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Thomas Cederborg* and Pierre-Yves Oudeyer

A social learning formalism for learners trying to
figure out what a teacher wants them to do
Abstract: This article presents a theoretical foundation
for approaching the problem of how a learner can infer
what a teacher wants it to do through strongly ambigu-
ous interaction or observation. The article groups the in-
terpretation of a broad range of information sources un-
der the same theoretical framework. A teacher’s motion
demonstration, eye gaze during a reproduction attempt,
pushes of “good"/“bad" buttons and speech comment are
all treated as specific instances of the same general class of
information sources. These sources all provide (partially
and ambiguously) information about what the teacher
wants the learner to do, and all need to be interpreted con-
currently. We introduce a formalism to address this chal-
lenge, which allows us to consider various strands of pre-
vious research as different related facets of a single gener-
alized problem. In turn, this allows us to identify impor-
tant new avenues for research. To sketch these new direc-
tions, several learning setups are introduced, and algorith-
mic structures are introduced to illustrate someof theprac-
tical problems that must be overcome.
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1 Introduction
Various strands of research about social learning in ani-
mals and machines have dealt with similar problems, but
have made different assumptions and used different for-
malisms.Many of the problems that these learners face are
similar when described in the abstract. A human teacher
might be wrong, creating similar problems for the learner
regardless of the type of interaction that is taking place.
A teacher being wrong, uninformed or confused could
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for example lead to imperfect human evaluations, or bad
demonstrations. The theoretical problem of how to define
success when the human is flawed is similar across any
domain where an artificial learner is trying to do what a
flawed human teacher would like it to do. When a non-
expert humanandanartificial learner are interacting in an
unstructured environment, a number of problems arise. In
this setting it is not clear how toobtain agood successmea-
sure from the learner’s sensors, meaning that some atten-
tion needs to be given to how success is best defined, and
to howa learner can estimate this success based on its sen-
sors. To bring theoretical foundations to several different
fields, a formalism is proposed for any situation in which
a learner is trying to figure out what a teacher wants it to
do, based on observations or interactions. This is meant to
cover any type of information that the learnermight be an-
alyzing, and tries to not make assumptions regarding the
types of strategies the learner uses to obtain information.
The learner has to make probabilistic updates regarding
what to do, without ever knowing for certain how success-
ful it is.

The problems with hard coding a reward function for
a robot learner in an unstructured environment with a hu-
man is that for the learner to use the reward signal, it
must be specified in terms of variables that are available
to the robot. See [1] for a detailed discussion of the prob-
lemwith specifying this reward function. In the formalism
proposed in the current paper, a reward function defined
in robot sensors is therefore instead treated as an approx-
imation by a learner, not something to be maximized. In
[1] the idea of Inverse Reinforcement Learning (IRL) is pro-
posed, using a teacher’s demonstrations to estimate the re-
ward function. The interpretation of those demonstrations
is, however, difficult. See, for example, [2] for a discussion
of the correspondence problem. Other problems include a
teacher failing to achieve some state, or trying to achieve
the wrong thing due to a misunderstanding.

Since defining a reward function in terms of a robots
sensors is difficult, and interpreting a demonstration is
also problematic, a human teacher could observe the
learner and simply tell it how well it performed. Studies
have, however, shown that there are serious problemswith
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directly maximizing human numerical input. In [3] it is
for example shown that there is sometimes a motivational
component to the rewards given by human subjects. The
behavior of giving positive rewards to bad states is not al-
ways caused by failure to observe the world, or lack of
knowledge about what the correct action is, but is some-
times instead awayof “encouraging the robot". The funda-
mental problem is a mismatch between the actual human
teacher, and the assumptions built into the algorithms. In
[3] two paths to mitigating the problem are discussed, un-
derstanding what humans actually do, and modify learn-
ing algorithms to bettermatch this (see also [4] for an algo-
rithm based on a different interpretation of evaluations),
or the modification of the setup to make the teacher’s be-
havior better match the assumptions of the algorithm (giv-
ing a teacher a dedicated button formotivational feedback
reduces the tendency to use the “reward button" for such
communication). See [5],[6], [7], [8] and [9] for more on
these issues. Further problems include a teacher giving an
evaluation based on not seeing some object, or due to a
misunderstanding.

Since a programmer defined reward function, a
demonstration and a teacher generated evaluation are all
problematic and in need of interpretation, the presented
formalism treats all of them as members of the same ab-
stract class of objects, referred to as information sources.
Besides evaluations, demonstrations and reward signals
this class of information sources include anything that can
beused to inferwhat a teacherwants a learner to do, for ex-
ample pointing gestures, facial expressions, EEG readings,
hand gestures, tone of voice, speech comments, eye gaze
and anything else that can be used to guess what a human
teacher wants the learner to do. The formalism presents
a coherent way of describing learners that autonomously
learns how to interpret information sources, regardless of
what those sources are. For example by learning a sim-
ple task with the help of a reasonably good understand-
ing of demonstrations and speech comments, and then us-
ing this to re-interpret the meaning of a “reward button"
pushed by a human.

The learner’s goal is not to maximize positive evalu-
ations, but instead to find better interpretations of eval-
uations and other information sources in order to figure
out what the teacher actually wants the learner to do. This
can lead to different types of behavior compared to a “pos-
itive evaluation maximizer", for example when hiding a
mistake will lead to higher reward1, or when consistently

1 Revealing a possible mistake to a teacher who provides a numer-
ical value when evaluating the learner might sometimes result in

performing well will result in the teacher deciding that the
learner knows the task and therefore stop using the but-
tons2.

The formalism defines a problem. What is presented
is a formalism, not a model, and what this article attempts
to answer is: “what, exactly, do we mean by: figuring out
what a human wants done?" and “how can we describe
different types of solutions to this problem in a unified
way?". The practical goal is to be able to build better artifi-
cial learners that can learn from humans in environments
that are as unstructured as possible. Such learners need to
operate effectively in situations where the human teacher
is not an expert, might be wrong, or is not certain of how
the learner will interpret various types of feedback. This
article, therefore, tries to give a solid theoretical founda-
tion for a variety of research projects, gathering several dif-
ferent types of social learning under the same formalism.
Each information source is treated in a similar way, and a
learner is seen as something that learns to interpret these
information sources.

This type of investigation can help us better under-
stand social learning in humans by building computa-
tional models. To the extent that a biological organism is
trying to solve the formalized problem, it might be a good
idea to use the notation as a descriptive/predictive model
of that biological system. And to the degree that biological
systems are successful at solving the formalized problem,
their strategies can inspire solutions in artificial agents
(just as a good solution to the problem is a candidate ex-
planation for some specific behavior of a biological system
(if somethingworks, a biological systemmight have found
it)). The actual details of biological systems are however
not the only determining factor regarding how to formalize
the problemor how to best solve it. The problem is interest-
ing in it’s own right, regardless of what biological systems
do. And the solution strategies of biological systems are
not necessarily better than designed strategies.

both lower expected numerical value provided, and at the same time
higher expected accuracy in the evaluation. If the goal is to maximize
the numerical value given by the teacher, the optimal actionmight be
different from the optimal action of a learner as defined by the pre-
sented formalism.
2 If the teacher will stop evaluating the learner when the learner per-
forms the task correctly, and the teacher givesmore positive than neg-
ative rewards, then learning the task as fast as possible might not be
theoptimalwayofmaximizing the value receivedby the teacher. Thus
the optimal action of a learner as defined here could be different (the
numerical value is a teacher signal to be interpreted, not a value to be
maximized).
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If the teacher often fails (perhaps missing a target
on some occasions), then the learner could learn much
more if it could interpret the demonstrations and make a
guess about which attempts were failures (for example, by
analyzing facial expressions, body language or what the
teacher says after the demonstration). This boost in learn-
ing is of the same type as the boost in learning attained by
better estimating which part of a demonstration was rel-
evant, or which action was evaluated. These problems all
share the very important property; a perfect solution is not
needed to improve on the status quo. Any solution that
is better than what is produced when ignoring the prob-
lem will boost learning. Being aware of the problem (that
the evaluated action is not necessarily the one directly pre-
ceding the evaluation, that not all parts of the context are
necessarily equally important), and mitigating it, can be
better than ignoring the problem, even if a complete so-
lution is very far away (a “failed demonstration detector"
does not need to be perfect to improve on the status quo).

This new way of looking at social learning allows us
to see new types of learning situations that can be ex-
plored. An example could be building a learner that needs
to learn how to tell a failed demonstration from a suc-
cessful demonstration. Such a determination might be
based on facial expressions and body language, and can
be used to learn a set of difficult tasks. This can boost
learning in cases with large failure rates or with to ex-
pensive/few demonstrations. Even without the ability to
separate failed and successful demonstrations, the learner
might be able to confidently learn one simple task by ob-
serving many demonstrations. When the task is known,
the learner knows which demonstrations were failures,
and can find correlations between failures and facial ex-
pressions or body language. The updated interpretation
hypothesis can now be used to learn the more difficult
tasks.

We have thus far talked about the learner’s ability to
interpret various sources of information. This is, however,
ambiguous and should be made concrete and formalized.
A human’s demonstrations, facial expressions, eye gaze or
EEG readings do not contain a crisply specified meaning
that the learner can decode. The teacher might not even
be consciously aware of producing all the information that
the learner is interpreting. Thismakes it problematic to de-
fine success in terms of how well meaning in the mind of
the teacher is transferred to the mind of the learner. In-
stead, a success criterion is defined in terms of what an
informed version of the teacher would think of a learner’s
action choice. The interpretation of an information source
is thus successful to the extent that it causes the learner to
take actions that are successful according to this criterion.

A creative new learner strategy could, for example, re-
sult in states that the teacher does not see, have long term
consequences the teacher is unable to predict, or have side
effects the teacher has never considered as a possibility. To
choose between two strategies, it is now necessary to esti-
mate what the teacher would have thought about a strat-
egy if that teacher was fully informed. This is subtly dif-
ferent from predicting how much it will like the strategy
based on what the teacher will observe the learner doing.

The formalism for the unsimplified setup starts by re-
describing existing learning algorithms. Each algorithm
is seen as a certain way of interpreting an information
source. The idea is introduced where the way of interpret-
ing an information source can be modified based on ob-
servations, which means that any specific interpretation
of a source is a hypothesis (for example that an observ-
able scalar value indicates absolute success, or that it in-
dicates incremental progress). A learning algorithm is thus
referred to as an interpretation hypothesis. The concept of
the teacher’s informed preferences is defined and a learn-
ing algorithm is now viewed as a hypothesis of how infor-
mation sources relate to the informed preferences of the
teacher. Informed preferences can be roughly described
as what the teacher would want the learner to do if the
teacher knew and understood everything it considers rele-
vant to the learner’s action choice. Informedpreferences is
designed todealwith cases suchas “the teacherwould like
the learner to perform an action, but if the teacher knew
the consequences of that action, would prefer another ac-
tion instead" or “the teacher is very happy with the end
result after the learner has cleaned the apartment, but if
the teacher knew that the cleaning produced a lot of noise
that disturbed the neighbors, the teacher would not like
the cleaning strategy". The success of a learner’s action
choice is determined by what an informed teacher’s opin-
ionwould have been regarding how good these actions are
for the teacher.

The problem is unfortunately no longer an inference
problem with a numerical success value visible to the
experimenter. This means that it is not possible to de-
scribe an algorithm as searching for an approximation to
a known optimal solution. The learner has some rule for
selecting actions, which we will refer to as a policy. In ad-
dition to suggesting updates to this policy, the interpreta-
tion hypotheses make predictions regarding what will be
observed. Let’s take the example where a human teacher
is given one button with a plus sign on it, and one button
with a minus sign on it (both including a “volume" con-
trol), and the teacher is told that it can use these to give
feedback to the robot learner. A learner can now have sev-
eral competing hypotheses regarding how to interpret this
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teacher signal. For example, the buttons might be pushed
comparing the learner’s most recently performed action
to: (i) the best action the teacher has seen, (ii) the optimal
action, (iii) the previous seven actions performed by the
learner, (iv) the previous two actions performed, or vari-
ous other possibilities. For a limiteddata set, the suggested
policy updates can be quite different. They also make dif-
ferent predictions regardingwhat interactionhistorieswill
be observed. If the learner performs the same action in
the same context, for example, then the different hypothe-
seswill predict different changes in evaluation. In general,
this results in different probabilities for a given interaction
history. Thus, given an observed interaction history, it is
possible to update the set of interpretation hypotheses by
discarding, changing probabilities or modifying parame-
ters. If the learner has access to a few reliable task poli-
cies that are learnt by interpreting some other information
source, and the interaction history of the time these tasks
were learnt includes button push data, then these task
models can be very useful when the learner chooses be-
tween the different ways of interpreting the reward button
(the correct action, the action actually taken, and the but-
ton pushing behavior are all known). It is in general possi-
ble to use the interpretation of one information source to
learn how to interpret another source; if the well under-
stood source can be used to learn a task policy, then this
task policy can be usedwhen learning to interpret another
information source.

Some of the information sources will be described as
“teaching signals", but this should not be taken to imply
that the teacher is following an interaction protocol shared
with the learner.

After covering related work in the following section,
the scope of the formalism is described. Then a success cri-
terion is introduced in a series of simplified worlds, each
with a mathematically defined success criterion. These
are presented in stages where some simplifications are re-
moved at each stage. In the following sections, the sim-
plifications are removed step by step in order to gradually
approach the desired setup containing an actual human
teacher in an unstructured environment. At one stage of
removing assumptions/simplifications, the problem stops
being a well defined inference problem with a mathemat-
ically defined success criterion (there will be no way of
obtaining a number representing the level of success of a
learner in a specific situation), and we must fall back to
the informed preferences of the teacher. In section 8 ex-
isting learning algorithms are described as interpretation
hypotheses.

2 Related work
The formalism attempts to cover all agents, referred to as
learners, trying to figure out what a human teacher wants
them to do. The formalism tries to avoid making assump-
tions about the semantics of the information sources that
the learner uses to figure this out. This means that re-
search into all forms of social interaction where an agent
can be described as trying to do what a teacher wants it to
do is related, including research on animal, human and
artificial learners. Formalisms of related setups are also
relevant, including those concerned with learning from
demonstration, inverse reinforcement learning and rein-
forcement learning. By framing social learning in this way,
the formalism opens up many new possible avenues of re-
search, with perhaps the most prominent example being
a learner that is learning how various information sources
should be interpreted concurrently with learning to per-
formmultiple tasks. These new research avenues are a sig-
nificant contribution of this article, and in this section they
will be discussed while covering the previous work that is
most related to the new setups.

This is a very large research area and all aspects can-
not be covered here. Focus will instead be on a few repre-
sentative research projects, and on various ways in which
they can be extended, as well as on other formalisms
(since these have similar goals as the presented formal-
ism), and studies of human teachers (since human teach-
ers is what the learner is trying to interpret).

2.1 Robot Learning from Demonstration

The teacher can provide examples of good policy which
can be used to infer what it wants the learner to do. One of
the difficulties in interpreting these demonstrations arises
if they are not provided to the learner in the form of its own
input and output spaces, giving rise to the correspondence
problem [2]. If demonstrations can be obtained, or trans-
formed into, the input and output spaces of the learner
then there are a lot of different methods for turning this
into a policy.

If demonstrations are interpreted as flawless policy ex-
ecutions perturbed by Gaussian noise, then amodel of the
optimal policy in the form of a Gaussian Mixture Model
(GMM) can be found using an Expectation Maximization
(EM) [10] algorithm.Modeling a generating policy using an
GMM with parameters set by EM was introduced in [11],
and later Calinon et al. showed, through a series of ad-
vanced robotic experiments [12–15], that the method was
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easy to use and could successfully generalize and repro-
duce smooth motor trajectories. The assumption made is
that each data point have been generated by one out of
a set of Gaussian distributions. The parameters of these
Gaussians are not known, and which one generated what
data point is also not known. If the parameters of theGaus-
sians were known, it would be easy to estimate the proba-
bilities ofwhichGaussian generatedwhichdata point, and
vice versa. If it were known what data points were gener-
ated, it would be easy to estimate the parameters of the
Gaussians (in both cases one can relatively easily find the
best possible estimate given the available data). The so-
lution presented in [10] is to make an initial estimate of
both parameters and probabilities, and then concurrently
re-estimate both. If one estimate gets better, then this can
be used to improve the estimate of the other, which in turn
can be used to improve the estimate of the first.

Besides being a technical solution to using demon-
strations to find the parameters of a GMM, the basic ideas
behind the EM algorithm will be used later in example so-
lutions during the simplified setups. It will also be used
as an analogy in the examples where multiple interpre-
tation hypotheses and multiple tasks are learnt concur-
rently in the unsimplified setup. Knowing how to inter-
pret one source of information can enable the learning of
tasks and the interpretation of other information sources,
aswell as re-interpreting specific interactions. This is simi-
lar to a learner that has an imperfect and uncertain model
of how to interpret speech comments, facial expressions
and demonstrations, as well as imperfect and uncertain
models of a set of tasks. Observations of a new demon-
stration can be used to update a task model, that in turn
can be used to update the model of the speech comments;
if the task being commented upon is better understood,
it is possible to learn more about what the speech com-
mentsmeant. The updatedmodel of the speech comments
can then be used to update another task model. This new
task model can now be used to update the model of how
to interpret demonstrations and facial expressions. This is
the exact same principle: update a set of uncertainmodels
with interlinked probabilities.

