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SUMMARY

Migrating legacy systems or deploying a new application to a cloud environment has recently become very
trendy, since the number of cloud providers available is still increasing. These cloud environments provide
a wide range of resources at different levels of functionality, which must be appropriately configured by
stakeholders for the application to run properly. Handling this variability during the configuration and
deployment stages is known as a complex and error-prone process, usually made in an ad hoc manner. In this
paper, we propose SALOON, a Software Product Lines-based platform to face these issues. We describe the
architecture of the SALOON platform, which relies on feature models combined with a domain model used
to select among cloud environments a well-suited one. SALOON supports stakeholders while configuring
the selected cloud environment in a consistent way, and automates the deployment of such configurations
through the generation of executable configuration scripts. This paper also reports on some experiments
showing that using SALOON significantly reduces time to configure a cloud environment compared to a
manual approach and provides a reliable way to find a correct and suitable configuration. Moreover, our
empirical evaluation shows that our approach is effective and scalable to properly deal with a significant
number of cloud environments.
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1. INTRODUCTION

Cloud computing has recently emerged as a major trend in distributed computing, and deploying an
application to a cloud environment has become very trendy, since the number of cloud provider
offers is still increasing. In the cloud computing paradigm, computing resources are delivered
as services. Such a model is usually described as Anything as a Service (XaaS or *aaS), where
anything is divided into layers from Infrastructure to Software including Platform [1, 2]. At the
IaaS level, the entire software stack running inside the virtual machine must be configured as
well as the infrastructure concerns: number of virtual machines, amount of resources, number of
nodes, SSH access or database configuration. Regarding platforms provided by PaaS environments,
the configuration part only focuses on software that compose this platform: which database(s),
application server(s), compilation tool or libraries. The software stack management process is
entirely handled by the PaaS provider. Furthermore, IaaS and PaaS define different deployment
modes (e.g., public, private and hybrid) and price rates to be considered when selecting an
environment. This layered model therefore offers many configuration and dimension choices,
for the application to be deployed as well as the configurable runtime environments [3]. Thus,
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when deploying an application to the cloud, companies or developers have to cope with clouds
variability due to a wide range of resources at different levels of functionality among available
cloud environments. Dealing with this variability leads to complex and error-prone configuration
choices that are usually made in an ad hoc manner.

In this article, we propose SALOON, a platform for selecting and configuring cloud environments,
an improved version of our work presented in a previous paper [4]. The main contribution of
SALOON is to address the above issues in an automated way, taking as input the applications
functional and non-functional requirements [5]. In particular, SALOON supports the selection and
configuration of cloud environments which are well-suited to handle these requirements. This
is achieved through the use of Software Product Lines (SPLs) [6, 7]. SPLs are dedicated to the
configuration of software products with high variability using variability models, in particular
Feature Models (FMs) [8]. In SALOON, FMs are extended with cardinalities [9, 10, 11] and
attributes [11, 12, 13]. These extensions are required when modeling cloud environments, to define
the quantification of cloud resources together with dependencies among them. Although SALOON
is not the first approach to use cardinalities and attributes as FM extensions, it provides additional
support for the management of complex constraints involving attributes and cardinalities required
when modeling cloud environments.

The remainder of this paper is organized as follows. In SEC. 2, we identify the key challenges
in cloud environment selection and configuration that motivate this work. SEC. 3 introduces the
background information about software product lines and feature modeling. We then present in
SEC. 4 SALOON, our SPL-based platform. SEC. 5 reports on the implementation of the platform
and describes the evaluation we lead to assess our approach. Finally, we discuss in SEC. 6 close-
related work while SEC. 7 concludes the paper and gives some perspectives for future work.

2. KEY CHALLENGES

When deploying an application to the cloud, developers have to cope with a wide range of
configurable resources among available cloud environments. Our goal, by proposing SALOON, is to
provide a support to deal with this variability and to help those developers selecting and configuring
a suitable cloud environment. To achieve these objectives, we identify the following challenges
SALOON has to help developers to deal with:

C1: Selecting a suitable environment. Among the plethora of cloud providers, developers have
to (i) find the ones that provide all functionalities required by the application to run properly, e.g.,
the correct type of application server or database, and (ii) select one that is suitable regarding
non-functional requirements for these functionalities, e.g., the less expensive solution with at least
4 GB of RAM. The first challenge is therefore to provide a support to help the developer make such
a selection.

C2: Defining a proper configuration. Dealing with clouds variability leads to complex and
error-prone configuration choices that are usually made in an ad hoc manner. Moreover,
developers’ knowledge is not exhaustive and the way a cloud environment is configured can lead
to inconsistencies between cloud services when running the application. The second challenge is
thus to provide a mean to find a valid cloud configuration with respect to the required functionalities.

C3: Deploying in a reliable way. Once a cloud environment is selected and there exists a
configuration for this environment that suits the required functionalities, developers have to avoid
errors in the configuration process, in particular when defining cloud environment configuration
files and scripts, to ensure the cloud environment to be properly configured. The third challenge is
thus to provide a reliable support to handle such cloud configurations.
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3. BACKGROUND

In this section, we present a brief introduction to the main elements the SALOON platform relies
on, i.e., Software Product Lines engineering and Feature Modeling.

