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1. INTRODUCTION
The advancements of synthetic biology make biochemical sys-
tems of increasing complexity realizable in living cells. Many
computation and control design examples have been demon-
strated either in vivo or in vitro. In principle, any polyno-
mial ordinary differential equation can be approximated by
chemical reaction networks [1]. When control systems are of
concern, linear control is one of the most widely applied con-
trol methods. Any linear control system can be realized with
three elementary building blocks: integration, gain, and sum-
mation. Realizing linear control with biochemical reactions
has been proposed in [2], where reaction rates of the under-
lying reactions play a key role to achieve the desired building
blocks. Essentially the reaction rates have to be matched ex-
actly, and it imposes serious practicality restriction because
in reality the reaction rates of available reactions are prede-
termined and can be limited. In this paper we devise a mech-
anism to make linear control systems configurable by adding
auxiliary species as control knobs. The concentrations of the
auxiliary species can be adjusted not only to compensate re-
action rate mismatch, but also to reconfigure different control
systems out of the same control architecture. Hence imple-
menting linear control systems in biochemistry can be made
more practical.

2. METHODS
Following [2], we represent a real variable x by the difference
(x+−x−) between the concentrations of two molecular species
x+ and x−. In the sequel, we shall not distinguish a species
and its concentration.

2.1 Integration Block
An integration block takes an input signal u(t) and outputs

a signal y(t) = α
∫ t
0
u(τ)dτ + y(0) for α ∈ R. The integration

block for α ≥ 0 consists of a pair of catalytic reactions (one
with the species of upper signs in superscript and the other
with species of lower signs) in (1) and an annihilation reaction
in (2).

x± + u±
k±1→ x± + u± + y± (1)

y+ + y−
ηint→ φ (2)

Auxiliary species x± and input species u± serve as catalysts in
(1). With the definition that k+1 x

+ = k−1 x
− ≡ α, the kinetics

of y is exactly the integration of u as shown below.

ẏ± = k±1 x
±u± − ηint y+y−

y′ = ẏ+ − ẏ− = k+1 x
+u+ − k−1 x

−u− = αu

Because the concentrations of x+ and x− can be controlled
but not k±1 , in theory it is always possible to design a reaction
network to meet any required α. For α < 0, the signs in the
superscript of y in (1) should be swapped to ∓.

2.2 Gain and Weighted Summation Blocks

A weighted summation block takes a number of input signals
ui(t), i = 1, 2, ..., n and outputs a signal y(t) =

∑n
i=1 αiui(t)

for αi ∈ R. A gain block is a special weighted summation
block with only one input u(t) and producing output y(t) =
αu(t) for α ∈ R. The gain block with α ≥ 0 can be realized
by two pairs of catalytic reactions of (3) and (4), where x±

and z± are auxiliary species, and by an annihilation reaction
of (5).

x± + u±
k±1→ x± + u± + y± (3)

z± + y±
k±2→ z± (4)

y+ + y−
ηgs→ φ (5)

These reactions induce the following equation.

ẏ± = k±1 x
±u± − k±2 z

±y± − ηgs y+y−

Let ku ≡ k+1 x
+ = k−1 x

− and ky ≡ k+2 z
+ = k−2 z

−. The mass
action of y becomes

y′ = ku(u+ − u−)− ky(y+ − y−) = kuu− kyy

If ky is large enough compared to |s| = ω, Laplace transform
converts the above equation to

G =
Y

U
=

ku
s+ ky

≈ ku
ky
≡ α (6)

That is, with properly chosen ky, the value of y at equilib-
rium equals αu, which accomplishes the implementation of
the gain block. For α < 0, the superscript of y in (3) should
be swapped.

The weighted summation block can be implemented with
the same reactions as the gain block, except that (3) has to
be changed to

x±i + u±i
k±1,i→ x±i + u±i + y±, i = 1, 2, ..., n (7)

If the scaling factor αj < 0, we simply swap the signs in the
superscript of y in the reaction of (7) corresponding to input
uj .