The usual setup is either a single task or labelled
demonstrations. One exception is [16], where two differ-
ent tasks are learnt from unlabeled demonstrations (the
starting position determines which of two different ping
pong swings to perform). The imitator is not told the num-
ber of tasks or which demonstrations is of which task. The
problem of multiple tasks is also dealt with in[17] and [18],
where an imitator learns how to respond to the instruc-
tions of a human. They also deal with multiple unseg-

mented demonstrations, where the number of tasks and
the number of demonstrations are both unknown.

To allow new unlabeled demonstrations to be incre-
mentally and immediately incorporated online during the
teaching process, Local and Online formulation of Gaus-
sianMixture Regression (ILO-GMR),was introduced in [19]
and [20]. The central idea of this technique is to build on-
line and on-demand local Gaussian Mixture Models of the
task(s).

When an imitator is observing a demonstrator per-
forming an action, the imitator must decide how to map
the actions of the demonstrator into actions in its own ac-
tion space, referred to as the correspondence problem [2].
This problem becomes more difficult the more the embod-
iments of the demonstrator and imitator differ. Imagine a
child observing a much bigger adult demonstrator clap its
hands. Should the hands of the imitator be at the same
height above the floor, or should the angles of the arms be
the same? Should the maximum distance between hands
be the same, or should the angles be the same? If themaxi-
mumdistance shouldbe smaller (so that armangles canbe
mimicked), it is not physically possible to simultaneously
mimic the speed of clapping, the speed the hands hit each
other and the relative speed curve of the hands (unless the
angles are much larger, then the hands of the imitator can
only impact each other at the same speed as the adult, if
the child either increases the pace of clapping or takes a
pause at some point during the movement). This simple,
“clap your hands" example shows that there are difficult
questions to answer about what the essence of a move-
ment is, even if embodiment only differ in size, and the
movement is only relative to the agent itself. One method
that has been used to learn this mapping is presented in
[21] where a robot observes a human that is mimicking its
motions. If a human performs a movement that it consid-
ers to be best corresponding to themovement of the robot,
the robot can learn the intended mapping of the human.
One common method of demonstration that avoids deal-
ingwith the correspondence problem is to tele-operate the
robot, for example using a joystick to remote control a
robot helicopter [22]. The same effect can be achieved by
physically directing a robot’s body, as in for example [23].

This research is usually referred to as imitation
learning, programming by demonstration or learning from
demonstration. In [24], an agent-based view of imitation
learning is presented andfive central questions are put for-
ward. The imitator must decide who, when, what and how
to imitate, and someonemust address the questionofwhat
constitutes success (for example formalized by an experi-
menter or the creator of an artificial imitator).What consti-
tutes success is defined by the formalism relative to what
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an informedversion of a teacherwould think. If the learner
knows what it is trying to do, it can use a human teacher
to achieve this known goal. The answer to the question
of “who to imitate" is then determined by whomever pro-
vides the demonstrations that are most useful for achiev-
ing this goal. The answer to the question of “when to imi-
tate" is then determined by when a given demonstrator is
providing demonstrations that are useful for this goal. The
learner, as defined in the presented formalism, is in a dif-
ferent situation since it does not knowwhat it is supposed
to do, and would use a teacher’s demonstrations to figure
this out.

In [24], the question of what the imitator is trying to
achieve is left open (and depends on factors such as what
type of animal the imitator is or what type of robot it is). If
the imitator has a specific goal whose progress it can mea-
sure and that is unrelated to the teacher/demonstrator,
then the “who" and “when" questions can be answered
with respect to that goal (the formalism presented is differ-
ent since the goal is dependent on a teacher whose mind
is not necessarily easy to read). We can take the example
of a robot that is trying to maximize the amount of states
it can reach in a measurable outcome space, and an ani-
mal that is trying tomaximize the amount of food obtained
when food is given as rewards for imitation by a human.
“Who" to imitate is then a question of who gives the most
informative demonstrations relative to current skill levels
(producing reproducible actionwith outcomes it could not
previously achieve) or a question of who gives it the most
food. “When" to imitate depends on how effective this is
for learning relative to other learning strategies or a ques-
tion of whether imitation is the most effective way of get-
ting food. The “how" and “what" questions also becomes
well formalized (imitation of which parts of the demon-
stration results in food), meaning that the simultaneous
exploration of all four questions is a well formed problem.
In [25] all four questions are simultaneously addressed by
an artificial imitator that is trying to expand the amount of
outcomes it can reach. But in general, the setup where an
imitator faces these four questions simultaneously is not
well explored.

The field has mostly focused on the “what" and the
“how" questions where two large technical issues that al-
gorithms must take into consideration have been to max-
imize at the same time genericity and accurate generaliza-
tion. The goal has been to develop techniques that may al-
low a robot to learn various context-dependant skills with-
out the need for tuning of parameters for each new skill:
this implies that the dimensions/variables that the robot
can measure in demonstrations should be higher than the
number of dimensions that are relevant for determining

the action to be done during a (sub-part of) a skill. In-
deed, different skillsmight bedeterminedbydifferent vari-
ables/dimensions/constraints. If a robot can to learn the
“essence" of a skill, this will allow it to reproduce demon-
strations successfully in contextswhich are not exactly the
sameas those of thedemonstration. If all details of demon-
strations are considered then the learner will never find it-
self in a situation that is similar to a demonstration, since
there is always something that is different. If the wrong
details or the wrong abstractions are used, demonstra-
tions might seem to have been made in similar situations
even if they are not. If the learner frames the demonstra-
tions correctly (that is, attends to the relevant details or ab-
stracts thedemonstration in the rightway) it canfind those
demonstrations that really are relevant to the current con-
text. In [26] several learning from demonstration projects
are covered, classified according to how demonstrations
are gathered, and according to the type of algorithm used,
as well as discussing some ways of dealing with imper-
fect demonstrators. It also classifies inverse reinforcement
learning as an instance of learning fromdemonstration. In
[27] research into robot programming by demonstration is
summarized and different types of algorithms and ways of
encoding tasks are presented.

Demonstrations can be encoded at the trajectory level.
Instead of building amodel that operates on discrete prim-
itive actions, models are built that operate in continuous
spaces. These spaces could, for example, be in the joint
space of the robot or in the operational/task space, such
as the position, speed or torque space of its hands, map-
ping sensory inputs to motor outputs or desired hand ve-
locities (which can be seen as different levels of granular-
ity). In the early work of [28] the set of acceptable trajecto-
ries is spanned by the trajectories seen during the demon-
strations, and [29] introduces a nonparametric regression
technique based on natural vector splines to build a repre-
sentation of a trajectory either in Cartesian (sometimes re-
ferred to as task space) or joint space, from several demon-
strations. In [30] a method inspired by dynamical systems
and attractors is presented using recurrent neural net-
works to learn differentmotions and switch between them.
The mimesis model proposes to encode a trajectory as a
HMM. Reproduction is achieved using a stochastic algo-
rithm on the transition probabilities of the HMM.

Anumber of authors have proposed to encode sensori-
motor policies as sub-symbolic dynamical systems, whose
dynamical output is determined by both internal parame-
ters and an input context [27]. These dynamical systems
can be implemented/modelled as complex recurrent neu-
ral networks [31][32][33] or as more traditional statistical
regression techniques [34][35]. These are interesting as
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they in general do not make assumptions regarding the
type of outputs and inputs they are dealing with, making
them suitable for use when the context has been extended
to include the communicative acts of an interactant. In
practice, output has typically been motor commands and
input context has been a compact encoding of the past
sensorimotor flow [15][27][22] including potentially inter-
nal variables that may encode simple things such as mo-
tivational states but also predictions of the future or hy-
potheses about properties of the environment that cannot
be observed directly [36].

It has also been proposed that learning context-
dependent skills could be achieved through inverse rein-
forcement learning (see [1] for some early work and [37] for
a recent overview): instead of directlymodeling the skill at
the trajectory level with a dynamical system, a first infer-
ence step is performed that consists in trying to infer the re-
ward/cost function that the observed demonstrations are
supposed to optimize. Such a function can for example be
a numerical assessment of how much food gets into the
mouthof thedoll in the case of a set of doll-feedingdemon-
strations, or how close to a rabbit the stone of a teacher
landed if the inferred intention of the teacherwas to hit the
rabbit with the stone. Thus, this is a technical approach
to directly learn the goal/intention of the demonstrator.
Whenahypothesis of reward functionhas beengenerated,
then the learning agent can search for the adequately en-
coded dynamical system (including encoding of the con-
text) that allows it tomaximize the corresponding rewards.
The drawback of this approach is that it is difficult to de-
sign a hypothesis space of reward functions that is at the
same time flexible enough to learn a variety of tasks and
allows for efficient statistical search and inference. There
are twomain advantages of this approach. Firstly, it allows
potentially better generalization by letting the robot self-
explore alternative strategies to achieve the goal that may
be more efficient or more robust than those used by the
demonstrator (e.g. see [22]). The second advantage is that
the approachnaturallymakes it possible to take advantage
of reinforcement feedback from the demonstrator during
reproduction attempts made by the robot.

In [38], a learner is presented who updates interpreta-
tion hypotheses of a teacher’s comments, described as an
extension to inverse reinforcement learning. The teacher
say things such as: “go right", “bad robot", “no", “good
robot", “go left", and the learner starts with an incomplete
model of how to interpret these utterances. The learner
then concurrently updates this model of what the words
mean, as well as a reward function used to describe the
task. In [38], discrete symbols are used, and the learner
starts with a partial lexicon. In [39], [40] and [41], these

limitations are relaxed, and the information sources be-
ing interpreted is extended to include EEG. EEG is an infor-
mation source for which the need of interpretation is intu-
itively obvious (raw EEG readings look incomprehensible
to a human, while the interpretation of a reward button or
a speech comment might be mistakenly seen as obvious).

In [42], different types of social learning are classified
based on the degree to which a learner is trying to do what
a teacher wants it to do. A distinction is made between
higher level teacher goals and low level teacher actions,
forming a triangle. Learners that do not care at all about
what the teacher wants the learner to do is in one cor-
ner (for example learning how an object functions by ob-
serving a teacher, but without any consideration of that
teacher’s goals). Learners that care only about high level
teacher goals are in another corner, and learners caring
about only low level actions are in the third corner. Learn-
ers caring aboutmultiple things are somewhere in themid-
dle. Within the framework of [42], a learner as formalized
here would be somewhere on the side of the triangle op-
posite the “don’t care about the teacher corner".Where the
learner is on that line depends onwhat the teacherwants it
to do (if the teacher is showing the learner how to dance it
would be at one end of this side, and if the teacher wants
to achieve some specific world state by any means, then
the learner would be at the opposite end).

2.2 Reinforcement learning

A numerical evaluation of an action is another informa-
tion source that can be used by an agent to try to determine
what a humanwants it to do. These types of signals are of-
ten maximized, which is what a learner, as defined here,
would do under certain interpretations. If the numerical
value is interpreted as coming from an informed teacher,
as evaluating absolute performance, and as coming from
a teacher whowill always send an evaluative signal3, then
it makes sense to maximize this value.

3 Even if a teacher sends numerical values corresponding exactly to
the performance of the learner, the teachermight under some circum-
stances decide that the learner now knows the task and consequently
stop sending signals. This might mean that the learner’s optimal ac-
tion does not maximize the value sent by the teacher (there is no in-
centive to drag out learning just to get the teacher to keep pressing the
button). The learner would therefore only be a pure value maximizer
if it interpreted the teacher as a tireless evaluator, in which case, the
absence of the signal cannot be a result of consistently successful ac-
tions.
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Other interpretations will lead to somewhat different
strategies. In anexamplebasedon the experimentwith the
Leo robot in [43], we can imagine a learner and a teacher
sitting at opposite sides of a table, each with only partial
ability to observe a set of colored buttons that the learner
can press. If the learner can estimate what the teacher
sees, there are nowmanyways to treat the numerical value
besides as a pure indicator of success. The value could be
ignored if the teacher does not see everything relevant, or
it could be used to make an update with a smaller step
size. The value could also be considered as an evaluation
of what the teacher saw. If two identical learner actions
in identical setups are judged differently, this could be in-
terpreted as the teacher evaluating performance based on
buttons that the learner does not see. Anotherway to inter-
pret the inconsistent evaluation of two identical actions in
seemingly identical situations is that the value represents
incremental progress. Attempting to model what a teacher
sees, and how to interpret the teacher’s actions is a central
idea behind this formalism. Except for [43], this situation
is severely under explored.

As well as taking into account the level of informed-
ness of a teacher when interpreting a numerical value, a
learner might also need to determine whether the rein-
forcement signal indicates incremental progress or abso-
lute performance. The two models will, in general, make
different predictions about which interaction histories are
more probable, and imply different policies,making it pos-
sible and useful to estimate which model is correct. The
learner can also act proactively to increase its informa-
tion content. If the learner is unsure that the action it is
about to take is good, it can, for example, wait until the
teacher is paying attention, and/or call on the attention
of the teacher before performing the action. If the learner
believes it might have made a mistake, such as damaging
something, it can draw the teacher’s attention to this in or-
der to check if it will receive a negative value in response.

If the best way of getting reward is to do what the
teacher wants it to do; the problem faced by the reward
maximizer is identical to the problem faced by the learner
as specified in this formalism. The learner wants to figure
out what the teacher wants it to do since doing what the
teacher wants it to do is the learner’s primary goal. In this
case the reward maximizer wants to figure out the same
thing, since it is the best way to get a reward. This means
that algorithms maximizing a reward can be used as solu-
tions to the problem faced by a learner, possibly in combi-
nation with a system that estimates when this approxima-
tion is appropriate and useful. The optimal behavior of the
two formalisms diverge in the event that hiding the result
of an action from the teacher will result in higher expected

reward. A learner could, for example, be built as a combi-
nation of a rewardmaximizer and a system that checks for
this type of situation and then switches to another type of
behavior.

2.3 Learning to interpret speech, gestures
and facial expressions

If trying to get someone to understand a task, one of the
most intuitive ways to help them understand what they
should do is to just tell them directly. This raises the ques-
tion of how a learner might figure out how verbal utter-
ances relate to what a teacher wants the learner to do. For
this purpose, the learner can use observations of speech
in three different ways. One category is of the type “good
robot", an evaluative comment in the space of teacher
signals (an information source that should lead to policy
updates). Another category is illustrated when a teacher
throws a basketball to another player shouting “here",
treated as part of the context and input to a policy (an
aspect of the scene that should lead to a specific action).
A third type is when the teacher shouts “here" when the
teacher is in a good position and a player on the same team
has the ball, a demonstration that is to be imitated in a spe-
cific circumstance (something that should be mapped to a
state in the learner’s action space, and reproduced if the
learner is in the same context as the teacherwaswhen per-
forming that action). It should be clear by now that from
the point of view of the learner, it is possible to treat “good
robot" type utterances in the same way as facial expres-
sions. In the sameway it is possible to treat a teamplayer’s
hand waving, its “here" speech act, and the fact that there
is no opponent between the learner and a team player in
the same way (they are all part of the context).

In this sense there is no longer a need to define success
in language learning as the successful transfer of a mean-
ing fromonemind to another (a definition that suffers from
the problem that it is hard to locate these meanings inside
the head of human speakers). This point has been elab-
orated further in [44], which also investigates how a sin-
gle learner can learn to respond accurately to speech acts,
gestures and object positions using the same strategy and
treating them in the sameway. In this situation the learner
is not told the number of tasks, and not told whether or
not speech or gestures are at all relevant to the tasks of the
individual demonstrations.
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2.4 Combined approaches

The idea to let the task model be complemented by feed-
back from the demonstrator upon reproductions, as well
as by self-exploration actions done by the robot, is pre-
sented in [45][34]. These studies provide an example of
how to combine multiple sources of information from so-
cial interaction. In [22] an imitator learns to perform heli-
copter acrobatics and its skill surpasses that of the teacher;
this research exemplifies how important it is for a formal-
ization of social learning to allow a learner to become bet-
ter than the teacher.

It has to be noted that these various approaches to
learning by imitation can also naturally be augmented
by more complex interactions involving things such as
the demonstrator explicitly drawing the attention of the
learner towards the relevant aspects of the context using
social cues (e.g. see [36]). Thus, this family of approaches
adopt a non-restrictive broad view of learning by imita-
tion, in contrast to more restrictive definitions sometimes
used. The more restrictive definitions have lead some re-
searchers to argue that “learning by imitation is limited
because the observed action does not always reveals its
meaning [...] In order to understand an action, a learner
will typically need to be provided with additional obser-
vation given by a teacher who demonstrates what is cru-
cial: the goal, the means and - most importantly - the con-
straints of a task" [46] (for the same line of thinking, see
also [47] and [48]).

Combinations of evaluative feedback and demonstra-
tions have been explored in several different settings. In
[49] the learner is provided with demonstrations, and the
teacher is able to provide evaluative feedback by indicat-
ing parts of a reproduction where the learner performed
well or badly. While [50] does not explicitly say that it
combines different kinds of social learning feedback, if we
view the motor primitives as a set of demonstrations (or a
set of demonstrated skills), then the reinforcement signal
acts as a second source of information.

