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ABSTRACT

In this paper, we present a stochastic NL-means-based de-

noising algorithm for generalized non-parametric noise mod-

els. First, we provide a statistical interpretation to current

patch-based neighborhood filters and justify the Bayesian in-

ference that needs to explicitly accounts for discrepancies be-

tween the model and the data. Furthermore, we investigate the

Approximate Bayesian Computation (ABC) rejection method

combined with density learning techniques for handling situ-

ations where the posterior is intractable or too prohibitive to

calculate. We demonstrate our stochastic Gamma NL-means

(SGNL) on real images corrupted by non-Gaussian noise.

Index Terms— Denoising, Approximate Bayesian Com-

putation, density learning, NL-means, fluorescence imaging.

1. INTRODUCTION

A digital imaging system consists of an optical system fol-

lowed by a photodetector and associated electrical filters.

The photodetector converts the incident optical intensity (i.e

photons) to electrons. During the process, the true signals

are damaged by many different sources of noise. For in-

stance, in optical microscopy imaging, signals are known to

be corrupted by intensity dependent Poisson noise but also by

additional sources of electron noise [1, 2]. More generally,

we have to deal with images corrupted with heterogeneous

mixed noises, which requires to adapt the usual denoising

approaches including the non local(NL)-means algorithm [3].

In the case of images damaged by additive white Gaus-

sian noise, the NL-means [3] has been shown to be efficient

to reduce additive noise. This method exploits image redun-

dancy captured by patches to restore information. In order to

optimally perform in the case of Poisson noise, the NL-means

has been combined with variance stabilizing transforms such

as Anscombe [1] and Fisz transform [4]. Other authors pro-

posed to combine Principal Component Analysis [5] and dic-

tionary [6] to patch-based representation to reduce Poisson

noise. In [7], the authors proposed an extension of the NL-

means based on probabilistic similarities to compare noisy

patches and pre-estimated patches; this framework has been

used to denoise SAR images [8] and is appropriate for general

parametric noise models [9].

In this paper, a new Bayesian motivation for the NL-

means is given for generalized non-parametric noise models.

Our approach inspired from the Approximate Bayesian Com-

putation (ABC) framework [10, 11], is especially adapted

to complex situations where the posterior cannot be easily

derived or computed. Furthermore, we exploit empirical

noise statistics and propose a distance learning framework

to adapt to different conditions. This is particularly relevant

for images contaminated by heterogeneous sources of noise

[1, 2]. A major difference with previous methods [8, 7] is that

we directly handle the structure of the noise, without precise

parametric modeling of the noise.

The organization of the paper is as follows: in Section 2,

we describe the NL-means in the Bayesian framework [12].

In Section 3 we describe the ABC method which serves to

compute the data-driven posterior distribution. In Section 4

we demonstrate the flexibility of our stochastic Gamma NL-

means (SGNL-means) by showing how it can be adapted to

tackle the noise in frequency domain fluorescence lifetime

imaging microscopy (FD-FLIM) and cryo-electron tomogra-

phy. We illustrate the potential of our approach on two exam-

ples of ultra-sound and SAR imaging.

2. BAYESIAN INTERPRETATION OF NL-MEANS

Consider a gray-scale image v = (v(x))x∈Ω defined over a

bounded domain Ω ⊂ R
2 and v(x) ∈ R+ is the noisy ob-

served intensity at pixel x ∈ Ω. Assume that the image

v is a noisy version of an unknown image u, that is v =
u+noise. Define a

√
n×√

n observed patch Sv(x) at pixel x

as: Sv(x)(t)
△
= v(x+ t), ∀t ∈ [−

√
n−1
2 , · · · ,

√
n−1
2 ]2. The

NL-means at pixel x is a weighted average of all gray values

in the entire image. Formally, we have [3]:

uNL(x) =
1

Z(x)

∑

y∈Ω

exp

(
−‖Sv(x)− Sv(y)‖22

h2

)
v(y) (1)

and Z(x) is a normalizing factor. The weights express the

amount of similarity (‖ · ‖2 denotes the Euclidean distance)



between the n-dimensional image patches Sv(x) and Sv(y)
of each pair of pixels x and y involved in the computation.

