Theorem 4.3 Let P be a well-typed choice-free session process anfillbeta name translation function.
If [P], — Q then there exists'Buch that P— P and [P'], = Q.

Typing correspondence. We show a correspondence in both directions between typanigadions.
Let P be a choice-free session process anglbe a name translation function. We state first complete-
ness and then soundness.

Theorem 4.4 If A= P for some balanced, then[A], > [P[, andLIN([A]).

The converse of completeness does not hold. For exampéePtak« 0. Then[x" : end] > [« 0], but
it is not the case that™ : end + 0.

Theorem 4.5 If I'>[P], andLIN(I") thenA - P, for some balanced.

Note that™ must be linear, otherwise, considerigigx) = (u,v), we have(u! [ |u![]) > (u![] | u![]),
whereagx"![] | x"![]) is not typable as a session process.

5 Encoding labels

Figure 8 extends the translation of processes to includdléabsums (branch) and selectors. We translate
the labels occuring in a branch process as fresh names ¢ghsgfatrto the translation of the corresponding
select process; the latter, in turn, selects its desiredchrautputing on the name corresponding to the
label. We use a functiog to map the labels to the fresh channels.

To translate the select process, we need typing informd#orenvironment typing the process) to
know how many labels the corresponding branch has. Thaeisuimber of parameters of the channel
which is waiting for the fresh names created by the otherpmidt to represent the labels.
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Let A be a typing environment.

Extend the translation of prefixes with the following ruleserep # €.
[XP<l]3 = #P(X)?[A1... An], Where{As ... Ap} = tibs(A(xP)), with n > 0
[x<l]g = 6T (x)2A1... An], where{A... An} = tibs(A(XP)), with n > 0

Extend the translation of processes with the following suleherep € {+,—,¢}. For alli €
{1,....n} let {A1...An} Nfn(R) = @, and letA xh, Ai. Leta(l) = Aj whereA(xP) = & (li : S)[L,

andl =1;.
[X"<l . Py = [xPal]g .o (). [P]§

[x" > {li: R} 1]]¢ (VA1 A0) &~ (0! [A1... An] . 511 A2 [P

[x >{li:R}L 1]]¢ (VAL An) T (00 A1 An] . STy A2 [P

[xe {1 R}l = (VA A0) 6~ () A1 Aa] . Sy A2 [RT

Figure 8: Process translation for branch and select

The illustrate the idea, we encode now #eever (process l). Recall thag Olef{x — (t,u)} and

Xd—ef{Zb—> (,w)}, S= & (service : ?[int] .! [bool] . end, quit : end), and

Adef{x+ ?[int] .![bool] .end,x™ : ![int] .?[bool] .end}. Consider nowy’ d:ef{x+ :Sx : S} and let the

function o associate the labeterviceandquit with the channelserviceandquit. Then,

[server(x™) ]]¢+X = (vservicequit) u! [servicequit] .
. . N .
(service?]. [serviceBody(x")] 5,  +quit?[].0)
Forward operational correspondence. We no longer have a one-to-one correspondence between re-

duction steps, because communication on a label in the sdamguage is translated into two commu-
nications.

Theorem 5.1 Whenever P— Q, then[P] —" [Q] withn=1orn=2.

Reverse operational correspondence. This must also take into account the extra reductions irglv
in communication of labels. The second case in the theoresaritbes the intermediate configuration
between the two reduction steps corresponding to commtimricaf a label.

Theorem 5.2 LetA + P with A balanced and letp be a name translation function. [[P]}@ — Q then
there existg\’ and P such that P— P’ and either[P'[3 = Q or Q= (vA)Qrand Q — Q2 = [P} -

Notice that, by Subject-Reductiofy] is balanced and’ - P'.
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Let ¢ be the mapping from names to pairs of names, introduced i €.
Consider(§) = (U, V)[y: Sy uv)1ug- Whereu, v, andy are fresh.
Forallie {1,...,n} let{A;...An} Nfn(R) = @.