2.5 Studies of human teachers, and
algorithms adapted to their observed
behavior

The difficulty of the problem faced by a learner is strongly
influenced by how well the priors over interpretation hy-
potheses fits with the actual behavior of the human teach-
ers that the learner will encounter. This aspect can be
improved by a systematic study of how humans actu-
ally teach artificial learners. Therefore the problem of au-

tonomously re-interpreting information sources are tightly
linked to three complimentary research avenues related
to the study of human teachers. First is the experimen-
tal paradigm trying to figure out how humans actually be-
have, leading to better algorithms if assumptions are static
or better initial interpretation hypotheses if assumptions
can be updated. Second is trying to figure out how vari-
ous learner actions influence a teacher in a social situa-
tion, something that can lead to better feedback (display-
ing confusion or understanding seems to help people give
good feedback for example). The third is how the behav-
ior of teachers can be modified by researchers so that they
give useful feedback (for example explaining to teachers
what types of demonstrations will be useful, give evalu-
ators a dedicated button for motivation in order to make
them stop using a reward button for this purpose, etc).

In [36], [6], [7], [8] and [9], human teacher intentions
were investigated, showing, for example, that teachers
attempted to include multiple communicative intents in
a single channel, that negative feedback had a different
interpretation than positive feedback, and that teachers
sometimes gives positive feedback attempting to guide fu-
ture actions. Humans also tend to give more positive than
negative rewards, even in the very beginning of a learning
episode, before performance is good (the surplus of posi-
tive reward is not caused by high performance). It shows
that interpreting the total number of positive rewards mi-
nus negative rewards as a measure of success is a very in-
accurate model of many human teachers. Various ways of
modifying the algorithms to better fit the actual intent of
human teachers were shown to improve learning.

On amore abstract level [36], [6], [7], [8] and [9] shows
that pre specifying an interpretation of a human teacher
is in general very difficult to do at programming time, and
also that better interpretations can lead to better learning.
That failure to pre specify an interpretation (valid for all
teacher types and situations a learner might encounter) is
both likely and costly shows that this mismatch is a prob-
lem that should be investigated. These studies thus pro-
vide a motivation for the formalism presented in this pa-
per. The formalism provides a systematic way of describ-
ing strategies that the learner can employ to autonomously
improve its interpretations. Giving the learner this ability
is useful since flawed interpretations are likely, and im-
proving them is both possible and useful.

In [51] different interaction protocols are tested on
non-experts to see how they perform in actual situations.
In [52], the cobot software agent interacts in an online so-
cial situation where several of the usual assumptions re-
garding the reward signal is violated. The average reward
over time is for example not an appropriate measure of
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success (due to the human tendency to stop giving posi-
tive rewards when some part of a social environment con-
sistently does what it’s supposed to do).

In [53], several ways in which human teachers break
implicit assumptions of learning algorithmsare discussed,
further underscoring the usefulness of improving the in-
terpretations of human behavior. In [54] a modification to
the TAMER framework [55], is designed to allow a learner
to take advantageof feedbackon future actions. Thismight
allow the learner to take advantage of “no don’t do that"
type feedback, if future intent can be displayed by the
learner and understood by the teacher. Even when it is im-
possible to find out what specific imagined future learner
action was evaluated by the teacher, determining that a
particular evaluation was not an evaluation of any of the
performed actions can still reduce noise. Building on these
findings, [56] presents a study observing teaching behav-
iors in five different navigation tasks. In [57] studies of hu-
man teachers are used to build a parameterized model of
how a teacher gives feedback, with a given teacher being
describable as a point in a three dimensional space. There
is the error rate in determining whether an action was cor-
rect or not, the probability of providing positive feedback
given that an action was determined to be correct, and a
probability of providing negative feedback given that an
action was determined to be incorrect. These three values,
an hypothesized correct policy, and an action taken, im-
plies a probability distribution over the observable eval-
uation space. The presented formalism aims to provide a
structuredway of denoting these types ofmodels, valid for
any information source. This will hopefully facilitate the
description of learners that is concurrently updating a pol-
icy, as well as several models of this type (each operating
on a different information source).

In terms of modifying the behavior of teachers, [58]
shows that researchers explaining what types of demon-
strations will be useful to the learner helps produce use-
ful demonstrations. A modification to the setup where a
dedicated motivation button is added can reduce the ten-
dency to use a “reward button" for communicating this
message [3]. For learners modifying teacher behavior, see
[59] which investigates active learning with the specific
viewpoint of how a learner can act to maximize informa-
tive observations during interactionwith ahuman teacher,
or [60], where a robot learner influences the way a human
teacher gives movement demonstrations.

In [61] a survey of different methods for extracting
information sources from human behavior is conducted.
This concerns the construction of the information sources
that the presented formalism hopes to interpret. Unless
the learner is able to handle raw sensor inputs of a hu-

man giving feedback, there will need to be an intermedi-
ate step, where manageable input spaces are constructed,
making thesemethods highly relevant to implemented so-
lution strategies. If two different methods for extracting
body language are available to the learner, it can estimate
how these correlate with what should be done. If some
task is known, the learner can evaluate which of these
two spaces are most useful for learning a new task. The
learner cannot, however, directly evaluate correctness as
this might not be perfectly correlated with usefulness; one
method might fail to pick up anger and boredom, and the
other might fail to pick up disappointment and fear. The
usefulness of the resulting input spaces can be different
even if their accuracy is the same. If the extraction meth-
ods come with parameters, then this usefulness estimate
can result in a parameter search, finding the input spaces
that are most conductive for learning. See also [62] for a
survey focused on sensor fusion in the domain of social
signals. The presented formalism implies a way of fusing
sensors, based on its correlation with tasks, but the re-
sulting input spaces are selected on a different measure
(specifically, the learner would ignore accurate models of
emotions that the learner is unable to use for the purpose
of finding out what to do).

In [63] we can see another approach to studying imita-
tion learning, in this case using a parrot called Alex. Alex
was shown to be able to learn a large number of quite com-
plex tasks when trained in a very specific type of setup.
Alex was motivated by food, but the computational prob-
lems he had to solve were similar to those of our artificial
agents. Specifically Alex could not use the simulation the-
ory of mind to figure out what a human wanted him to do
(he could not think “what would I have meant if I was do-
ing that"), since his cognitive architecture was so differ-
ent from the humans he was learning from. This example
is interesting for its similarity with artificial learners that
do not share the human cognitive architecture (for exam-
ple due to the technical difficulties in implementing such
an architecture, or because it might be desirable to build
a learner with a different type of mind). The experiments
with Alex thus showed that it is possible to learn quite a lot
of interesting skills without using the simulation theory of
mind.

2.6 Other formalisms

Formalisms of imitation learning have taken two main
forms: classification of tasks and mathematical for-
malisms.
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In the classical work [64] an algebraic framework is
specified and a success criterion is defined for imitation
learning. The set of imitator and environment states is re-
ferred to as X, consisting of the states at each instance of
a time series (where each time instance contain for exam-
ple: states internal to the imitator, the fact that the learner
is holding an apple, states in the environment, etc). The
set of demonstrator and environment states is referred to
as Y. Both X and Y are contained in the state set Z. Fi-
nally, success is defined as minimizing a distance metric
d : Z × Z → ℜ (where 0 is optimal imitation). There are
three ways in which this differs from the presented formal-
ism; (i) it is not clear how such a distance metric should
be obtained, as demonstrator evaluation is problematic,
for example when a human demonstrator is not aware of
everything that happened, (ii) the formalism in [64] does
not include the possibility of other types of information
sources besides demonstrations (which is an important
part of the presented formalism), and (iii) the formalism in
[64] cannot formalize the situation of non-optimal demon-
strations (even given a correct framing and a perfect dis-
tance metric between imitator behavior and a demonstra-
tion, the situation where a demonstrator simply failed at
achieving the task perfectly cannot be handled properly).
Imagine, for example, a demonstrator trying to shoot a
basketball at a hoop and failing most of the time. This is a
situation an imitator can infer a goal from, especially given
complementary information sources. Even if the imitator
has identical embodiment, and is in an identical situation
as what the demonstrator was in during a demonstration,
it should notmiss on purpose if it knowswhat the goalwas
and is able to achieve it, even if the demonstrator did miss
in the same situation. But according to the formalism in
[64], missing the shot in this situation is always an opti-
mal action, nomatter what the demonstrator thinks about
this (as long as the shot is missed in the exact same way, it
is optimal per definition).

The summary provided in [26] also offers a formalism
for learning from demonstration. The demonstrations are
seen as generated from a function mapping inputs to out-
puts, and the goal of the learner is defined as approximat-
ing that function. This leaves the question on how to do
better than the demonstrator (see for example [22] for an
imitator that outperforms the demonstrator). The question
is discussed in [26] and one solution offered is to either
filter out bad demonstrations or smooth them over with
regression techniques. This diverges from the stated defi-
nition of success where the learner is to approximate the
function that generates the demonstrations, and it does
not deal with the case where the teacher is never able to
achieve optimal performance (for example attempting to

teach a robot how to throw a ball as far as possible, where
the robot could in principle throw the ball much further
than the teacher). The other approach presented is to seek
feedback. This is strongly in line with the approach taken
in the presented formalism where multiple sources of in-
formation are used by a learner to figure outwhat a teacher
wants it to do, but seeking feedback falls outside of the [26]
formalism. In [65] for instance, where reinforcement learn-
ing is used to improve on sub-optimal demonstrations, the
success criterion of the reinforcement learning framework
is used and the demonstrations are useful to the extent
that they speed up learning (a learner that is only inter-
ested in maximizing a reward function could tackle the
questions of “who" and “when" to imitate in a way simi-
lar to [25]).

In [66] an attempt to categorize imitation learning is
made. The focus of thiswork is to classify various imitation
learning tasks in terms ofwhat type of goal the demonstra-
torwould like the imitator to perform, for example replicat-
ing the exact movement, or replicating the end state of an
object manipulated. This focus is not the same as what is
attempted in the current paper, where defining success is
an important aspect.

In [67], a formalism is presented for learning from
demonstration. It deals with tele-operated robots in cases
where the demonstrator has a clear understanding of
its goal. Besides the fact that it is not restricted to tele-
operated robots, the presented formalism is alsomore gen-
eral in that it covers other types of information sources (eye
gaze, a reward button, facial expressions, speech com-
ments, EEG readings, etc) as well as demonstrations. The
information spaces and related ideas are however quite
similar, and the presented formalism can be seen as build-
ing on the ideas of [67].

The switch from a static interpretation of a teacher’s
behavior to a parameterized hypothesis space, updated
based on observations, is similar to how many have sug-
gested moving from planning in a static world model, to
re-estimatingworld dynamics based on observations. This
has been detailed for example in [68] and [69]. A fam-
ily of formalisms are proposed for dealing with unknown
world dynamics. They all present differentways of describ-
ing how to model worlds with partially known dynamics,
while the presented formalism describes how to model a
very specific situation involving a human teacher’s behav-
iors, and is focused on finding out what should be done,
instead of finding out how the world works. Hypotheses
regarding how a human teacher’s behaviors relate to what
should be done are updated instead changing hypotheses
regarding world dynamics.
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One of the formalisms covered in [68] and [69] is the
Partially Observable Markov Decision Process (POMDP)
formalism. POMDP is a way of trying to deal with uncer-
tainty and lack of observability. The difference from the
proposed formalism is that POMDP deals with uncertainty
in the world, not uncertainty over observations of success.
To demonstrate the difference an intermediate step is de-
scribed, where the reward is a hidden state, affecting ob-
servations in a way that is not completely known. An extra
hidden state Hr (hidden reward) would need to be added,
and the reward signal removed from the observable space.
The state Hr is now affected by states and actions, and it
affects observable states. The learner has a prior over how
states impact Hr, and a prior over how Hr impacts observ-
able states. The goal of the learner is now to maximize Hr.
Even though the learner might never be able to observe Hr
perfectly, it can still make probabilistic updates regarding
how Hr is affected (both by other hidden states, and by ob-
servable states), and how Hr affects observable states. It is
alsopossible to take informationgathering actions that are
specifically chosen because,when those actions are taken,
different hypotheses regardinghowHr interactswith other
states implies different predictions for observable states.

3 What types of learners are being
formalized

The existing research that the formalism attempts to cover
includes any situation where a learner is trying to figure
outwhat a teacherwants it to do. In order to cover all those
types of situations, the learner cannot just perform the
actions that the teacher would have performed, or the ac-
tions that wouldmake the teacher say “good robot", or the
actions that would make the teacher push a reward but-
ton, or maximize any other directly observable value. Fi-
nally, the learner doesnothave access to a sensor that tells
it how successful it was. And it does not have access to a
function over its inputs that specify how successful it was.

The typical learner that the formalism is aimed at is
analyzingmultiple sources of information at the same time
and is refining its understanding of some of them, based
on what it learnt from others. Let’s take the example of
a learner that is able to see, but not fully understand,
demonstrations, speech comments, facial expressions, a
numerical value provided by the teacher, tone of voice,
EEG readings of the teacher and eye gaze. If at least one of
these is reasonably well understood, in at least some sit-
uations, it is possible to learn some types of tasks. If the
learner is able to interpret some types of demonstrations,

it can learn a task by looking at only this modality. Then
it might be able to see from its history that some type of
speech inputs are related to performance, and that if the
teacher is observing the learner, then some facial expres-
sions are often made right after the learner made a mis-
take during reproduction. If there is not enough data to de-
cide how to interpret some speech comments, the learner
might formmultiple hypotheses. The ability to interpret fa-
cial expressions and speech can now be tested and refined
in a new task and, if validated, can be used to learn new
tasks. These new tasksmight allow the learner to figure out
that eye gaze at an object is correlated with it being impor-
tant. The learner could also learn that when the teacher
has observed all relevant aspects of the reproduction, the
numerical value provided by the teacher is correlated with
the performance of the action that the learner has just per-
formed (relative to the average performance of a few of its
most recent actions). New tasks allows new hypotheses
for interpretation of information sources to be formulated,
validated and refined. This, in turn, allows the learning
of new tasks and perhaps the reinterpretation of old data.
The learner could for example re-examine a large amount
of old data in light of everything it has learned, and dis-
cover that it is very important to not bump into some ob-
ject, and that when the learner does so, or is close to doing
so, there will be a certain type of EEG reading. The learner
could also figure out that, for this particular teacher, the
numerical value is actually more related to policy similar-
ity with good actions thanwith absolute performance. The
learner could now use this understanding when learning
new tasks, and it could also actively test these new ideas
by performing actions that it expects to generate observa-
tions that will allow it to validate or invalidate them. The
class of agents described above is the archetype that the
formalism is designed to deal with, and it provides a gen-
eral framework that is able to describe any agent that is
trying to figure out what a human wants it to do. The for-
malism also tries to make as few assumptions as possible
regarding the types of behaviors that are interpreted.

The formalism will be presented in a series of seven
progressively more complex situations or setups. Some is-
sues are easier to explain when other complexities are
removed, and hopefully the first steps will convey some
fundamental insights that will make it easier to describe
the fully unsimplified setup. First, a set of simplifications
are introduced which reduces this setup into an inference
problem with a mathematically well defined success cri-
terion, and these are then gradually relaxed. In the first
setup, the learner is assumed to know how to interpret
the teacher’s behavior, and the learner only needs to learn
taskswhile in the second setup this assumption is relaxed.
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This is followed by five other setups where simplifications
are removed step by step. At each step, the formalism is
modified to deal with the new complexity, and new solu-
tions are discussed. In the final, seventh step, the learner
is dealing with an unstructured real-world situation.

4 A formalism for step one: finding
u*

In the most simple setup the learner is required to out-
put a policy based on a given data set of interactions. The
teacher’s utility function u* is not known, but it can be es-
timated, and this estimate can then be used to find a good
policy. A learner is located in a perfectly visible world with
exactly one correct representation, known to the learner;
we can say that the world has a single correct ontology,
known to the learner). The learner is also perfectly observ-
ing the teaching signal. The teacher is also known to per-
fectly observe the world, and it has direct access to a util-
ity function over world-action pairs, that takes everything
into account (including all future consequences). This util-
ity function maps states in the learner’s action space and
the world states to a real valued number (the situation can
be roughly described as “the teacher knows what actions
it wants the learner to take").

The learner also knows the mapping from what the
teacher wants and what the teacher observes to states in
a teaching signal space. A simple teacher giving demon-
strations could, for example, be of the form “the teacher
gives demonstrations which are perfect with probability
0.8 and otherwise the teacher performs random actions"
or “the teacher rewards incremental progress and gives a
scalar feedback value feedback equal to the utility of the
current action minus the average utility of the learner’s 6
previous actions". Knowing thismapping allows inference
even if it is stochastic as each possible utility function re-
sults in a probability or a probability density for the actu-
ally observed feedback. To bemore specific, it is necessary
to first introduce some notation:
• World state s = (x1, x2, ..., xNS ) ∈ Cs. An NS di-

mensional vector in (in ℜNS if it is continuous and un-
bounded), describing the state of the world. Cs is the
space of possible world states. The learner has direct
access to the world state in this step.

• Action α = (y1, y2, ..., yNα ) ∈ Cα. An Nα dimensional
vector describing a learner action.

• Policy π ∈ Cπ : Cs → Cα. Since the world is fully
visible, the learner’s policy is definable as a transform
from world states to actions.