For the sake of simplicity, we omitted in (1) the choice of

a weighted Euclidean norm over the patches as described in

[3]. The decay parameter h2 ≈ 10σ2 acts as a filtering pa-

rameter and σ2 denotes the variance of the noise assumed to

be Gaussian. The range of the search space can be as large as

the whole image but, in practice, it is necessary to restrict the

computation of weights to 21× 21 pixel neighborhoods.

In the line of work of [3, 13], we describe a more recent

interpretation of NL-means in the Bayesian setting [12]. De-

fine a prior on patches z ∈ R
n from the noisy image v. A

simple histogram is given by p(z) = 1
|Ω|

∑
y∈Ω 1[z = Sv(y)]

where 1[·] denotes the indicator function. The Bayesian es-

timate Ŝu(x) of a patch Su(x) with L2-risk and prior p

on patches is given by the posterior expectation Ŝu(x) =
Ep[SU (x)|Sv(x)], i.e.

Ŝu(x) =

∫ posterior︷ ︸︸ ︷
p(z|Sv(x)) z dz =

∫ prior︷︸︸︷
p(z)

likelihood︷ ︸︸ ︷
p(Sv(x)|z) z dz.

In the case of zero-mean white Gaussian noise (variance σ2),

Ŝu(x) =
1

Z(x)

∫
p(z)e−

‖Sv(x)−z‖22
2σ2

z dz. (2)

Given p(z) as defined above and switching the sums, we get

Ŝu(x) =
1

Z ′(x)

∫ ∑

z∈Rn

1[z = Sv(y)] e
− ‖Sv(x)−z‖22

2σ2
z dz. (3)

For a given y, a patch z yielding a non-zero term can only be

z = Sv(y). Finally, by selecting the central pixel [14], we get

uNL(x) (see (1)). NL-means is therefore a posterior expecta-

tion and the prior model is based on the empirical histogram

of patches taken in the input noisy image. In the next section,

we consider more general likelihood models and priors.

3. APPROXIMATE BAYESIAN COMPUTATION

NL-MEANS FILTERING

3.1. Principles of ABC rejection method

One of the basic problem in Bayesian statistics is the compu-

tation of the posterior for general forms of noise distributions.

If the posterior density cannot be computed explicitly or is

time consuming, we usually resort to stochastic simulation to

generate samples for the posterior. The commonly-used ap-

proach is the rejection method but, more recently, Beaumont

et al. [10] described a generalization of the usual rejection

method in the domain of genetics.

Formally, assume data D generated from a model deter-

mined by λ whose prior is denoted p(λ). The so-called ABC

method is as follows [10, 11]:

1. Generate λ from p(·);
2. Simulate D′ from the model with parameter λ;

3. Calculate a distance ρ(D,D′) between D′ and D, ac-

cept λ if ρ(D,D′) ≤ δ, and return to 1.

As δ → ∞, accepted observations come from the prior. When

δ → 0, this rejection algorithm is exact and accepted obser-

vations are independent and identically distributed from the

posterior distribution p(λ|D). Nevertheless, most samples are

rejected if we set δ = 0. Then, this approach requires the set-

ting of δ and the selection of a metric ρ(·, ·) (e.g. L2 distance).

The next step is to calculate expectations of the form

E(λ|D) =
∫
p(λ|D)λ dλ where the expectation is taken

with respect to the posterior distribution of λ. The simplest

way to approach this is to draw samples {λi}i=1,··· ,N , from

p(λ|D) using the previous algorithm and then approximate

using the sum N−1
∑

λi. However, a more stable estimate

can be obtained by weighting the λ values with the posterior.

Consequently, all values of λ are included in the the sum and

there is no rejection step. This is a direct extension of the esti-

mate given in Beaumont et al. [11] which used Epanechnikov

kernels to weight each value of λ.

3.2. Patch-based ABC method

The interpretation of ABC given above allows us to revisit

previous analyzes of the NL-means in the Bayesian setting.