[X":& i S)ila]y =&~ (A1, An] T, A (S]] - O
& i S)ila]y = 0700 A, Al T AP((S)] - O
[x: & (i - S)ilaly = ¢~ ()AL, Al T AP(SD] - O
X" @it S)ia], =0T ()AL, A &L AL [(SD] .0
X" di:S)Li]y =0~ (0?Ar,.. . A &L AL [(S)] . O
[x: el :SI>|n:1]]¢ = ¢ (X)?A1,..., A0 & A [(S)] .0

Figure 9: Type environment translation

Typing correspondence. Figure[9 extends the translation of typing environmentsréméhing types.
Error processes in the full session language must now takeaiccount the possibility of a selector
“asking for” a non-existing label in a branching offer:

if P=(vR) (xP>{li : R}, | XP<l.Q | R) then eithed = Iy andk ¢ | or {x*,x~} Nfn(R) # @.

The ok predicate is still simplyLIN. Theorems 4]4 and 4.5 have corresponding versions for the
full calculi: a session process is well-typed if and onlyt# encoding is well-typed in aok typing
environment. In the following results, IBtbe a session process andgebe a name translation function.

Theorem 5.3 (Completeness)f A+ P then[A] ; > [P and LIN([A],,).

Theorem 5.4 (Soundness) etA’ be a balanced session type environmenk. dﬂ[Pﬂ@’ andLIN(I") then
A+ P, for some balanced.

6 Subtyping correspondence

Subtyping is an essential ingredient of the theory of sesgipes. Originally proposed by Gay and
Hole [4], it has been widely used in other session-base@ssstwith subject-reduction and type-safety
holding. We now discuss how to represent session subtypi@jis.

Safe substitutability. Notice that subtyping in session types means less brangtifgand more
choice (®’). This basic principle conforms to the “safe substituliépprinciple” of Liskov and Wing [9].
However, the principle has no counterpart in process tyakisough the internal choice axiom follows
the principle, the rule for external choice (‘+') does ndbal changing the number of arguments of the
operation (Appendik B presents the subtyping relationsessisn types and on generic process types).

It is thus not surprising that the encoding presented in theipus section does not preserve subtyp-
ing. LetSld:ef& (I : end) andSzd:ef& (l1: end,l7 : end); we haveS; < S, but the encoded types are not
related:

(S1) = (u,V)V! [1]12! [(end)] . O £ (u,v)V! 11, 12] (11! [(end)] &I2! [(end)]) . 0 = (S)
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The problem is twofold: (1) the subtyping relation on pracgees does not allow changing the sequence
of names sent on an output; (2) session subtyping meansriasshing, but process subtyping on choice
does not allow to change the number of summands.

To achieve an encoding guaranteeing a typing correspordene would have to “compensate”
subtyping, always passing all labels occurring at top lévahe branch process of a given channel.
Consider

A% xt g (Iyrend),x @Iy end)} andP X (x* 5 {1, : 0,1, : 0} | X al;.0)

Note thatA + P. To avoid breaking the typing correspondence, instead cddingA andP independ-
ently, if one encodes the typing judgement then the encodingy needs to take into account all the
labels of the branch offered by . It is easy to get an encoding preserving and reflecting iipatbut
actually, the idea presented removes subtyping. The Bttagequestion is whether an encoding in GTS,
capturing the session type subtyping discipline, existsobr

Variant subtyping. A straightforward way of faithfully representing sessiarbtyping in GTS is to
extend the language of processes with labelled values aageaconstructor, and the language of types
with variants (as done by Dardlea al. [1] and by Demangeon and Honda [2]). Using the usual rules of
variant subtyping ([111]) one gets a sound and complete éngod

7 Conclusions

We have defined a translation from a system of session typéisda-calculus into Igarashi and Kobay-
ashi’s generic type system (GTS). We have proved corregrmedresults between process reductions in
the two systems, and between typing derivations; we caregigly the generic type soundness theorem.
Therefore, the translations clarify the relationship ew session types and GTS, and provide an
interesting application of GTS, which can thus be used tpsu@nalysis techniques for sessions.

A preliminary version of this work was presented at PLACESBut was not published). The trans-
lations presented in that work were more complicated (ugingarders) and did not consider subtyping.