• Situation Ξ = {s, α} ∈ CΞ. A world state and a learner
action. This is what the teacher will respond to by giv-
ing a teaching signal.

• Teaching signal f = (z1, z2, ..., zNF ) ∈ Cf . An Nf
dimensional vector describing the teaching signal re-
sponse to a setup Ξ, for example a demonstration of
what action should have been performed, a speech
comment on the learner’s action, a scalar value evalu-
ation of the action, the eye gaze towards an important
object, etc.

• Interaction I = {Ξ, f} ∈ CI . A setup, and the feedback
that was given in that setup (a world state s, a learner
action α, and the feedback f that was produced by the
teacher as a response).

• Interaction history h = {I1, I2, ...} ∈ Ch is a set of
interactions. To refer to an element E in h of interac-
tion number t, we use Et, for example: Ξt and ft (the
setup and response at interaction t). Note that the in-
teraction history consists of states in spaces that are
observable to the learner.

• Learning algorithm Υ ∈ CΥ : Ch → Cπ.
An interaction-history-to-policy-transform. Since the
learner’s job in this step is only to output a policy as a
response to data, a learner is definedby an Υ andahis-
tory h. A learning algorithm/learner canbedefinedus-
ing an iterative update rule, modifying a policy based
on one interaction at a time (since this recursively im-
plies a unique Υ). If Υ is stochastic, a current policy π
is also needed to define the learner 4.

• Utility function u ∈ Cu : Cs ×Cα → ℜ. Mappingworld
state-action pairs to a real number (expressing prefer-
ences over the action space, conditioned on the cur-
rent world state).

• Teacher’s utility function u* ∈ Cu : Cs × Cα → ℜ.
The teacher is assumed to have access to a utility func-
tion u* that represents exactly what the teacher would
have wanted if it were fully informed (for example re-
garding future consequences of the action). The sole
evaluation criterion of the success of the learner is:
E[u*(π̂(sR))], where sR is a randomly generated world
state (the expected utility of its policy π̂when the state
of the world is not known). Finally, the learner is as-
sumed to know this fact (although it does not know
u*).

• u* generating distribution:Du* : Θu
*
→ ℜ. The util-

ity function u* is drawn from a distribution known to
the learner. A known function class has a parameter

4 There is no possibility to choose actions in order to get informative
feedback.
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space Θu
*
, and each possible state is assigned a prob-

ability, or probability density, by the known distribu-
tion Du* . This distribution could for example be over
discrete outcomes, or a density function over the con-
tinuous parameter space of a function class, or a prob-
ability distribution consisting of a density function
over a continuous space as well as a set of Dirac deltas
for certain values in that space, etc.Wedenote the util-
ity function that parameter θu

*
generate as u(θu

*
).

• Teacher signal generating transform Ω ∈ CΩ : CΞ ×
Ch × Cu → Cf . A stochastic transform5 from the cur-
rent situation Ξ, the interaction history h, and a utility
function u into feedback f (the currentworld state, the
current learner action, a utility function and the inter-
action history determines what distribution a state in
the teaching signal space is drawn from). In this step
the learner is assumed to have access to this trans-
form (the next section formalizes a setup where this
assumption is relaxed).

As the generating distribution Du* over possible u*s is
given, what is needed to get the posterior probabilities of
possible u*s is the probability or the probability density of
the observed feedback conditioned on all the different u*

hypotheses. Since Ω : CΞ × Ch × Cu → Cf is known and the
states in all the other input spaces are known, the prob-
ability of the observed feedback is only dependent on u*.
If the probability density of observing the feedback ft at
interaction t is denoted pft , and Du* is a density function
over a continuous Θu

*
space, we get the following equa-

tion:

pft =
∫︁

θu*∈Θu*

Du
*
(θu

*
)D(ft|h(t), Ξt , u(θu

*
))dθu

*
(1)

If pft is the probability of observing the feedback ft at
interaction t, and Du* is a probability distribution over a
discrete space Θu

*
with Nu* number of hypotheses ui, and

the prior probability that ui = u* is denoted pu
*

i , then we
have:

pft =
Nu*∑︁
i=1

pu
*

i p(ft|h(t), Ξt , ui) (2)

5 This could denoted as Ω ∈ CΩ : CΞ × Ch × Cu × Cf → ℜ, but
to emphasize that the thing generated is a teaching signal, the nota-
tion of a stochastic transform is used where a : b → c means that a
stochastically generates states in c according to a distribution that is
dependent on states in b.

Now, if the probability or probability density for ob-
serving ft is denoted p, the posterior probability ppx of
u* hypothesis number x being correct is simply ppx =
ppap/pft , where ppa is the a priori probability of u* hypoth-
esis number x being correct. The update factor p/pft ba-
sically measures how good the hypothesis was at predict-
ing the observed feedback compared to other plausible hy-
potheses.

SinceΩ is a knownmapping and theprobability distri-
bution over possible u*s is given, finding the posterior dis-
tribution over possible u*s given a history h has thus been
cast as an inference problem. This is not a solved prob-
lem, but the fact that there exists a research community
dealing with it means that we do not have to re-invent the
wheel. Finding an optimal policy π given a finite history
h is now a matter of maximizing the expected utility func-
tion (theweighted sumof all u* hypotheses, or the integral
over u* space). See, for example, particle swarm optimiza-
tion [72] or various methods for approximate Bayesian in-
ference [71]. u* is defined in the action space given the ob-
servable world state, so the exact expected utility (given
the known prior distribution over u*, and the fully observ-
able history) of each action is known to the learner. It could
be that even if Ω is known, finding the optimal solution is
intractable, necessitating the need for approximate solu-
tions. As simplifications are dropped in later sections, in-
tractability will become an increasing problem, and much
effort will be put into discussing approximate solutions.

Since the problem has been formalized in this way,
standard ideas and principles of approximate optimiza-
tion can be used to find approximate solutions. If Θu

*
is

continuous and high dimensional, and there is a large
history, then one possibility is creating a number of dis-
crete u* hypotheses, each with its own set of parameters.
Then the probability of these hypotheses, and their pa-
rameters are updated iteratively, one interaction at a time.
The probability that a hypothesis is correct is modified in
each iteration, based on how well it predicted the actual
teaching signal, and the parameters are modified so that
it better predicts the observed history. Hypotheses that
are very unsuccessful at predicting teaching signals from
unobserved interactions can be rejected, and new ones
constructed by doing alternate parameter modifications
on good hypotheses. The parameter updating of each hy-
pothesis takes the parameters of other hypotheses into ac-
count, to avoid crowding in small areas and/or move to-
wards regions that are good/highly populated.

The point is not that all problems within the frame-
work can be solved. It is instead that they can be cast as
an instance of a well-studied type of problems. Standard
ideas can then be used to solve these problems (in the ex-
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ample above, using the basic ideas of particle swarm opti-
mization).

5 A formalism for step two: finding
Ω

In this step the learnermust learn to interpret the feedback
of the teacher. Specifically, the Ω transform is no longer
known, but is drawn from a known distribution, andmust
be learnt in a way that is similar to how u* was learnt
in the previous step. Two different Ω hypotheses will in
general give different probabilities, or densities, for an ob-
served interaction history This again reduces the problem
to an inference problem of a well-studied form (so that
ideas from proposed approximate solutions can be used).
New practical difficulties that arise, and new approximate
strategies to deal with them will be discussed below.

The parameters of a known stochastic function class
are drawn from a known distribution. Any parameter set
results in a static (but not necessarily deterministic) map-
ping from an interaction history, the utility function and
a current world-action pair to an output in a teaching
signal space. Examples of this include: “if I demonstrate
something, and then the learner reproduces it incorrectly,
I demonstrate again", “if the learner is doing better than
usual, I will press a plus button" or “if the learner fails a
lot and look like it needs encouragement, I will push a plus
button6".

As in the previous step, the learner’s job is to output a
policy based on a given data set (an interaction history of
known length). This means that the learner still does not

6 “Studies have shown that there is sometimes a motivational com-
ponent to the rewards given by human subjects [3]. It does not seem
like the behavior of giving positive rewards to bad states is always
caused by failure to observe the world or lack of knowledge about
what the correct action is, but is sometimes a way of “encouraging
the robot". Therefore this possibility is still relevant to the setup pre-
sented. A human learner is capable of noticing this type of teaching
signal (for example tone of voice in combinationwith a partial under-
standingof the task) and is able to take this into accountwhenmaking
policy updates. Thus, an artificial learner should in principle be able
to do the same by, for example: (i) first failing at a task where the goal
is known, then (ii) noticing that there is a statistical pattern in tone of
voice space correlated with “failures getting positive feedback", (iii)
confirming the theory in a unrelated setting, (iv) building a detailed
model of when this happens, and with what probability, and finally
(v) using this during learning in novel settings by keeping track of the
probability that a particular teaching signal instance was generated
like this (and take that into account during policy updates).

have to deal with the problem of choosing actions in a way
that trades off the maximization of information with actu-
ally performing the task. First some additional notation is
needed:
• Ω generating distribution: D̂Θ̂Ω : Θ̂Ω → ℜ. Ω is

drawn from a distribution known to the learner. A
known function class has a parameter space Θ̂Ω, and
each possible state θ̂Ω ∈ Θ̂Ω is assigned a probability,
or probability density by the known distribution D̂Θ̂Ω .
This distribution could, for example, be: over discrete
outcomes; a density function over the continuous pa-
rameter space of a function class, or a probability dis-
tribution consisting of a density function over a con-
tinuous space, as well as a set of Dirac deltas for cer-
tain values in that space, etc.

• Ω estimate distribution DΩ. If the learner builds a
model of Ω with parameters, then distribution over
this space is denoted DΩ (due to tractability issues,
this does not have to be the same as D̂Θ̂Ω ). We denote
the resulting Ω of parameter θΩk as Ωk.

Just as in the previous step, the problem is to define an
Υ, and success is measured in how well the resulting pol-
icy optimizes u*. Since the prior probability of each possi-
ble feedback generating transform is known, and the prior
probability of each possible utility function is known, for
each interaction history h ∈ Ch there is at least one policy
π such that the expectedutility ismaximized. That is: there
is at least one optimal policy that, given the known infor-
mation, will give maximum expected utility, and finding
it is an inference problem of a well explored type. Below,
two examples are presented, and then generalized approx-
imate solution strategies are discussed since intractabil-
ity is a likely practical problem. The problem of finding a
u* from a partially known Ω is similar to finding u* from
a known stochastic Ω, as a set of stochastic Ω hypothe-
ses (weighted by probability) reduces to a single stochas-
tic function. The practical difference is that in an approx-
imate solution, it is possible to update Ω hypotheses con-
currently with u* hypotheses in an EM inspired way.

To illustrate how the various algorithms that will be
defined for re estimating interpretation hypotheses inter-
act with other elements of the learner, two very simple “al-
gorithms" are described. They show the step between the
later algorithms and static interpretations of teacher be-
havior. The first “algorithm" is designed to deal with the
case where human teachers are known to belong to one
out of a small set of possible types. A learner starts with
one interpretation hypothesis for each type. Each hypoth-
esis has a set of “typical interaction histories" attached to
it (provided by the programmers), and after a certain pre-
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defined set of interactions, the observations are compared
to these histories, and the one that is closest is selected
and is permanently assumed accurate. This type of inter-
pretation hypothesis selector is clearly not optimal for all
possible situations, but it doesdemonstratehow it is possi-
ble to improve over the static assumption situation. Given
the current best estimate of u*, the second “algorithm" as-
signs a gold star to the hypothesis whose observation pre-
diction is closest to the actual prediction. The hypothesis
with the largest number of gold stars at any given point
is used to update u*. This represents an even larger im-
provement over the case with a static interpretation. Since
we have described the situation in a standard form, it is
however possible to directly tap into a large amount of
existing research. In the following sections, example al-
gorithms will be designed with a particular focus on us-
ing well established methods, and using very well-known
ideas. The two central sources are famous formsof EM, and
the idea of tracking several parameterized solutions. One
family of algorithms well suited for dealing with this prob-
lem is Estimation of Distribution Algorithms (EDA, see [70]
for a survey). But other types of solutions can of course
also be used, including ad hoc solutions designed for spe-
cific implementations, well established standard methods
with solid theoretical foundations, or new and innovative
algorithms.

5.1 An example with a discrete set of
possible teachers

Θ̂Ω consists of N discrete possibilities, denoted
θΩ1 , θΩ2 , ..., θΩN , where each θΩn results in a unique trans-
form Ωn. We denote the probability that Ωn = Ω as pΩn .
Before observing the interaction history the learner’s es-
timate of Ω is in this case identical to the generating dis-
tribution Θ̂Ω (if the generating distribution had been to
difficult to handle computationally, the learner’s initial
estimate could have been something simpler). The learner
observes a single interaction I1 = {Ξ1, F1}.

The learner also has M hypotheses of what u* looks
like (also initialized with the generating distribution),
θu

*

1 , θu
*

2 , ..., θu
*

M , where each hypothesis is denoted u*m.
Since there is a discrete set of u* and Ω hypotheses as well
as a single single interaction I1 = {Ξ1, F1}, the proba-
bilities of the u* hypotheses can be updated with a sim-
ple equation. The probability of observing the feedback
F1 given the history, setup, hypothesized u* and hypoth-
esized θΩn is denoted p(F1|Ξ1, h, u*m , Ωn). We have M ×
N possibilities, each corresponding to a utility function-
transform-hypothesis pair. Each pair has a prior and each

assigns a probability to observing the actually observed
feedback. This means that each pair can be assigned a
posterior probability. For transform hypothesis n and util-
ity function hypothesis m the posterior pair probability is
pΩn pu

*
m p(F1|Ξ1, h, u*m , Ωn)
Thus the probability (after updating on the new obser-

vation F1) of each utility function hypothesis and trans-
form hypothesis is given by simply summing the posterior
pair probabilities. We denote the probability at time step t
as tpu

*
m so that the probability 2pu

*
m is the probability that

utility function hypothesis number m is correct, after up-
dating on observing F1. 2pu

*
m is thus simply the sum:

2pu
*

m =pu
*

m

∑︀N
n=1 p

Ω
n pu

*
m p(F1|Ξ1, h, u*m , Ωn)∑︀M

m=1(pu
*
m
∑︀N

n=1 pΩn pu
*
m p(F1|Ξ1, h, u*m , Ωn))

(3)

And in just the same way we have the new probability
2pΩn (the new probability that transform hypothesis num-
ber n is correct, after updatingonobserving F1) in the sum:

2pΩn =pΩn
∑︀M

m=1 p
Ω
n pu

*
m p(F1|Ξ1, h, u*m , Ωn)∑︀N

n=1(pΩn =
∑︀M

m=1 pΩn pu
*
m p(F1|Ξ1, h, u*m , Ωn))

(4)

5.2 An example with a continuous space of
Ω parameters

Now we take the exact same setup, but we have a contin-
uous parameter space of possible Ω transforms. The exact
same reasoning applies when it comes to updating the dis-
crete set of 2pu

*
m , with the only difference being that inte-

grals replaces sums, so that we get:

2pu
*

m=pu
*

m

∫︀
ΘΩ DθΩp

u*
m D(F1|Ξ1, h, u*m , θΩ)dθΩ∑︀M

m=1 pu
*
m
∫︀
ΘΩ DθΩp

u*
m D(F1|Ξ1, h, u*m , θΩ)dθΩ

(5)

If the parameter space of possible transforms is high-
dimensional (that is, there are many ways in which the
teacher’s feedback behavior could vary), this integral
might be completely intractable. But the problemhas been
cast in amore standard form. And the question of “what is
being approximated" has been clarified.

One approximate solution is to create a set of hypothe-
ses for how feedback is generated, test them against data,
and continuously modify them, discard them or create
new ones. We need a hypothesis generating algorithm, an
algorithm that tests and modifies or discards hypotheses
and an iterative procedure for concurrently updating the
u* hypotheses and the Ω hypotheses. Let’s call such an Ω
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hypothesis an interpretation hypothesis (as it is a hypothe-
sis regarding how feedback should be interpreted) and de-
note interpretation hypothesis number i as Πi.

To test the quality of a hypothesis in this example
(with a single data point), we cannot do better than check
how well the transform model predicts the observed be-
havior (and of course look at the known density function
of transform generators). Any test will be strongly depen-
dent on the current estimate of u*, since the feedback is
dependent on both u* and Ω.

Given a test that rates a Πi conditioned on the current
best guess of the u*, we can update our set of pu

*
proba-

bilities based on the current set of Πs, concurrently with
updating our set of Πs based on the current set of pu

*
. This

shows how the old ideas behind various EM algorithms
can be usedwhen the imitation learning problemhas been
reduced to this form. The basic idea that can be taken from
these algorithms is that when there are two unknowns,
and knowing one helps finding the other, updating both
concurrently can lead to a functioning and tractable algo-
rithm. An example is when a set of points is known to be
generated by a knownnumber of Gaussian distributions of
with unknown parameters. Knowingwhich generator pro-
duced which points help when estimating the parameters
of the generators. And knowing the parameters of the gen-
erators helps when estimating which points where gen-
erated by what generator. See for example Dempster and
Laird’s 1977 paper [10] presenting an EM algorithm.