The objective is to restore the pixel x given an observed patch

Sv(x). Denote λ the unknown scalar intensity value at a given

pixel whose prior p(λ) is assumed to be uniform in the range

[0, · · · , λM ] where λM is the maximum intensity value. Con-

sider the ABC procedure following the previous guidelines in

the case of zero-mean white Gaussian noise:

1. Generate λ ∼ U [0, · · · , λM ];
2. Find a pixel y in the entire image such that y =

argminy′∈Ω |v(y′) − λ| (not unique) and select the

patch Sv(y) whose center is y;

3. Calculate the error ǫ(x, y) =
‖Sv(y)−Sv(x)‖2

2

2σ2 between

the “simulated” patch Sv(y) and the “observed” patch

Sv(x) at pixel x, compute π(ǫ(x, y)) and return to 1.

Here π(·) denotes the unknown probability density function

of the error term. Instead of uniformly drawing independent

samples in the n-dimensional space, Step 2 is expected to

generate more plausible ”artificial data” in the sense of ABC,

“closer” to the observed data. Note that Step 2 amounts to

uniformly drawing a patch in the entire image domain.

3.3. Data-driven density learning

In the Gaussian case and non-overlapping patches, the errors

are not centered at 0 but are expected to follow a chi-square

distribution χ2
n with n degrees of freedom. Yet, for over-

lapping patches, it is established that the error is the sum of

three independent χ2
n variables: ǫ(x, y) = z1 + 2z2 + 3z3

such as z1 ∼ χ2
n−p, z2 ∼ χ2

2p−n and z3 ∼ χ2
n−p where

n
2 < p < n controls the rate of overlapping. This is explicitly

true for sliding windows in one-dimensional signals and we

have E[ǫ(x, y)] = 2n and Var[ǫ(x, y)] = (12n− 4p).



Gamma distribution fitting for four noisy images (bottom-left) Original image BM3D [15, 16]

Four noisy images SGNL-means images ND-SAFIR [1] SGNL-means

Fig. 1. Experiments in FD-FLIM microscopy. Left: FNAR1 tagged with Green Fluoresence Protein (GFP) observed in a epithelial cell with mCHerry-tagged

Tyk2 (confocal microscopy with spinning disk set-up, UMR 144 CNRS Institut Curie, Paris, France); Gamma distribution fitting and SGNL-means denoising

on four subsequent images with temporally varying signal-to-noise ratios. Right: views of denoised images with state-of-the-art methods and comparisons.

In the case of variable and multiple overlappings in 2D, a

general form for the distribution of the error cannot be easily

obtained (e.g. see [18]). Nevertheless, it is established in [17]

that the sum of weighted chi-squares variables can be approx-

imated by a Gamma distribution controlled essentially by two

parameters k and β. Consequently, we have experimentally

investigated this idea of approximating the empirical density

π(·) of errors by fitting Gamma distributions using the mo-

ment method, yielding the following algorithm.

3.4. Stochastic Gamma NL-means (SGNL-means)

The proposed ABC-based Gamma NL-means is based on the

following stochastic two-step procedure (one iteration):

Step 1: Data-driven density learning

1. Draw uniformly with replacement |Br||Ω| pairs of

patches (Sv(x), Sv(y)) in the noisy image v such as

‖x − y‖2 ≤ r and Br is a ball of radius r > 0. Com-

pute the empirical density π(·) of errors ǫ(x, y) =
‖Sv(y)− Sv(x)‖22/(2σ2);

2. Estimate the Gamma distribution parameters k and β
by fitting the empirical mode = (k − 1)β and variance

= kβ2 of the density.
Step 2: ABC-based denoising

uSGNL(x; k, β) =
1

C(x)

∑

y∼Ur(x)

(ǫ(x, y))k−1 e
−

ǫ(x,y)
β v(y) (4)

where the set of N variables y ∼ Ur(x) in the sum are uni-

formly drawn from a ball Br of radius r (same value as in Step

1) centered at pixel x and C(x) is normalization constant.

In the implementation, we adopted a blockwise approach

with patch overlapping [3, 13, 19]. Due to the overlap of

patches, the restored value at a pixel x is finally obtained

by uniform averaging the different estimators available at that

position. Finally, we denote uSGNL = DSGNLv the “filtered”

image using the proposed SGNL-means.