3. CASE STUDY
We perform case study on the mass-spring-damper (MSD)
system as shown in Fig. 1 A. The system can be modeled by
the equation

Mẍ+ bẋ+ kx = F.

With M = 1 kg, b = 10 N s/m, k = 20 N/m, F = 1 N, by
Laplace transform we derive the transfer function

G =
1

s2 + 10s+ 20
≈ 0.2236(

1

s+ 2.764
− 1

s+ 7.236
)

The transfer function can be implemented with the block di-
agram shown in Fig. 1 B. The proportional-integral (PI) con-
troller to the MSD system is shown in Fig. 1 C.



Figure 1: (A) Mass-spring-damper system. (Let F = 1 N, M = 1 kg, b = 10 N s/m, k = 20 N/m.) (B) MSD model, where triangular
blocks denote gain functions with their corresponding weights, rectangular blocks denote integrators, and circle blocks denote mixers for
summation and/or subtraction. (Let A = 2.764, B = 7.236 and C = 0.2236.) (C) PI-controlled MSD model, where G is the plant shown
in (B). (Assume the values of KP and KI are given in Fig. 2 D.)

Figure 2: The blue, green, and red curves represent the responses in ideal, configurable biochemical implementation, and nonconfigurable
biochemical implementation cases, respectively. (A) Step, impulse, and sinusoidal (from left to right) responses of MSD. (B) Step
responses of PI-controlled MSD. (Assume 10% rate mismatch in the MSD system.) (C) Step responses of PI-controlled MSD, where the
MSD undergos parameter change with b = 40 N s/m and k = 60 N/m, respectively, which induces gain change of A = 1.561, B = 38.44
and C = 0.0271. (D) The values of (KP ,KI) in simulation.

The block diagrams are constructed with ky = 10 for
all the summation and gain blocks except those summation
blocks in red and gain blocks A and B with ky = 50. The
values of ku are set to αky where the values of α equal the
weights specified in the corresponding gain blocks. Also we
assume k2’s have the same values as ky’s and k1’s are in 10%
mismatch to ku’s.

Fig. 2 A and B show the responses of the MSD and the PI-
controlled MSD systems. As can be seen, our method achieves
better approximation to the ideal cases than the prior method
[2]. One of the advantages of our method is that we can match
the weight ku/ky by tuning the concentrations of x± and z±,
whereas in the prior method [2] no tuning is possible to avoid
the inexact gain k1/k2 due to the mismatch of reaction rates
k1 and k2. (Note that the biochemical implementations have
their own optimal KP and KI values, shown in Fig. 2 D, to
approximate the ideal system.)

Suppose that the spring and damper of the above MSD
system are now replaced with new ones for b = 40 N s/m
and k = 60 N/m. Without redesigning the PI-controller,
our method can still adapt the PI-controller to the new MSD
system whereas prior method has no such capability. Since
we can tune the concentrations of x± and z± in biochemical
implementation, it is possible for us to adapt (KP ,KI) to
optimal values (40, 60) for the new PI-controlled MSD system,
in contrast to the original (15, 20). Fig. 2 C compares the
results with and without such reconfigurability.

4. DISCUSSIONS
The aforementioned linear control systems can possibly be
realized using the DNA strand-displacement technique. How-
ever the rate constants in the displacement reactions are about
six orders of magnitude in 1 M−1 s−1 [3]. If we require
ky = k±2 z

± in (6) to be 100 M−1 s−1, then the concentra-
tions of z± will be of five orders of magnitude in nM. Such
a high concentration might be impractical. To alleviate this
high concentration requirement, one may try to increase the
reaction rates. Zhang et al. have constructed and charac-
terized DNA catalytic circuits driven by entropic gains [4].
Based on the entropy effects, a variant, called the tethered
entropy driven catalytic circuits, has been introduced [5] to
shorten the catalytic cycle and thus increase reaction rates.
With these techniques, linear control systems may be effec-
tively realized using DNA displacement reactions.
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