5.3 An example with continuous parameter
spaces and a large number of
interactions

To illustrate the problem faced by a learner in this step,
a more specific setup and solution strategy is introduced.
Standard solutions are used to solve the formalized prob-
lem in order to be specific and to illustrate the basic con-
cepts.

Consider a problem where the teacher is known to
have beendrawn from thehigh-dimensional, independent
distributionsDΩ andDu* , andwhere there is a largehistory
h to learn from. It is in principle possible to find the poste-
rior Du* conditioned on the a priori DΩ and the history, but
let’s look at a class of tractable approximate solutions. We
need a bit of notation:
• Û = {û1, û2, ...}: The set of discrete hypotheses re-

garding u*.
• Ω̂ = {Π1, Π2, ...}: The set of interpretation hypothe-

ses.
• h(t) = {I1, I2, ..., It}: The history up until time t.

• Du
*
: The a priori density function over the possible

utility functions that the teacher might have.
• GenerateNew − Ω − Hypotheses(h(t), Ω̂, Û, DΩ). An

algorithm that generates Ω hypotheses. If the set of
hypotheses Ω̂ has any empty slots (either due to not
being initialized or due to some Πs having been dis-
carded), this function needs to create hypotheses Π
that makes a tradeoff between being probable accord-
ing to the prior probability DΩ, being consistent with
the data h(t) (where the accuracy of the consistency
estimate is dependent on the current estimate Û of
the teacher’s utility function u*) and being well dis-
tributed in the space (these Πs will be modified as a
response to data, so several in the same small region
could be wasteful as they might converge to the same
point).

• GenerateNew−u*−Hypotheses(h(t), Û, Ω̂, Du
*
). The

tradeoffs are similar with the situation detailed above,
and in this case the accuracy of the consistency esti-
mate is dependent on the current estimate Ω̂ instead
of Û.

• Discard−Ω−Hypotheses(It , Ω̂, Û). TheΠs have been
modified without any access to the interaction It, so it
is suitable to test them. If a hypothesis predicts new
observations badly enough compared to the others, it
can be eliminated. Another reason to eliminate a hy-
pothesis is that the modification process has made it
too similar to another hypothesis. As before, the accu-
racy of the consistency estimate is dependent on the
quality of the current Û estimate.

• Discard − u* − Hypotheses(It , Û, Ω̂). The same con-
cerns as above apply in this step.

• Modify−Ω−Hypotheses(It , Ω̂, Û). This algorithmup-
dates the set Ω̂ of interpretation hypotheses based on
the new interaction It and the current estimate Û of
the utility function. As the quality of the update is de-
pendent on the accuracy of the current Û estimate, it
makes sense to update both estimates concurrently a
few times in an EM inspired way.

• Modify − u* − Hypotheses(It , Û, Ω̂). This is the other
half of the above mentioned EM pair.

With these functions we can build an iterative algorithm,
(see Algorithm 1) that could hopefully approximate the in-
tegrals, while remaining tractable.
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Input: Du
*
, DΩ, T, h(T)

• Du
*
: The probability distribution that the teacher’s

utility function u* is known to be drawn from.
• DΩ: The distribution that the teacher’s feedback
generating transform is known to be drawn from.
• T: The number of interactions in the history.
• h(T): The history of interactions.
Û ← GenerateNew − u* − Hypotheses
(h(0), Û, Ω̂, Du

*
)

Ω̂ ← GenerateNew − Ω − Hypotheses
(h(0), Ω̂, Û, DΩ) for t = 1 to T do
Ω̂ ← Discard − Ω − Hypotheses(It , Ω̂, Û)
Û ← Discard − u* − Hypotheses(It , Û, Ω̂)
Ω̂ ←
GenerateNew−Ω−Hypotheses(h(t), Ω̂, Û, DΩ)
Û ← GenerateNew − u* −
Hypotheses(h(t), Û, Ω̂, Du

*
)

while Stopping criterion not met do
Û ← Modify − Ω − Hypotheses(It , Ω̂, Û)
Ω̂ ← Modify − u* − Hypotheses(It , Û, Ω̂)
end

end
Algorithm 1: Approximate solution to example 3

5.4 An example solved by a
multiple-generator-based algorithm

The teacher is approximated as having a number of differ-
ent teaching signal generators or interaction protocols de-
noted Γ. In each situation the teacher selects one based on
the interaction history and the current setup.

Ω is approximated as a combination of generators Γ :
CΞ × Ch × Cu → Cf . Roughly speaking, the teacher is ap-
proximated as having several ways in which it can inter-
act, and as choosing which way of interacting (choosing
which Γ will generate the teaching signal). More precisely,
each Γ has a probability to be activated that is state space
dependent, and is otherwise a stochastic transform of the
same class as Ω, mapping the same input spaces to the
feedback space Cf . Γs are not hypotheses in the sense of
the Πs mentioned above since Ω is not hypothesized to be
equal to anyone Γ,Ω is insteadmodeledasbuilt upbya set
of Γ transforms. The proposed algorithm concurrently es-
timates how each generator will produce teaching signals,
in what type of situations a generator is used (encoded as
a triggering region in situation space for each generator),
and what data was generated by what Γ. This is done in a
way that is very similar to old and well-known EM meth-
ods (just as in the examples discussed above). First some
additional notation:

• Feedback generator number n. Γn :∈ CΓ : CΞ × Ch ×
Cu → Cf . Generator number n that Π is built from.

• ΘnΓ is the parameter space of Γ number n.
• DtΘnΓ is the probability density function over Θ

n
Γ at time

t (the current estimate of the parameters of Γn).
• Dt

Γ = (DtΘ1
Γ
, DtΘ2

Γ
, ..., DtΘNΓ ) is a set of Γ parameter esti-

mates.
• Generating tendency Gn : CΞ × Ch × Cu → ℜ. The

tendency of basis function number n to generate the
feedback. The probability that Γn will generate feed-
back is NGn(Ξ,h)∑︀N

m=1 Gm(Ξ,h)
(the probability that a specific ob-

served feedback was generated by Γn depends on the
type of feedback that Γn tends to generate and what
the generating tendency in the current state is).

• GΘn is the parameter space of Gn.
• DtGΘn is the probability density function over GΘn at

time t (the current estimate of the parameters of the
generating tendency Gn).

• Dt
G = {DtGΘ1 , DtGΘ2 , ..., DtGΘN} is the estimate at time t

of the generating tendencies.
• Θu

*
is the parameter space of u*.

• DtΘu* is the probability density function over Θu
*
at

time t (the current estimate of the parameters of u*).
• Generating probability ptn: The estimated probabil-

ity that the feedback f t, observed at time t, was gener-
ated by Γn.

• Generated feedback γn: The current estimate γn =
{p1n , p2n , p3n , ...} of what feedback was generated by
Γn.

• Ptγ = {γ1, γ2, ..., γN}: the estimate at time t of what
feedback was generated by what Γ.

It is now possible to concurrently re-estimate: (i) The feed-
back behavior of the basis functions, (ii) their generating
tendency, (iii) the set of feedback instances thatwas gener-
ated by each Γ, and (iv) the utility function u*. We can see
this in Algorithm 2, which is in turn based on the following
sub-algorithms:
• s+1P ← estimateGen(sP,s Du

*
, h,sDΓ ,sDG): Given

the model at step s of u* and the Γs, the estimate of
wich Γs generated which feedback is updated. The
previous step updated the feedback behavior sDΓ , the
generating tendencies sDG and the estimate DtΘu* of
u*. Given these new estimates, estimateGenmust ap-
proximate the probability that a given basis function
was the one that generated the feedback, under the
new u* estimate. Which Γ generated the feedback is
straightforwardly dependent on where that Γ is ex-
pected to generate feedback, and on how probable a
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Γ is to generate the observed type of feedback (condi-
tioned on the new u* estimate).

• s+1Du
*
← update − u* − estimates(sDu

*
,s+1 P,sDΓ):

The estimate of which Γ generated the data and the
feedback behavior of those Γs has been updated,
which means that the data can be re-interpreted and
used to update u*. Given a fixed current model of Ω
(consisting of a set of Γs), this reduces to a standard
form of supervised learning problem with data that
has a known noise structure (the uncertainty of the Ω
estimate and the stochastic nature of the various Γs).
Again, part of the problem is reduced to awell-studied
type of sub-problem.

• s+1DΓ ← update − Γ − estimates(sDΓ ,s+1 P,s+1 Du
*
):

The estimates of what data a given Γ has generated
has been updated, but also in what situation it was
generated, since u* has been updated. For example:
a learner has observed a “good robot" comment when
shooting a basketball close to a hoop. If the learner
manages to figure out that the teacher only cares about
whether or not a basketball lands inside or outside a
hoop, then the learner can re-interpret the feedback-
generating function. Specifically it can figure out that
a failed attempt gets a “good robot" comment if the
outcome is closer to good outputs than previous at-
tempts, instead of for example rewarding incremen-
tal increase in performance (which would have been
more likely if the teacher had instead wanted some-
thing like “shoot as close as possible to the hoop").
Given the known world state, and taking the current
estimate of u* for granted and, the current estimate of
which points were generated by which Γ for granted,
this reduces to a function-approximation problem of a
known form. Each Γ can have its own type of param-
eter space but the basic idea is still that of “freezing"
all the other estimates and using them to update the
generators (it is not necessary to do the same type of
update for each generator).

• s+1DG ← estGenTend(sDG ,s+1 P, h,s+1 Du
*
): Given

the current best estimate of which generator actually
generated which point, this is a supervised learning
problem with a labeled data set.

The algorithm rests on the same principle as building
a Gaussian Mixture Model (GMM) with an EM algorithm
that concurrently estimates which data points was gener-
ated by which Gaussian (based on the current estimated
properties of the Gaussians), and estimating the proper-
ties of that Gaussian (based on the current estimate of
which points they generated). The algorithm illustrates
how a vague problem to “dowhat the teacher intended the

Input:DG
0 ,DΓ

0, Du
*

0 , h, S
•DG

0 = {DG10 , DG20 , ..., DGN0 } is the initial estimate
of the generating tendencies (at time 0).
•DΓ

0 = {DΓ10 , DΓ20 , ..., DΓN0 } is the initial estimate
of the feedback behaviors.
• Du

*

0 is the initial estimate of u* (a probability
distribution)
• h is the interaction history
• S is the number of update steps
for s = 1 to S do
s+1P← estimateGen(sP,s Du

*
, h,sDΓ ,sDG)

s+1Du
*
←

update − u* − estimates(sDu
*
,s+1 P,sDΓ)

s+1DΓ ←
update − Γ − estimates(sDΓ ,s+1 P,s+1 Du

*
)

s+1DG ← estGenTend(sDG ,s+1 P, h,s+1 Du
*
)

end
Algorithm2:Amultiple generator algorithm to solve the
problem in example 4

learner to do" has been formalized to the point where the
exact solution integrals can be set up, so that tractable ap-
proximation can be found using standard techniques, see
for example Dempster and Lairds paper [10] from 1977, ex-
plaining an EMmethod based on a very similar idea7, and
solving a very similar problem. It is doing essentially the
same thing as all the classical EM algorithms (even though
the Γs can have different parameter spaces). The purpose
of presenting this algorithm is not to present a general so-
lution strategy to any imitation learning problem, but sim-
ply to demonstrate that the problem has now been formal-
ized to the pointwhere old standard ideas canbeused. The
question of solvability is nowdependent on factors similar
to those that determine whether or not the classical EM al-
gorithms would find a solution (dimensionality, size and
quality of the data set, etc).

Let’s give a few examples of generators that might be
used to model actual humans:
• Demonstrating as a response to failed reproduc-

tion attempt Γ1:. The triggering region G1 would be
where a demonstrationwas followed by a failed repro-
duction attempt, and could have parameters relating

7 In both cases there is a data set produced by a set of generators. The
properties of the generators are not known, but if they were known, it
would be possible to estimate which generator generated which data
point. This is not known, but if it were, it would allow us to deter-
mine the properties of the generators. Both things are given initial
estimates, and then the estimates are updated concurrently (condi-
tioned on the best current other estimates).
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to how badly the demonstration has to fail, or if the
relevant distance is in policy space or outcome space:
a close basketball trow can be very close to optimal
policy, but still have an outcome that is no better than
any other failed attempt. If a reproduction needs to
be far from optimal in policy space to elicit another
demonstration, this would not be within the trigger-
ing region. G1 could also contain an arbitrary amount
of other parameters, such as the behavior being more
likely when the task is easy for the teacher to per-
form, or when the teacher looks irritated directly after
a learner reproduction attempt, etc. The irritated facial
expression could be either a single value attached to
the binary output of a fixed “irritated facial expression
detector" (multiplying the triggering tendency with
the parameter value for instance) or it could include
parameters regulating what counts as “irritated facial
expression" (or more technically “facial expression
that is correlatedwith triggering Γ1").Θ1

Γ describes the
feedback generating behavior, and could include pa-
rameters of how many mistakes the teacher makes. It
could, for instance, be that the teacher does this only
when irritated, which is correlated with tasks that are
simple for the teacher, which correlateswith good per-
formance (lower noise than other demonstrations).

• Verbally evaluating progress Γ2: Saying things like
“Good robot",“No!", or “Great!" based on the learner’s
performance relative to its recent interaction history.
Parameters could include the length and weigthing of
the recent history, the strength of the different words
(does “Great!" indicate better performance than“Good
robot", and if so, how much better?), the parameters
of how tomap speech input to a set of pre-defined cat-
egories (with pre-defined interpretation), the param-
eters of a transform from speech space to evaluation
space, etc, etc. Γ2 could include parameters regarding
howmuchmore likely this feedback behavior is in the
case of eye contact, or in the case of a long interaction
history consisting of the same types of actions, etc, etc
(speech could for example be more likely to be rele-
vant in the case of eye contact).

• Pushing a reward/punish button based on abso-
lute and relative performance Γ3: The reward but-
ton is pushed with a value based on: (i) how good the
outcome is in an absolute sense, (ii) how good the out-
come is compared to recent history, (iii) how close the
action was in action space to good actions compared
to recent history. The triggering of this behavior could
be dependent on anything from the number of demon-
strationsmade to the attitude (angry, happy, etc) of the
teacher, leading to a large number of possible parame-

ters of G3.Θ3
Γ could include a value definingwhat con-

stitutes “recent history", and the relative weighting of
the different considerations.

• Pushing a reward/punish button to punish the
robot for breaking something Γ4: Maximal punish-
ment and a surprised and angry facial expression indi-
cate that something was broken, which can help with
credit assignment (the problem was not that the bas-
ketball was far from the hoop, it was that the basket-
ball went through the window).

• Pushing a reward button to encourage a robot that
has failed a lot and who looks sad Γ5: The gen-
erating tendency G5 can have parameters related to
teacher facial expressions and eye contact (for exam-
ple a distribution encoding something like: “Γ5 was
not the generator if the immediate teacher response
after looking at the outcome of the learner action
was a triumphant smile and a “Great!" speech utter-
ance"). This type of feedback is actively harmful to the
learner’s ability to figure out what the teacher wants
it to do, but it is still important for the learner to un-
derstand this behavior so that it can classify feedback
as having been generated by Γ5. If the feedback was
likely to have been generated by Γ5, it can for example
be ignored, which is already a big improvement com-
pared to updating policy as if it indicated success.

• Looking at an object that the learner interacted
with badly Γ6: When the learner fails, and one par-
ticular object is important for that failure, the teacher
will tend to look at that object.

The idea behind the algorithm is also similar to Simulta-
neous Localization And Mapping (SLAM) in that knowing
what position a robot had at each time step will allow the
building of a goodmap, and knowing themapmakes find-
ing the positions much easier. The analogy with a robot
moving around and trying to build a map and at the same
time figuring out where it is within that map is useful as
it makes the idea of active information gathering obvious
(the robot can move to different places, or just direct its
sensors as a way of testing competing hypotheses regard-
ing both what the area looks like, and where it is within
that area). This solution strategy will be discussed in sim-
plification step three, where the data set is not fixed, and
the learner must take actions for the purpose of obtain-
ing maximally useful data. This will lead us to another old
field knownas optimal experiment design.As the resulting
“expected information gain integrals" will normally be in-
tractable, we will be making contact with various approx-
imate methods for finding actions that result in good in-
formation, for example using biological systems for inspi-
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ration, and described in terms such as artificial curiosity.
Intuitively, finding good strategies for gathering informa-
tive data seems to be a central question, at least as im-
portant as analyzing that data. Even though this research
area is very active and making progress, it is not close to
finding neat solutions applicable to any problem,meaning
that one might have to dig into all the messy details and
integrate a specially designed solution to the active infor-
mationgatheringproblem into the full learner architecture
from the beginning. A neat, of-the-shelf and fully general
solution that can be plugged in as a separate module will
probably not be available.

6 Step three: allowing the learner
to actively gather valuable data.

Let’s allow the learner to choose information-gathering ac-
tions, allowing it to actively collect the data that will allow
the learner to distinguish between competing interpreta-
tion hypotheses. For example, if one hypothesis is that the
teacher is giving rewards corresponding to performance,
and another hypothesis is that the teacher is giving re-
wards in response to incremental improvements (similar
to howone doeswhen training a dog for example), then re-
peating anaction canhelp the learner distinguishbetween
these hypotheses (as theymakedifferent predictions in the
observable reward space). Actions can be chosen in order
to understand the way feedback is generated, and/or to
understand what the teacher wants the learner to do, just
as a SLAM robot can take actions designed to build a map
and/or find out where the SLAM robot is within that map.
This can hopefully make an intractable inference prob-
lem tractable by actively gathering the information that
will allow it to understand the world well enough to make
reasonably accurate simplifications. The teacher’s utility
function u* is still defined in the sameway, and the success
criterion is still judged only based on u*. Choosing actions
so that the learner canbest estimate the teacher signal gen-
erating transform Ω is, however, probably a good strategy
since u* is easier to find with a better Ω estimate.