3.5. Bias reduction and noise adaptation

Instead of repeating applications of the SGNL-means to re-

duce noise progressively, it is possible to get better denoising

results by exploiting the residual image v − uSGNL, as first

suggested in [20]. The so-called “twicing” approach has been

recently described in [21, 22] and is known to improve the

estimator bias. Formally, define the bias of the estimator as:

Bias[uSGNL] = E[uSGNL]− u = −E[v − uSGNL] (5)

≈ −DSGNL(v − uSGNL).

Given this approximation of the bias, we correct uSGNL (using

the same estimated parameters k and β) as [21, 22]:

ũSGNL = uSGNL +DSGNL(v − uSGNL) (6)

Reducing the bias is done at the cost of increasing the vari-

ance but the second iteration better preserves structural de-

tails. Additional iterations do not improve the results.

In the statistical framework, we have assumed that images

are corrupted by white Gaussian noise. An approach to poten-

tially adapt the SGNL-means is to substitute a dedicated noise

variance model to σ2 in (4), for instance as explained in [2]

in FD-FLIM imaging. Such a noise variance model can be

derived in closed-form for other image modalities [13, 19].



noisy image SGNL-means noisy image SGNL-means noisy image SGNL-means

residuals Gamma fitting residuals Gamma fitting residuals Gamma fitting

(k = 3.9, β = 40.5) (k = 4.0, β = 38.7) (k = 5.4, β = 12.3)

Fig. 2. Gamma distribution fitting, denoising of images with SGNL-means and residual images (v−ũSGNL). Left: Xenopus Microtubule Associated proteins

and taxoal stablized microtubule interaction in cryo-electron tomography (Technai 200KV LaB6, Ultrascan 1000 Gatan CCD Camera, IGDR UMR6290,

Rennes, France). Middle: ultra-sound 2D image (liver) from a 3D volume (see [19] for details). Right: SAR Lelystadt image (Netherlands) c©ESA (see [8]).

4. EXPERIMENTAL RESULTS

All our results use the two following control parameters: n =
7 × 7 and r = 7. We considered N = |Br| draws to com-

pute (4) and the SGNL-means provided better results with 2

iterations (twicing). As illustrated in Figs. 1-2 for several im-

age modalities, the parameters k and β are robustly estimated

given a large set of distances computed from pairs of noisy

patches. We automatically discard too large distances and we

select the most homogeneous patches in the input image by

using global and local noise variances estimated as in [23].

The computational time of the SGNL-means (including twic-

ing) is of about 80s on a 512 × 512 image and C++ imple-

mentation on an Intel Core i7 64-bit CPU 2.4GHz.

First, on images corrupted artificially by white Gaussian

noise, SGNL-means produced better results1 than NL-means

(IPOL / www.ipol.im). Performances of SGNL-means are

especially demonstrated on real images in confocal imaging

combined with frequency domain fluorescence lifetime imag-

ing (FD-FLIM) (see Fig. 1). In [24], it is established that

the ICCD response v(x) is of the following form: v(x) =
gINT(x)gCCDℵ(x)+ξ(x) where ℵ(x) is the incident photon num-

ber assumed to follow a Poisson distribution, ξ is the CCD

read-out Gaussian noise such as ξ ∼ N (mξ, σ
2
ξ ), gCCD is the

constant gain of the CCD sensor and gINT(x) is the spatially

varying gain of the intensifier assumed to be random. Noise

variance σ2(x) is spatially varying [2] but the likelihood func-

tion cannot be explicitly derived. Consequently, we have re-

sort to stochastic simulation to generate samples from the pos-

terior distribution. The denoising results on four subsequent

images with temporally varying signal-to-noise ratios are de-

1e.g. Lena image (σnoise = 20): 32.56 (SGNL) vs 31.52 (NL-means);

Barbara image (σnoise = 20): 31.05 (SGNL) vs 30.21 (NL-means)

picted in Fig. 1 (left bottom). Assuming a mixed Poisson-

Gaussian noise, we compared the performance of the ND-

SAFIR algorithm [1] and BM3D [15] combined with variance

stabilization [16] to adaptive variance SGNL-means. BM3D

has not a significant impact on the resulting image and ND-

SAFIR tends to create piecewise constant areas contrary to

SGNL-means combined to adaptive noise variance [2].