Achievements. The encodings are a contribution: although encodings ikga® calculi have been
thoroughly studied, the two aspects presented herein & n@e are not aware of other investigations
on how to encode polarities or labels (as constants) in Ealéthout such constructs. Our proposals
may be used in other contexts.

The translation of branching and select types in the presehsubtyping reveals a difficulty: the
protocol of sending the labels of the branch type to thenraffehoice does not respect the generic
process subtyping discipline. This is because the encaafitgpelled choice requires the labels to be
passed as fresh names; however, as subtyping does not &lbowging the length of the sequence of
names passed, session types related by subtyping areatemhsito unrelated process types. Even if
the labels are passed one by one (as in the encoding of polyadimonadicri-calculus), the encoded
session types would not be related by subtyping; they mayetheless, be related by simulation.

We do not see how to achieve a correspondence between subfypsession types and process
types, but we leave the possibility of proving a negativeilidsr future work.

An encoding using records (or a case constructor) and \dyiges in the target language is, however,
simple to achieve, as done by Dard#taal. [1] and by Demangeon and Honda [2].
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Assessment. In our opinion, the translation into GTS stresses that eadypes themselves remain of
great interest for programming language design. Daedled. reached similar conclusions. There are
several reasons for that.

First, session types are a high-level abstraction for ®iring inter-process communication_[12];
preservation of this abstraction and the correspondingrproming primitives is very important for
high-level programming. The translation of a session typ@ & process type produces a less informative
type: the global specification of behaviour is lost.

Second, there is now a great deal of interest in session fgp&mguages other than thiecalculus.
Applying GTS would require either translation intecalculus, obscuring distinctive programming ab-
stractions, or the extension of GTS to other languages, hwhight not be easy (apart from adding the
constructors required for subtyping).

Third, proofs of type soundness for session types are ctunaigpfairly straightforward, even when
these are liveness properties, as is frequently the caseafiount of work saved by using the generic
type soundness theorem is relatively small. It may, howdyepossible to use treatments of deadlock-
freedom in the generic type system as a basis for undersriiw to combine session types and
deadlock-freedom more directly.

Fourth, for practical languages we are very interestedpediiecking algorithms for session types;
GTS does not yield an algorithm automatically, so specifjoaihms for session types need to be de-
veloped in any case.

Fifth, the subtyping principles of session types, whichvie flexibility both for programming and
for typing, are not easily captured in a subtyping relatiarffgain” process types.

In short, session constructors and session types are encodablecesprtypes, and one may use the
power of GTS to represent and reason about session spegiigafs future work, we plan to investigate
concrete analysis techniques for sessions based on GTS.
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Figure 12: Session typing rules with subtyping
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Figure 13: Generic subtyping relation: additional rulesifiput and output

o IfP=(vX) (xP2[Z.Py | XP! [y9].P, | Q) then{xP:2[T].SxP![T].Sy4: T} CA,X: T, and moreover,
if pe {—,+}then{x",x }Nfn(Q) = 2.

o IfP=(vR) (xP>{l;: R},o | XP<l.Q | R) then pe {—,+}, 1 el and {x",x } Nfn(R) = @.

On generic processes.

Definition A.4 (Correspondent properties) An invariant predicate p on processesrrespond ta con-
sistency predicatek on process types, if whenews(I") andl" > P then gP) holds.

Theorem A.5 (Adapted from Theorem 4.1.2 of{[6]) Let some invariant p on processes correspond to
an ok predicate. Ifl >P andok(I"), then gQ) holds for every Q such thatP* Q.

B Subtyping

Subtyping on session types. Recall the subtyping relation on session types (in Figule Gay and
Hole proved that subtyping is a preorder.

To incorporate subtyping into the source language, we madb# rules (T-N), (T-OuT), and (T-
OFFER). The new versions of these rules are in Fidure 12.

Subtyping on process types. We extend the subtyping relation of the target language ke tato
account subtyping in input and output process types. Thernis are in Figur€ 13. It is simple to
check that the relation is still a preorder.
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