We denote an interaction protocol as the stochastic
transform ℘ : Ch × Cs → Cα. A ℘ is a strategy for gener-
ating an action based on the interaction history and the
current world state. A protocol can for example be defined
by a rule for how to modify some data structure (such as
a policy) at each interaction, and then select the next type
of interaction based only on the current state of this data
structure. The data structure update rule, and the rule for

selecting interactions based on current state together im-
ply a unique ℘.

To keep things simple, we keep the same success crite-
rion,meaning that exploratory actions only serve to gather
information that can be used to build a policy. We are
thus still sidestepping the issue of making tradeoffs be-
tween learning what should be done, and actually doing
what should be done (the learner simply tries to act in the
way that will lead to the best possible policy, not need-
ing to worry about how well it is performing tasks during
the learning phase). We do not make any strong assump-
tions regarding the interaction behavior of the teacher,
meaning that the teacher could stop giving feedback at un-
known times, possibly dependent on how the learner act.
The teacher could stop interacting or start interacting in a
less engaged way because the learner is “not learning", or
“done learning", or because the learner is now “boringly
repeating the same actions", etc).

Since the problem of building a policy based on a
given data set was treated in simplification step two, the
only thing left to deal with from a theoretical point of view
is “how to select actions with the highest expected useful-
ness of information". This is a relatively easy step from the
point of view of a formalism, but leads us to an active, but
basically open, research field when we look for tractable
solutions. From a theoretical point of view, we need to find
the action that will result in the highest expected amount
of useful information. Ω includes all feedback behavior,
so there is no need to introduce any additional transform
for the “stop interacting in certain situations" or “start giv-
ing less informed feedback if bored" situations. The use-
fulness of an action is thus dependent on the usefulness
of the feedback it will generate immediately, as well as
how the action will impact on the future interaction be-
havior of the teacher. The problem of determining the ex-
pected amount of immediate information from an action is
related to thefield of optimal experiment design. Tractabil-
ity issues are different, but the theoretical framework is the
same.

The expected usefulness of a single action is simply
the weighted sum of the expected usefulness of the action
according to all u*-Ω pairs (weighted by probability), or
the corresponding integrals in the case of continuous pa-
rameter spaces. For the hypothesized stochastic Ωj, and a
hypothesized u* i, the usefulness of a single action is the
weighted sum of the usefulness of the change in policy
from the possible feedback responses. In the continuous
case, the sums turns into integrals. Determining the ex-
pected usefulness of a single discrete action, even given
absolute knowledge of the world, is thus a completely in-
tractable triple integral. We therefore need to start look-
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ing at approximate solutions. One could, for example, try
to optimize the expected information gain regarding what
u* looks like. This is an approximation, as discriminat-
ing between some possible u*s can be completely useless,
even when they are very different (they could result in
identical policies, or policies that have identical utility ac-
cording to u*). It would also be possible to optimize the
information gained about Ω, under the very reasonably
sounding approximation that learning to understand the
teacher’s feedback will allow the learner to do what the
teacher wants it to do. It is also possible to make some
even more radical approximations and just maximize sur-
prise, but then a TV showing static noise (or any other sit-
uation providing completely unpredictable sensory infor-
mation) would become an attention trap. Luckily there is
an entire field of research that is actively exploring what
types of approximations can be made, and when some of
them leads to traps of the type mentioned above. See [73]
for early work and for example [74] and [75] for more re-
cent experiments. In the previously mentioned [25], these
methods are used for determining when and who to imi-
tate. See also [76] for the optimal experiment design frame-
work from which some of the basic principles come from.
One common setting is building a forwardsmodel for robot
control by selecting exploratory actions to be as informa-
tive as possible, but thefindings canbeusedwithoutmuch
modification. Below we can see Algorithm 3, which builds
on the multiple generator algorithm discussed previously.
It is built on the extremely old and very basic idea that if a
hypothesis is formed based on a history, and then found to
be good at predicting newly observed data, it is probably
good. Actions are selected so as to discriminate between
competing hypotheses. Hypotheses are discarded or mod-
ified based on the new observations, and new hypotheses
are created based on history. Just like in the previous mul-
tiple generator algorithm, it concurrently estimates u*, Γs,
which points where generated by which Γ, and what the
generating regions are.

7 Relaxing assumptions on
visibility and known distributions

In this section, three steps are briefly detailed. In these
cases, removal of assumptions does not lead to the same
level of additional algorithmic complexity as in the previ-
ous setups.

Input:DG
0 ,DΓ

0, Du
*

0 , T,h(T),S
•DG

0 = {DG10 , DG20 , ..., DGN0 } is the initial estimate
of the generating tendencies (at time 0).
•DΓ

0 = {DΓ10 , DΓ20 , ..., DΓN0 } is the initial estimate
of the feedback behaviors.
• DΩ0 is the initial estimate of u*

• S is the number of update steps done as a response to
each interaction
while teacher still giving feedback do
αt ← determineAction(Pt , Du

*

t ,DΓ
t ,DG

t )
It ← {Ξ, observeDemAction(αt)}
DΓ
t discardΓHyptheses(It , h(t −

1),Pt , Du
*

t ,DΓ
t ,DG

t )
h(t)← {I1, I2, ..., It}
for s = 1 to S do

s+1Pt ←
estimateGen(sPt ,s Du

*

t , h(t),sDΓ
t ,sDG

t )
s+1Du

*

t ←
update − u* − estimates(sDu

*

t ,s+1 Pt ,sDt
Γ)

s+1DΓ
t ←

update − Γ − estimates(sDt
Γ ,s+1 Pt ,s+1 Du

*

t )
s+1DG

t ←
estGenTend(sDG

t ,s+1 Pt , h(t),s+1 Du
*

t )
end

Pt+1 ←S Pt

Du
*

t+1 ←S Du
*

t
DΓ
t+1 ←S DΓ

t
DG
t+1 ←S DG

t
t ← t + 1

end
Algorithm 3: Active multiple generator algorithm

7.1 Step four: dealing with a world that is
not perfectly visible to the teacher

Let’s remove the perfect visibility of the teacher, and allow
some world dynamics. u* is now a mapping with the in-
puts expanded to include the teacher’s world model. The
teacher can now care about both the real world, and its
own world model. The teacher could for example want
dust to be removed from an apartment, and/or want to
believe that the dust has been removed (a teacher could
dislike a dusty apartment, and/or dislike that the apart-
ment looks dusty, leaving the learner to deal with the old
“to sweep dust under the rug, or to not sweep dust under
the rug" question discussed earlier). The output of u* is no
longer directly visible to the teacher since the actual world
state is not directly visible (and must instead be modeled
based on inputs). Success is still defined in exactly the
same way however. This changes little for the learner from
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a theoretical point of view as it never had access to the out-
puts of u* anyway. Fromapractical point of view it changes
everything. Solution strategies such as “wait to sweep the
dust under the rug until the teacher is looking in order to
improve usefulness of the feedback" becomes central.

What the teacher sees, and what types of
worlds/actions are easy for it to see/understand will now
have to bemonitored, and actions will also have to be cho-
sen so that future world states are informative. The learner
also has access to sensor readings of the teacher thatmight
be informative regarding what is visible to the teacher (for
example a camera image of the teacher, from which the
learner can estimate what the teacher is looking at, and
which objects are in the teacher’s line of sight). Ω now
maps the teacher’s world model to feedback. Given a data
set, the learner can in principle build a composite trans-
form consisting of one transform from the actual world
to the world model of the teacher, and then simply use
that world model instead of the world state as input to Ω.
The teacher still shares a given ontology with the learner
in this step, meaning that the teacher’s world model is a
point in the same space as the actual world state (but not
necessarily the same point). Again, it is easy to extend the
formalism to include the analysis of a given data set by
simply giving the full transform including a learner cre-
ated transform from world state to teacher world model
and Ω, and give this full transform the same place in the
equations as Ω had earlier. Let’s introduce some notation:
• teacher sensor readings: z ∈ Z. These could in-

clude camera images of the teacher, is observable to
the learner, which can be used to estimate which ob-
jects are visible to the teacher.

• teacher world model: w ∈ W: The teacher’s best
guess concerning the world state and the learner ac-
tion.

• Estimated teacher world building apparatus: V :
Z × S → W. Since the teacher’s feedback behavior is
now based on the teacher’s world model (not the ac-
tual world state), it would be useful for the learner to
estimate this transform.

• Changed inputs for Ω: Ω : W × Ch × Cu → Cf . The
learner must now estimate the teacher’s world model
in order to interpret the feedback generated from Ω.

• Changed inputs for theutility function: u* : W×Cs×
Cα → ℜ: Preferences can now be defined in both ac-
tual world states and estimated states (the teacher can
want the apartment to be clean and/or want to avoid
the sight of dirt).

Practical difficulty is increased, but this is still a well-
defined inference problem with an analytical optimal so-

lution (in terms of expected utility) for any finite data set
and any generating distributions (if the teacher’s world
model building apparatus is also drawn from a known dis-
tribution). Theproblemwas intractable evenbefore, so not
much has actually changed in terms of needing approxi-
mate solutions to evaluating data. But new types of infor-
mation gathering strategies might be needed.

An obvious solution strategy would be to create the
types of situation that are visible to the teacher in order to
get more informative feedback. For example: “make sure
to sweep the dust under the rug while the teacher is look-
ing, so that feedback will be more informative". The anal-
ogy for a map-building robot would be to find that esti-
mates based on camera images are less reliable in dark
rooms so light conditions can be taken into account when
updating based on observations. And the learner could
turn on the light whenever possible.

7.2 Step five: dealing with a world that is
not perfectly visible to the learner

Let’s remove the perfect visibility of the learner, so that
sensor reading and internal states take the place of world
states. The interpretation hypotheses become transforms
from teacher preferences to sensor readings, or states that
are obtained by transforming sensor readings. The in-
puts to interpretation hypotheses and policies are now ei-
ther input spaces or the results of transforms from input
spaces. Very little actually changes froma theoretical point
of view. The world states were not visible to the teacher
in the previous step, so this space already functioned like
sensor readings that are used to estimate what the teacher
was perceiving.

7.3 Step six: finding Ω without a known
generating distribution

Let’s remove the aspect of the learner knowing how likely
each possible way to generate the teacher signal is. In
other words, the teacher signal generating transform Ω is
no longer drawn from a known distribution. If the learner
has a set of hypotheses regarding the distribution from
which the teacher’s Ω transform is drawn, this collapses
(from the learner’s point of view) into an equivalent prob-
lem. If the learner is able to investigate interaction histo-
ries frommultiple teachers, the learner could, in principle,
revise its estimate of each individual teacher’sΩ transform
concurrently with estimating the distribution from which
Ω is drawn.
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As the interpretation hypotheses are already defined
over sensor readings, and they already output policy
changes, nothing changes from the point of view of the
learner. The initial set of hypotheses will imply a prior dis-
tribution, but finding it would be completely intractable
(and of no practical value to the learner). The success cri-
terion has not changed at all. We are now almost at an un-
structured, real world environment, with the only remain-
ing difference being the existence of the teacher’s utility
function u*. u* is however not, however, visible to anyone
at this point, and does not actually influence anything, so
removing it would not change anything dramatically from
thepoint of viewof the learner. The task of interactingwith
a teacher in step six is indistinguishable from interacting
with an actual human in an actual unstructured environ-
ment from the point of view of the learner.

8 Step seven: viewing existing
learning algorithms, operating in
the unsimplified setup, as
testable interpretation
hypotheses

We finally remove the assumption of a u* in the head of
the teacher. As pointed out above, this will change noth-
ing from the point of view of the learner, as u* was not
actually affecting anything. An interpretation hypothesis
Π now maps sensor readings, or states in more abstract
spaces that are ultimately obtained from sensor readings,
to policy updates. This means that a Π is now identical to
a learning algorithm, and existing learning algorithms can
be seen as interpretation hypotheses. Existing learning al-
gorithms will often only be a hypothesis of how some lim-
ited set of the input space should be interpreted, making
a set of learning algorithms with different types of inputs
very suitable for concurrent modifications. By viewing a
learning algorithm in this way, we see when and how one
learning algorithm can be used to modify another. This
section will focus on how to denote this type of concur-
rent modification of existing learning algorithms as con-
current updates of a set of hypotheses. The focus will be
on a graphical representation, andon sketchingnumerous
examples.

A learning algorithm is now re-interpreted as encod-
ing assumptions about some information source, such as
“demonstrated actions aremore likely to be good than ran-
dom actions", or “a reward button is pushed by a teacher,

who very accurately compares the end result of an action
with the end results of 7 previous actions". If these as-
sumptions are made explicit as well as modifiable and/or
falsifiable, then “interpretation hypothesis" is a more suit-
able name than “learning algorithm". It is possible to
turn the number of previous actions that the current ac-
tion is compared to into a variable, that can then be up-
dated based on observations (evaluating the current ac-
tion compared to the previous 3 actions will lead to dif-
ferent expected interaction histories than if it is compared
to the 7 previous actions, allowing us to update the re-
spective probabilities/update the parameter). Perhaps the
most basic application would be to take two learning al-
gorithms using the same set of inputs, then make their as-
sumptions explicit so that it is possible to calculate what
types of interaction histories they predict. Finally, obser-
vations can be used to determine which interpretation hy-
pothesis/learning algorithm to use. Let’s lookmore closely
at a two-step algorithm that first estimates the teacher’s
goal by looking at how highly the teacher evaluates the
learner’s actions, and then learns how to achieve this
goal. The hidden assumption is that the teacher evaluates
the performance of the learner. We can then take another
learning algorithm that changes the policy to be closer to
policies that get a higher evaluation. The hidden assump-
tion here is that the teacher evaluates how close the pol-
icy is to good policies. The learner uses one of these al-
gorithms (or some other method, like interpreting demon-
strations) to learn a simple task. The learner can now go
through its history and see how the various types of ac-
tions were evaluated, and choose one interpretation hy-
pothesis over the other (for example checking how actions
that are close to good action in policy space, but very bad
in outcome space, are evaluated).

Another example would be when there is a probabil-
ity estimate of how often demonstrated actions are better
than random, and how far they are from optimal. With a
limited data set, improving these estimates will likely im-
prove the policy updates. One idea arising from this way
of viewing learning algorithms is to use multiple interpre-
tation hypotheses. Each hypothesis interprets a different
type of input, and each has a set of parameters (such as
history length of a reward button). These hypotheses can
then be used to learn a task concurrently with changing
the parameters of the hypotheses, and estimating their
usefulness. If the teacher pushing the reward button does
not compare the current action to history, but instead to
the optimal action, then it should be possible to discard
the interpretation hypothesis as no parameter value will
result in an accurate model. The ability to assess the use-
fulness of an interpretation hypotheses becomes impor-
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Fig. 1. In this setup, a policy πj,o;m,s is modified by three interpretation hypotheses; Π1
a, Π2

a and Πa,e. Inputs to policies are denoted Φ
and inputs to interpretation hypotheses are denoted Ψ . The black arrows mark inputs and the grey arrows mark modifications. The pol-
icy πj,o;m,s is used to modify the transform gb;c. If the policy πj,o;m,s can be reasonably well learnt using only information in Ψa (for example
a demonstration of a task), then it can later be used to check if the state in another space Ψc contains any useful information (for example,
if one state is more frequent in the case where the demonstration was a failure, then this can be detected using πj,o;m,s). The informedness
of states in a space Ψc can be judged using πj,o;m,s (for example how useful states in Ψc are for separating failed demonstrations from suc-
cessful ones) . It is now possible to use πj,o;m,s to choose from two different parameter settings of gb;c (two different parameter sets result
in two different Ψc spaces, which πj,o;m,s can be used to choose between).

tant if there are competing hypotheses on how to inter-
pret the same type of information, or if there are other in-
formation sources that can be used instead. The ability to
discard some sources of information means that a learner
can in theory learn how to deal with a real human in an
unstructured environment that provides a diverse and re-
dundant amount of information, and where some of the
information is much harder to interpret than others, and
where it is not known at programing time what informa-
tion sources will be most useful (which could be heavily
dependent on the type of teacher and the type of task). If a
teacher often uses a reward button to encourage a learner
that looks sad after failing, and the learner is unable to dif-
ferentiate the two different types of reward button uses,
then it might be best to simply learn from other informa-
tion sources when dealing with this teacher. Similarly, if
demonstrations often fail, and the learner is unable to sep-
arate a failure from a success (for example by using fa-

cial expressions), then it might be best to avoid request-
ing demonstrations, or to avoid wasting computational re-
sources trying to learn something useful from them. The
next step is to try to better describe what exactly these hy-
potheses aremodels of. They are supposed tomodel “what
the information means", but this has to be stated more ex-
actly (see section 9.1 where the concept of informed prefer-
ences is introduced).