In the second experiment, we addressed the problem of

denoising in cryo-electron microscopy as already investigated

in [25, 26]. Specimen are known to be very sensitive to elec-

tron radiation involving the spreading out of the electron dose

on the whole tilt series, causing noise in the background. A

closed-form for the likelihood function cannot be easily de-

rived, and we have applied SGNL-means to improve signal-

to-noise ratio on 2D images from a 3D stack (see Fig. 2 left).

Finally we tested the algorithm on images damaged by multi-

plicative noise in ultra-sound (Fig. 2 middle) and SAR (Fig. 2

right) imaging. The procedure preserves sharp discontinuities

and details while reducing noise with fewer processing arti-

fact. In these experiments, we considered the noise variance

to be constant. Results can be improved by considering more

dedicated signal-dependent noise variance models [19, 8].

5. CONCLUSION

An extension of the NL means has been proposed for images

damaged by different sources of noises. It is based on simi-

larity metric learning to compare noisy patches. A Bayesian

estimator for NL means, based on the idea of ABC, has been

proposed. With the ABC framework, it is also possible to cap-

ture information using a number of marginal statistics [13,

19].Finally, visual results support the efficiency of the pro-

posed method. More satisfying results will be obtained if a

noise variance model is specialized in each study case.



6. REFERENCES

[1] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-

B. Sibarita, and J. Salamero, “Patch-based non-local

functional for denoising fluorescence microscopy im-

age sequences,” IEEE Trans. Medical Imaging, vol. 29,

no. 2, pp. 442–454, 2010.

[2] P. Roudot, C. Kervrann, J. Boulanger, and F. Waharte,

“Noise modeling for intensified camera in fluorescence

imaging: application to image denoising,” in IEEE Int.

Symp. Biomedical Imaging (ISBI 2013), San-Francisco,

CA, 2013, pp. 600–603.

[3] A. Buades, B. Coll, and J.M. Morel, “A review of image

denoising methods, with a new one.,” SIAM J. Multi-

scale Modeling and Simulation, vol. 4, no. 2, pp. 490–

530, 2005.

[4] A. de Decker, J.A. Lee, and M. Verlysen, “Variance

stabilizing transformations in patch-based bilateral fil-

ters for poisson noise image denoising,” in IEEE Engi-

neering in Medicine and Biology Society (EMBS 2009),

2009, pp. 3673–3676.

[5] J. Salmon, C.A. Deledalle, R. Willett, and Z.T. Har-

many, “Poisson noise reduction with non-local PCA,”

in IEEE Int. Conf. Acoustics, Speech and Signal Pro-

cessing (ICASSP 2012), Kyoto, Japan, 2012, pp. 1109–

1112.

[6] R. Giryes and M. Elad, “Sparsity based poisson de-

noising,” in Electrical Electronics Engineers in Israel

(IEEEI 2012), Nov 2012, pp. 1–5.

[7] C.-A. Deledalle, F. Tupin, and L. Denis, “Poisson

NL-means: Unsupervised non local means for pois-

son noise,” in IEEE Int. Conf. Image Processing (ICIP

2010), Hong Kong, China, 2010, pp. 801–804.

[8] C.A. Deledalle, L. Denis, and F. Tupin, “Iterative

weighted maximum likelihood denoising with proba-

bilistic patch-based weights,” IEEE Trans. Image Pro-

cessing, vol. 18, no. 12, pp. 2661–2672, 2009.

[9] C.-A. Deledalle, L. Denis, and F. Tupin, “How to com-

pare noisy patches? patch similarity beyond Gaussian

noise,” Int. J. Computer Vision, vol. 99, pp. 86–102,

2012.

[10] M. A. Beaumont, W. Zhang, and D. J. Balding, “Ap-

proximate Bayesian computation in population genet-

ics,” Genetics, vol. 162, pp. 2025–2035, 2002.

[11] P. Marjoram, P. Molitor, V. Plagnol, and S. Tavaré,
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