Let’s look more closely at one algorithm that trans-
lates demonstrations into policy changes, and a second al-
gorithm that translates a scalar value following a learner
action into policy changes. To make use of these infor-
mation sources it is necessary to make some sort of as-
sumptions about them, at the very least it is necessary
to assume something along the lines of: “demonstrations
are more likely than random actions to be good", or that:
“good learner actions are more likely to be followed by
high scalar values than bad actions". If a learner knows
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one of these facts, it is possible to infer the other from ob-
servations. If the learner correctly assumes that demon-
strations are good actions, it can learn what to do in some
restricted circumstance and then notice that good actions
are more likely to be followed by high scalar values. And if
it correctly assumes that high scalar values indicate good
actions, it can learnwhat to do in some situations and then
notice that demonstrated actions are more likely to be ex-
amples of good actions. The correlation, once noticed, can
be usedwhen learning how to act in new situations (learn-
ing how to learn by learning how to interpret the various
types of feedback given by the teacher). Active learning in
this setting means seeking situations and performing in-
teractions that will result in the type of information neces-
sary to disambiguate between different hypotheses of how
to interpret teacher behavior.

Knowing either the policy or the parameters of one in-
terpretation hypothesis allows us to find the other two (the
policy allows us to find the parameters of both interpreta-
tion hypotheses, and either interpretation hypothesis al-
lows learning of the policy). The idea is that learning the
interpretation hypotheses will be good for learning other
tasks, but updating all three things concurrently can be
useful even when only learning a single task.

The setup now consists of a learner that can be repre-
sented by transforms and input/output spaces, and an un-
structured environment containing a human teacher. We
have removed the simplification that there exists a utility
function somewhere in the head of the teacher. The math-
ematical notation describing the teacher now only exists
as a model that exists fully inside the learner architecture.
The setup of step seven thus contain a real-world human
and an unstructured world, but all the notation is now de-
scribing a computational system (the actual physical em-
bodiment of the learner is outside this computational sys-
tem, even if it’s model of its own embodiment is part of
the system). From the formalism point of view we will fo-
cus on this learner architecture and we choose a graphical
representation in order to get a better overview. Using this
representation, we will describe several different concrete
architectures, learning from various information sources.

8.1 Graphical representation

We introduce a way of depicting a system/learner archi-
tecture graphically in Figure 1. Hopefully this representa-
tion will make it easier to see new extensions to existing
research as well as enable us to describe proposed setups
more clearly and more quickly. The top left rectangle con-
tains the policies and the lower left contains the steps that

lead to the inputs of the policy (which can be described as
feature selection, finding the task space, finding the fram-
ing, etc). The top right rectangle contains the interpreta-
tionhypotheses, and the lower right rectangle contains the
transforms that generate those inputs. The black arrows
depicts inputs or outputs and the grey arrows depict mod-
ifications.

Examples of inputs include: current sensor readings
(internal sensors such as battery life or external sensors
such as cameras), past sensor readings, predicted future
sensor readings, internal states (for example an estimated
urgency of the current task), the estimated position of an
object at some previous time (where object position is cal-
culated, not present in sensor readings), the output of
some opaque pre-processing step that the learner has no
access to, or the estimated current common ground in a
conversation8, etc, etc.

Modifications of the M4 kind uses a task in order to
find anew input space for an interpretationhypothesis, for
example learning which teacher facial expressions corre-
spond to failed demonstrations (by using a known policy
and the recorded history of demonstrations and facial ex-
pressions). The reasonably well-learnt policy πj,o;m,s can
be used to determine howgood individual demonstrations
were. When we have a set of demonstrations with esti-
mated quality, we can search for a way to predict this qual-
ity. This enables us to evaluate a space Ψc in terms of how
well states in Ψc enables us to predict the quality of a new
demonstration. The ability to evaluate a possible space Ψc
enables us to modify the transform gb;c that results in Ψc
(we can choose between two different parameter values of
gb;c since we can choose between the two different result-
ing spaces Ψc). In short: πj,o;m,s modifies gb;c (which is de-
noted by a grey arrow from πj,o;m,s to gb;c, and given the
M4 identifier for easy reference). From a technical point of
view, this type of modification is not different in principle
from other types of modification, but the result is that the
learner can be said to “learn how to learn".

The states inΨc could for example correspond to facial
expressions of the teacher where some facial expressions
indicates failure and other facial expressions indicate suc-
cess. πj,o;m,s can help determine if states in Ψc are infor-
mative and so the “facial expression classifier" gb;c can be

8 What is appropriate to say and do is often dependent on the com-
monground, since an interlocutorwill interpret actions basedon this.
A learner that can change how the current common ground is up-
dated will be denoted by a modifiable policy with an appropriate ac-
tion space (consisting of manipulations to its model of the current
common ground).
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modified. If the states in Ψc are informative in other sit-
uations, this could speed up learning in many other tasks
(the teachermightmake similar types of facial expressions
no matter what task the learner is failing/succeeding at).

8.1.1 A learning from demonstration setup

In this setup the learner learns from demonstrations,
as well as an estimate of how happy the teacher was
with the demonstration the teacher just performed (the
teacher is not always successful at performing the task
and the learner is trying to predict if a new demonstra-
tion was a failure, and use that during learning). A graph-
ical overview can be seen in Figure 2. The input to Πe,d
is teacher actions represented in Ψd (a set of low dimen-
sional context-action pairs) and an evaluation represented
in Ψe, obtained by a transform gf ,t;e with inputs in facial-
expression space Ψf and tone of voice space Ψt. Ψf is ob-
tained from a camera input Ψc using gc;f and Ψt is ob-
tained from an audio input Ψa using ga;t. Ψd is given to
the learner directly and the learner cannot modify how it
is obtained (it is not a sensor reading but, since it cannot
be modified, it is an input to the learner). Πe,d updates a
policy πj,o;m,s with inputs in joint- and estimated-object-
position space, and performing actions in speech andmo-
tor α spaces.

Πe,d is an exact implementation of an interpretation
hypothesis that could be verbally approximated as; “ac-
tions in Ψd are probably good for certain states in Ψe and
probably bad for other states inΨe", or evenmore crudely;
“imitate the actions that the teacher seems pleased with".
The update is denotedM1 and is dependent on the details
of the hypothesis, for example the assumed noise level
of a favorable evaluation of some specific type of demon-
stration (for learning from demonstration algorithms that
assume normally distributed noise, see the GMR based
algorithms of [12–15]). If the update mechanism is static
and ad hoc, only implicitly encoding assumptions about
noise levels, it is still referred to as a hypothesis (it is just
a hypothesis whose details are not easy to see and that
is not updated based on observations). If the details of
this hypothesis are made explicit there are several ways
in which it could be updated: (i) demonstrations that in-
volve heavy objects can be given a higher expected noise
rate9. (ii) Adding a word recognizer that detects only the

9 If the teacher is not very proficient at manipulating heavy objects,
and furthermore states in Ψe mainly captures how pleased it is with
its own performance relative to the difficulty level of a task, then it is

word “Nooo!" (giving a binary input toΠe,d) and using this
instead of the state in Ψe when it is present, but ignoring
it when not present (the noise is of course dependent on
the word recognizer and the usefulness is dependent on
how often the word is used after failed demonstrations).
(iii) A “triadic joint attention10 detector" could be added
based on the finding that the noise level is much lower
when this is happening. The learner does not have to un-
derstand why the noise is lower in some states of the “tri-
adic joint attention detector". The correlation could be de-
tected, for example, if: the teacher is putting some real ef-
fort into trying to do a good demonstration, or if the fa-
cial expression estimator gc;f works better when it has this
type of input. Other situation when correlation might be
detected include if the type of verbalizations made in this
type of interaction is easier to interpret by ga;t, if the types
of tasks that are demonstrated with triadic joint attention
are easier to learn, or if the types of behavior the teacher
performs in this type of interaction are the types of behav-
ior that the teacher would like the learner to adopt. The
learner can benefit from this “triadic joint attention detec-
tor" without fully understanding why it works.

8.1.2 A feedback learning setup

We can see this setup in Figure 3, where the policy πj,o;m,s
has the same inputs and outputs as before. πj,o;m,s con-
tains a list of previously performed actions (context and
output) where each action has two scores, one estimated
evaluation and one estimate of how informed the teacher
was at the time of evaluation. It also consists of a rule for
how to select a subset from the list based on the current
context, and finally a regression algorithm that gives an
output based on the subset of actions selected. If there are
no previous actions with contexts close to the current con-
text, a fixed default π2j,o;m,s is executed (not shown in the
figure).

πj,o;m,s is modified by Πv,e2 ,a2 based on the estimated
visibility of the teacher Ψv (how much of the scene the
teacher sees when giving the feedback), the estimated
evaluation Ψe2 and the action performed Ψa2 (the action

perfectly possible that the same state inΨe indicate a higher expected
noise level in the case of a type ofΨd that involves heavy objects. This
can be utilized by a learner that simply notices that certain types of
states in Ψd correspond to higher noise levels (even given the state in
Ψe).
10 This is when the teacher is looking at the learner, as well as an
object, and is following the learner’s gaze to make sure they are both
attending to the same object.
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Fig. 2. A learning from demonstration setup where Πe,d modifies the policy πj,o;m,s. The inputs to πj,o;m,s are in joint space Φj and esti-
mated object position space Φo, and the policy is able to set the states in the action spaces αm (motor outputs) and αs (speech outputs).
The policy is being modified by Πe,d based on an estimated teacher evaluation of the teacher’s own demonstration Ψe and a representation
of the demonstration in Ψd. The evaluation estimate Ψe is obtained by gf ,t;e based on facial expression Ψf (obtained by gc;f from camera
input Ψc) and tone of voice (obtained by ga;t from audio input Ψa).

that is assumed to be evaluated, and the parts of the con-
text that are assumed to be relevant for the action to beper-
formed). There are three input spaces to Πv,e2 ,a2 that could
be improved. Ψa2 is the representation of actions and con-
texts, so any improvement of this would center around re-
estimating which part of the context is relevant, or what
part of the action is relevant. In this example the focus
is on re-estimating what evaluation the teacher wanted to
give, represented in Ψe2 , by modifying the transform ga;e2 .
And also on modifying the transform gc;v calculating how
visible the scene was to the teacher at the time of the eval-
uation (represented in Ψv). For modification M1 to work,
the initial way of calculating Ψe2 must be at least approxi-
mately accurate. Even if the data is noisy, an accurate esti-
mate of πj,o;m,s is still possible (using a larger data set than
would have been needed if noise-free datawere available).
A somewhat accurate πj,o;m,s can then be used to create a
data set that can be used tomodify ga;e2 (denotedM2) con-
sisting of how correct the action was according to πj,o;m,s
and the input in Ψa (the noise level will be dependent on
the accuracy of πj,o;m,s). One way of modifying ga;e2 would
be to find a transform that, besides mapping audio input
to the known word categories, also maps some audio in-
put to a category that correlate stronglywith very large per-
formance improvement (for example corresponding to the
teacher loudly saying “Great!").

The modification M3 is done in a similar way. What is
sought after is a space whose states can be used to predict

if the evaluations in Ψe2 are accurate. πj,o;m,s tells us the
accuracy of individual evaluations, which gives us a data
set consisting of pairs of inputs in Ψc and this accuracy.
Whatwewant is a transform gc;v such that states inΨv pre-
dict this accuracy. This problem is of a very well explored
format (obtaining a function based on input-output pairs)
and its solvability is strongly influenced by the accuracy
of πj,o;m,s due to its influence on the noise level in the data
set. One examplewhere this can succeed is if90%of evalu-
ations are correct, and in the other 10%, the teacher is un-
able to see anobject. Anaccurate πj,o;m,s canbe learnt (M1)
with data of this noise level, leading to a data set where
the accuracy of the individual evaluations are accurately
estimated. Now this data set (not necessarily noisy, since
πj,o;m,s is accurate) can be used to find a gc;v that optimally
separates the 90% of accurate evaluations from the 10%
of inaccurate ones.

The interesting part of this setup is to improve gc;v and
ga;e2 , which can hopefully be used to learn similar tasks.

9 Discussion
The task of the learner is to do what an informed version
of the human would consider best for the uninformed ver-
sion of the human. This setup is interesting as real robots
placed in unstructured environments,with non-expert hu-
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Fig. 3. This figure shows a learning from feedback setup where Πv,e2 ,a2 estimates how highly the learner’s actions (represented in Ψa) were
valued (estimated in Ψe2 ) and how informed the teacher was Ψv, and uses this to choose whether or not to add the action (along with the
context it was performed in) to a list of such actions contained in the policy πj,o;m,s.

mans, will have to operate under these conditions. Non-
expert humans in unstructured environments are not al-
wayswell approximated as flawless feedback giverswhose
feedback has an easily encodedmeaning. How to interpret
the eye gaze or facial expression of a specific teacher will
have to be learned, in a way similar to how it will have to
learn to interpret a failed demonstration or a reward but-
ton pushed because the teacher failed to notice something
or to encourage the learner.

9.1 Elaborating on the concept of informed
preferences

The concept of informed preferences is designed to deal
with cases such as “the teacher would like the learner
to perform an action, but if the teacher knew the conse-
quences of that action, would prefer another action" or
“the teacher is very happy with the end result after the
learner has cleaned the apartment, but if the teacher knew
that the cleaning disturbed the neighbors by producing a
lot of noise, it would not like the cleaning strategy". Be-
ing “informed" includes understanding of concepts (such
as what types of actions are possible) and knowing spe-
cific facts, such as long term consequences of actions, or
the contents of a box. These preferences are specified over
the learner’s action choices, and the goal of the learner is
to execute preferred actions. Several thought experiments,
including the example of a boxwhose contents the teacher
is misinformed about, as well as several of the basic con-

cepts of the formalism, are inspired by work done by Cyn-
thia Breazeal, Andrea Thomaz and others, especially with
the Leo robot. See [5] for an early publication that pro-
poses to investigate genuine collaborative behavior as op-
posed to setups where the robot is conceptualized as a
tool that a human is using. Conceptualizing the robot as
an ally that shares intentionality with a human, instead
of as a fancy hammer, makes it natural to start thinking
about how the learner might solve some of the subtasks
that socially collaborative humans routinely deals with.
Especially relevant to the presented formalism would be:
i) autonomously learning how the social signals of some
particular human should be interpreted, ii) evaluating the
competence of a collaborator (how likely is it that demon-
strated actions are good actions?) iii) learning how to get
more useful information from collaborators (postponing
anactionuntil the teacher is looking, displaying confusion
with a facial expression or confirming understanding by
nodding, asking good questions, etc).

A teacher might lack knowledge about the world, fail
to understand certain concepts, not have imagined all
possible strategies, be unaware of all consequences of
an action, want things due to a misunderstanding, etc.
If the teacher would consider knowledge relevant to the
learner’s action choice if it were made aware of it, then
that piece of knowledge is considered relevant. For the
purposes of evaluating the relative desirability of the ac-
tions that are available to a learner in a specific context, a
subset of all knowledge that the teacher is unaware of will
be relevant. This subset will be denoted Σ (a set of pieces
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of knowledge that the teacher would consider relevant to
a specific learner action choice, if the teacher was made
aware of it). If a version of the teacher that knew about a
fact would consider the fact relevant, it would be included
in Σ, if a version of the teacher that understood a concept
would consider it relevant, the concept would be included
in Σ (and similarly with knowing about a possible strat-
egy, or resolving a misunderstanding that made it want
something, etc). There are many ways to segment actions.
The very same learner’s action can be evaluated by a pref-
erence ordering over states in its motor output space, or
they can be evaluated according to a preference ordering
over sequences of motor primitives. The correct segmen-
tation is one that would be preferred by the teacher if in-
formed. Anything considered relevant to its opinion about
the segmentation is also considered relevant to the rela-
tive desirability of actions, and thus in Σ. If all things in Σ
were acquired by the teacher (facts known, concepts un-
derstood, etc), then the resulting person is referred to as
the informed version of the teacher. If the informed ver-
sion of the teacher has an opinion about what would be
best for the actually existing uninformed version of the
teacher, then this is defined as the informed preferences of
the teacher (a preference ordering over the learner actions
that are available in the current situation). If the learner
faces the decision of whether or not to show the teacher
what is in a box, and the informed version of the teacher
already knows what is in there, then the informed version
of the teachermightwant different things for itself than for
the uninformed version of itself (since the decision can be
different, it matters that the decision is about what is best
for the uninformed version). The learner is now defined as
a set of interpretationhypotheses and success is judged ac-
cording to the informed preferences of the teacher.

Let’s explore the case of a robotic learner providing se-
curity for a building using a camera, a microphone and an
alarm. It is also able to move around the building, send
video and microphone recordings over the internet to its
teacher Steve, and receive commands and feedback from
Steve. Steve is expecting that Bill will break into the build-
ing andhas bought the robot as away to get revenge onBill
(by showing video recordings of Bill committing a crime
to the police), and has provided the learner with pictures
of Bill, examples of what type of video would hold up in
court, etc. The learner is very expensive (and knows this
fact) and knows that if detected, it might get stolen. The
learner sees a truck drive through a door, driven by a sin-
glemasked person. The person gets out of the car and start
taking things and putting them in the truck, and this per-
son is very clearly much taller than Bill. The learner hides,
triggers the alarm and starts sending a video feed to Steve.

Steve is at home when he is alerted by the alarm and im-
mediately sends the command “get a picture of Bills face",
a huge negative scalar feedback when he sees that the
learner is hiding, and then the command “move forward"
(which would result in the learner and the robber seeing
each other). In this case it is of course impossible to know
for certain what will be in Σ or what Steve would want if
acquiring everything in Σ, but it is, in principle, an empiri-
cal question. It is, however, possible tomake a better-than-
random educated guess, even if the number of things that
(from the learner’s perspective)might potentially be in Σ is
huge. If someone other than Bill is breaking in, then they
would take the expensive robot if they saw it, and further
video would be useless. If Steve would consider this rel-
evant in his decision of how the learner should respond
to his commands, then these facts are part of Σ. If there is
nothing else that Steve would consider relevant to his de-
cision, and an informed version of Steve would think that
the best thing for Stevewould be that the robot stay hidden
despite his commands, then this is Steve’s informed pref-
erence. That the best possible action cannot be foundwith
absolute certainty is abundantly clear in this case since the
set of facts about the world that might be true and might
change Steve‘s mind if he knew them is very big and some
of them are very complex.

This is, however, not different in principle froma robot
that maximizes the plus button pushes and that operates
in an unstructured environment where an action can re-
sult in very bad rewards due to some impossible-to-predict
effect (for example, some actions might make a reward
button pusher think that the robot actually knows what
to do but refuses to do it, and that it will start cooperat-
ing if it is punished enough with the minus button). And
the problem can be dealt with in the same way, by mak-
ing the best guess possible given the available informa-
tion. It is easy to think of scenarios where impossible-
to-know things impact Steve’s decision in impossible-to-
predict ways, but the problem is not fundamentally differ-
ent from trying to fulfill any other success criterion in an
intractable and unstructured world. The basic strategy of
building the best probabilistic models possible given cur-
rent ability, information and resources, continuously ex-
panding them, continuously re-estimating what situation
can be understood and always attempting to stay in situ-
ations the learner can handle, is still viable. It is possible
that (i) the robber is Bills accomplice; (ii) Bill just walked
in unmasked (and so, moving forward would result in Bill
being convicted of breaking into the building); (iii) that
if Steve understood some complex concepts of cognitive
science regarding how his brain works and why he wants
revenge on Bill, then he would conclude that he should
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not seek revenge after all; (iv) if Steve understood some
complicated concepts regarding long-term societal conse-
quences of overcrowding in prisons, he would not want
to send Bill to prison. Another possibility is (v) that if the
robot moved forward, it would crush a butterfly under its
wheel; the butterfly would then otherwise distract Steve
while he was driving his car the next day, causing an acci-
dent that would kill Steve (and all versions of Steve agree
that this outcome would be bad). In case (v) the learner
should move forward, but fully understanding the situa-
tion is completely hopeless. It is however interesting to
note that the effect of the butterfly poses the exact same
problem to any robot, regardless of formalism (assuming
the formalism is good enough that it classifies a dead Steve
as a bad thing). The enormous set of things that might
influence a decision is expanded to include a new cate-
gory (consisting of things like how a teacher would mod-
ify what it wants as a response to understanding complex
concepts), some of which can be hypothesized and be use-
ful in a probabilistic model, but most of which will be just
as unusable as hypotheses regarding the effects of crush-
ing thebutterfly (one can formasmany suchhypotheses as
one likes, in favor of any decision one likes, but they can-
not be tested, and doing this is not a useful strategy when
searching for good decisions).

In a slightly different scenario where video of the
learner is not routinely recorded for some reason, then
Steve might never discover that it was not Bill who broke
into the building unless the learner moves. Steve can
record images sent to him after an alarm has been trig-
gered, so the basics of the scenario remain the same. In
this case the most important thing for Steve might be that
he learns that it was not Bill who broke into the building.
What is best for Steve is now different from what would
havebeenbest for an informedversion of Steve in the same
situation since he already knows that it is not Bill that is
breaking in (and then the price of the robot would domi-
nate the decision). That is why the formal success criterion
cannot be to dowhatwouldhavebeenbest for an informed
version of Steve in the same situation (even correctly an-
swering the question “what action would Steve have pre-
ferred me to do if he were informed" will sometimes result
in incorrect actions since uninformed versions sometimes
have different needs, for example a need to know certain
things that the informed version already knows). Doing
what would be best for the informed version of the teacher
if it existed does not seem tomake any sense (the informed
version is not present, and the informed version has for ex-
ample different informational needs than the uninformed
version).

If a robot sweeps dust under a rug and a teacher who
is unaware of this considers the robot’s performance good,
then the knowledge about the dust might be part of Σ. If
the teacher considers the task to be “make the apartment
clean", and would consider the learner’s actions bad if it
knew about the dust, then it is part of Σ. But if the teacher
considers the task to be “make the apartment look clean
before the guests arrive", the information could be com-
pletely irrelevant, and thus not part of Σ. If the learner
spent a large amount of energy cleaning the apartment,
and there exist other cleaning strategies that would con-
sume less energy, then this fact might be part of Σ. If the
more energy efficient strategies had unacceptable side ef-
fects, it might not be part of Σ. If there are both unfamiliar
concepts and unknown facts relating to societal effects of
limited resources, then the teacher might prioritize energy
efficiency differently. Again, these possibilities are not dif-
ferent in principle from the possibility that a meteor will
strike, causing a blackout so that the learner cannot re
charge, and that the learner’s removable batteries will ac-
tually be extremely important for some complicated rea-
son. A robot operating in unstructured environments will
face these types of hypotheses regardless of formalism,
and they can be handled in a similar way. Formulating a
success criterion in this way means that there might be
a few hypotheses that can be tested and that does advo-
cate different actions. In this case the learner can wait un-
til the teacher is watching before sweeping the dust un-
der the rug. It acts differently from a robot maximizing the
additive output of a reward button (which would wait un-
til the teacher is not watching to sweep the dust, so as to
avoid risking negative reward) because in this situation it
can actually test the two competing hypotheses that (i) the
teacherwants a clean apartment and (ii) the teacherwants
a presentable apartment (both of which seem like some-
thing a human might want and they could both be viable
given available demonstrations, feedback, etc).

In the example where the cleaning robot is sweeping
dust under the rugwhenSteve is not looking, success is not
very visible, even if the learner receives positive feedback,
since it does not know if Steve has an informed preference
for this type of behavior. This is basically always the case to
some extent since for most possible teachers it is not pos-
sible to know for certain what their fully informed prefer-
ences would be. Observability of success is thus a matter
of degree, and potential experimental setups can be eval-
uated based on how observable the success is expected to
be. Learners can choose their actions partly based on how
observable successwill be (for examplewaiting until Steve
is looking before sweeping the dust under the rug).
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A messy success criterion is needed because the real
world is messy and intractable, which means that all non-
messy success criteria are inaccurate, and thus only move
the messy part to deciding when the success criterion is
useful11. The initial set of interpretation hypotheses, along
with update algorithms operating on them, can be inter-
preted as forming a prior distribution over possible in-
formed preferences of the teacher, and over ways in which
those are connected to the learner’s inputs. If this is taken
as an axiom, then the problembecomes an inference prob-
lem again. Success is now, however, possibly separated
from the optimal solution to this problem, since the initial
assumptions built into system might be inaccurate. This
leaves us with an inference problem that can be approxi-
mated, but we still do not have access to a number that is
guaranteed to represent actual success (the closest we can
in principle get to guaranteed success is optimality given
assumptions and information).

One strategy for dealing with an intractable problem
in an uncontrolled environment is to autonomously ex-
tend the situations the learner can handle reasonably well
and the types of teacher behavior it can interpret reason-
ably well, and constantly re-estimate the boundaries of
what can be handled and what can be interpreted. This
combines the nice feature of a success criterion where a
strategy that is successful in the formalism is actually suc-
cessful, with the possibility of a robot that can actually do
things.

Extending the situations in which a learner knows
how to act can be done concurrently with extending the
types of teacher behaviors it can understand. For example,
if the learner starts with an interpretation hypothesis Πd
that is able to learn from demonstrations reasonably well
(at least in some situations), then it can extend the types
of teacher behaviors it can understand by building a feed-
back interpretation hypothesis Πf (after learning a task, it
goes through the history of demonstrations and reproduc-
tions, and notice that what the teacher said was actually
related to how good it was performing). When learning a

11 In the case of a non-messy success criterion, without any compli-
cated or unobservable parts, it is instead the suitability of the suc-
cess criterion that is difficult to observe. It is sometimes obvious that
the success criterion was bad, such as when a dust minimizing robot
burns down the building and thereby clearly fails and simultaneously
performs perfectly according to its nonmessy success criterion. But at
other times the suitabilitymight be difficult to observe. The difference
is that there is no formal way to determine the suitability of a success
criterion, and an agent that is optimizing an inappropriate criterion
does not care that it is unsuitable, and will therefore not even try to
fix the situation.

new task, the learner can check ifΠf is accurate in this task
as well, and later use Πf to extend the types of tasks it can
learn.

An analogy with this concurrent learning of tasks and
interpretationhypotheses canbemadewith trying to build
a model of some objects at the same time as trying to un-
derstand a set of languages that describe the object. The
tasks are analogous to a set of unobservable objects, the
interaction history is analogous to a set of descriptions of
objects, and the interpretation hypotheses are analogous
to the models of the languages that the descriptions are
written in. A flawed understanding of a language can be
used to build a good model of an object if there is enough
redundant information about it. An example would be us-
ing a large number of separate, detailed descriptions of
the object from many people, using different vocabulary,
and describing the object at different levels of abstraction,
different level of detail and from different complementary
perspectives, such as descriptions considering the object’s
function, shape, component materials, durability, meth-
ods of manufacture, etc. If enough redundant information
is available to build a model that is known to be accu-
rate with respect to some aspects of one object, it is then
possible to update the model of any language describing
the object. In practice, it might be convenient to concur-
rently update the model of the object and the model of
each language. It is not necessary to directly observe the
object beingdescribed, or have access to anydescription in
a perfectly understood language. The objects can be mod-
eled and the languages can be learned by concurrently up-
dating interconnected hypotheses. According to the same
principle, it is possible to refine an interpretation hypoth-
esis without being able to directly observe the informed
preferences of the teacher, or having any flawless interpre-
tation hypothesis. In some sense, interpretation hypothe-
ses are very similar to the different possible world models
of an agent with a specified utility function in the ontol-
ogy of thoseworldmodels; if they suggest different actions
it is useful to distinguish between them, and if they pre-
dict different observations, it is possible to distinguish be-
tween them (the “actions" being analogous to policy up-
dates, and “what the world actually looks like" to “what
the teacher behavior actually means").

9.2 What is the purpose of the simplified
setups

The simplified setups are introduced so that some prob-
lems can be examined without distraction and in order
to make it possible to use more beautiful and crisp math.

Unauthenticated
Download Date | 1/13/15 5:55 PM



96 | T. Cederborg, P-Y. Oudeyer

These setups can also serve as a pedagogical tool since the
formalism in the simplified setups are easier to explain,
and if the reader understands them it will be easier to ex-
plain the formalism of the unsimplified setup.

Let’s take the example where the learner only has ac-
cess to noisy sensor readings of the world, and does not
perfectly hear the speech comments that the teacher uses
to evaluate its performance; in this case the learner needs
to interpret two different, inconsistent evaluations (two
different evaluations of the same action in the same world
state). It is now natural to investigate possibilities such as:
(i) the evaluation was misheard, or (ii) the world model
was wrong (so that it was the same action in two different
world states that was evaluated), or (iii) the action was not
the same in the dimensions that actually matters (which
can happen in the case of incorrect assumptions regard-
ing what aspects of an action is relevant), (iv) the world is
viewed in the wrong framing (i.e. the world model is cor-
rect both times, but there is some relevant aspect of the
world that is not captured by the model). In a noisy world,
one of these could very well be the problem, and it makes
a lot of sense to investigate all of these possibilities. But
the danger is that one overlooks other types of potential
problems. Let’s say that the world state is observable and
given in a known ontology (theworld is neatly divided into
world states that are shared by the learner and teacher).
The teacher has access to a flawless policy, and only cares
about things represented in the world state, and finally
that the teacher is giving a fully observable scalar value as
feedback (instead of a noisy speech comment). What can
the learner do if it observes inconsistent behavior in such a
setup? It is now forced to investigate an entirely new class
of possibilities, for example: (i) the teacher cannot see all
relevant objects, or (ii) the teacher is giving rewards for in-
cremental progress, or (iii) the teacher is giving high re-
wards as encouragement since the robot has failed a lot
and looks sad (real humans do this), or (iv) the teacher did
not observe the entire action that it was evaluating12, or
any number of similar possibilities.

A simplified setup makes it possible to investigate
these types of problems rigorously and without distrac-
tions. Inference problems can be intractable, and some are
impossible to solve perfectly, even in principle. For the in-

12 For example, observing the full action sequence of a cleaning
behavior in one instance, but only the end result in the other in-
stance. The evaluations could be different if the teacher missed that
the learner swept the dust under the rug, or made a lot of noise while
moving the furniture (which annoys the neighbors), or damaged the
floor under the sofa, etc.

tractable inference problems, this formalism aims to pro-
vide a clear description of what it is that solutions are an
approximation of. In some setups the best course of action
can be impossible to find even in principle, and these are
cast as an inference problem that contain a set of hypothe-
ses such that each one: (i) has non negligible probability,
(ii) imply a different optimal policy, (iii) make the same
identical prediction in all observable spaces13.

Since these problems exists in a simple setup, it seems
obvious that they are much worse in more complex setups
(at the very least they must be equally bad). As in most
problems, the types of solutions that are appropriate in a
simple world are not guaranteed to be appropriate in com-
plex worlds. Thus the simplifications are removed gradu-
ally so that more realistic setups can be investigated, lead-
ing to modifications of both descriptions and solutions. A
learner always contain a stochastic transform from an in-
teraction history space h ∈ Ch to a policy space π ∈ Cπ

at each simplification step. In the first steps, the interac-
tion history is over observable world states and a well sep-
arated feedback space, and later this is replaced by inputs.
Cπ also at first takes inputs in observable world states, but
is later changed to have sensor-reading-type inputs. Thus a
learner always contains the same type of stochastic trans-
form : Ch → Cπ, even though the relevant spaces are given
a different interpretation in later steps, as simplifications
are removed.

In the first steps, the learner simply analyzes a fixed
data set and outputs a policy, so that this transform is a
complete specification of a learner. Any update rule that
modifies a policy based on a single interaction and then
forgets the information, is recursively defining a stochastic
transform, so this is also a way of fully specifying a learner
(even if this transform isunknown to theprogrammers and
very difficult to find or interpret, any iterative learning rule
is still identical to a unique stochastic transform Ch → Cπ).
In later steps, the learner needs to perform information
gathering actions (meaning that an aditional element is
needed to fully specify a learner).

13 There are a set of hypothesis pairs (a teacher informed preference
hypothesis and an interpretation hypothesis) that makes identical
predictions regardingwhat feedbackwill be observed. If the informed
preferences are modeled by a utility function, the best that can be
done is to collapse them into aweighted sum, according to prior prob-
abilities. This reduces the problem to the same type of inference prob-
lem as before.
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10 Conclusion and future research
We have presented a formalism that provides a common
theoretical foundation for a large number of research
projects that have so far been considered as separate fields
of research. By considering for example a teacher demon-
stration, an evaluative speech comment and a teacher-
provided numerical value as the same type of information
source, a structured way of using several of these informa-
tion sources simultaneously has been established.

A mathematical success criterion was presented in
a set of simplified setups and several possible solution
methodswere sketched, opening upnewavenues of future
research. New research projects can start from the simpli-
fied setups and exploreways ofmaking approximate infer-
ence (along the lines of the example algorithms that were
sketched along with the formalism). Then simplifications
can be incrementally removed when solutions to the sim-
pler setups are validated in experiments.

Another avenue for future research was opened up by
re describing existing learning algorithms as interpreta-
tion hypotheses. This provided a structured way in which
an information source can be reinterpreted based on ob-
servations, and introduced the idea of updating several
learning algorithms concurrently. This means that a new
research project can start with a set of existing algorithms,
introduce parameters and then design a rule for when to
change those parameters as a response to observations,
concurrently with learning tasks. It is also possible to start
with minor additions to individual existing learning algo-
rithms. Any learning-from-demonstration algorithm can
be augmented by a system that checks facial expressions
of the teacher and learns that some facial expressions
means that the teacher failed. One very simple way of
using this information, that will work with any learning-
from-demonstration algorithm, is to avoid using data that
is above some threshold of probability of being a failure. It
is also possible to make a small addition to any reinforce-
ment learning algorithm by making the size of a learning
rate dependent on an estimation of the level of informed-
ness of the teacher. It is sometimes possible to confidently
learn a task even in the face of sometimes incorrect rein-
forcement signals. When the real performance is known,
the interaction history can be re-examined and it can be
determined in what situations values given by the teacher
are accurate, and when they are inaccurate. Now it is just
a matter of estimating the probability of the signal being
accurate given the context (for example the presence of an
obstacle between the teacher’s eyes and an important ob-

ject), and reducing the learning rate based on the proba-
bility estimates.

The formalismpresented can thus be used to see exist-
ing research in a new light, giving old experiments a new
interpretation andmaking alternative avenues of future re-
search visible.
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