SPL engineering aims at building software while ensuring quality, reliability and reduction of
cost, efforts and time-to-market. It begins with the description, management and implementation
of the commonalities and variabilities existing among the members of the same family of software
products [6, 7]. The building process relies on the definition and the composition of a set of
software artifacts, e.g., piece of code, model, component or aspect, defined as assets. Some of these
assets are mandatory and will be part of all the built software (commonalities), while other assets
define the way software differs from each other (variabilities). The definition of variabilities and
commonalities, known as variability modeling, is a central activity in SPL engineering and relies
on variability models. A well-known approach to variability modeling is by means of Feature
Models (FMs) introduced as part of Feature Oriented Domain Analysis (FODA) back in 1990 [8].
FMs are an abstraction to define software systems, where software artifacts are reified as features.
FMs describe the way features are configured and reused to get a configuration that satisfies a set
of defined constraints. The selection or deselection of features is known as the feature selection
process, and a product is a valid combination of features. In these FMs, known as boolean FMs,
a feature is either present or absent in the final product according to the configuration and the
involved constraints. This valid product configuration is then given as input together with the
related assets to a derivation tool that yields the software product, e.g., generates code, merges
model fragments or weaves aspects.
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Figure 1. The Windows Azure Feature Model (excerpt)

In this paper, the FODA notation is extended with cardinalities and attributes. These extensions
are required to define a cloud environment FM, e.g., to express resources amount or available number
of instances. A cardinality-based FM supports cardinalities [10, 11], first introduced as UML-like
multiplicities [9], in extension to the original FODA notation. In this paper, we focus on feature
cardinalities, in opposition to group cardinalities, used to define the amount of sub-features a parent
feature may have. Thus, a feature cardinality specifies how many clones of a feature and its subtree
can be included in a product configuration. A feature cardinality is defined as an interval [m..n]
with m as lower bound and n as upper bound of this interval. FIG. 1 depicts such a situation,
with an excerpt of the Windows Azure cloud environment FM [14]. Some configurations of this
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FM may involve respectively up to 40 and 20 instances of the Virtual Machine and Worker
Instance features.

On the other hand, attribute-based FMs (also known as extended FMs) are FMs whose additional
information is added in terms of feature attributes [11, 12, 13]. Those attributes, mostly used to
specify non-functional properties e.g., a size or a quantity, can be either boolean, integer, real or
an enumeration. In FIG. 1, the Virtual Machine feature holds an attribute named size, which
enumerates the different sizes one can configure for a Virtual Machine instance.

4. THE SALOON PLATFORM

To tackle the challenges related to cloud selection and configuration definition issues described
in SEC. 2, we propose the SALOON platform. FIG. 2 depicts an overview of the platform, which
provides the following four contributions:

(i) the description of cloud environment variability, i.e., commonalities and variabilities, as FMs
extended with cardinalities, attributes and constraints over them. One FM is used to describe
one cloud environment, there is thus one software product line per cloud environment.

(ii) the reification and gathering of cloud environments provided functionalities into a Cloud
Knowledge Model, mapped to each cloud FM to automate the feature selection process.

(iii) the configuration analysis of these FMs, including complex constraints over attributes and
cardinalities, as well as the derivation of the related software products as configuration files
and scripts, both processes being automated.

(iv) an estimation of the cost for a given FM configuration, based on a cloud pricing model related
to the FMs and a dedicated cost estimation engine.

Application 
Server

Cloud

Database

SQL NoSQLTomcat Jetty

!"#$"%$&$'()*+,-&

Application 
Server

Cloud

Database

SQL NoSQLTomcat Jetty

.#+,/0')0+123/#"4+1

566-'6

!"#$"%&"'()*+,,"-

&&").$(/0,(*"%&1!&"#$"%&"2345#67."-

& &&&&&&&&".*"%&"89:;#)<="-

& &&&&&&&&&> ?&@-

&&"A72(BA62/0,(*"%&1

!"#$"%&"9.'C;"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*I).*KEJ*H"-

&"$(,E.05()2"%&"*<$.&).*KEJ*H"-

&",7.D#$(*"%&1!&"#$"%&"9.'C;LM"&?@&&?-

!"#$"%&"N(220"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*IO(220J*H"-

&"$(,E.05()2"%&"*<$.&O(220J*H"-

&",7.D#$(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?@&&?-

&

!"#$"%&"'()*+,,"-

&>

&"$(,E.05()2"%&"*<$.&*()*A,,J*H"-

&"7(K<#7(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?-

&& &&&&&&&&&&&&!&"#$"%&"9.'C;LM"&?@&&?

@

?&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&JJJ

!"#$"%&"'()*+,,"-

&&").$(/0,(*"%&1!&"#$"%&"2345#67."-

& &&&&&&&&".*"%&"89:;#)<="-

& &&&&&&&&&> ?&@-

&&"A72(BA62/0,(*"%&1

!"#$"%&"9.'C;"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*I).*KEJ*H"-

&"$(,E.05()2"%&"*<$.&).*KEJ*H"-

&",7.D#$(*"%&1!&"#$"%&"9.'C;LM"&?@&&?-

!"#$"%&"N(220"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*IO(220J*H"-

&"$(,E.05()2"%&"*<$.&O(220J*H"-

&",7.D#$(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?@&&?-

&

!"#$"%&"'()*+,,"-

&>

&"$(,E.05()2"%&"*<$.&*()*A,,J*H"-

&"7(K<#7(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?-

&& &&&&&&&&&&&&!&"#$"%&"9.'C;LM"&?@&&?

@

?&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&JJJ

!"#$"%&"'()*+,,"-

&&").$(/0,(*"%&1!&"#$"%&"2345#67."-

& &&&&&&&&".*"%&"89:;#)<="-

& &&&&&&&&&> ?&@-

&&"A72(BA62/0,(*"%&1

!"#$"%&"9.'C;"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*I).*KEJ*H"-

&"$(,E.05()2"%&"*<$.&).*KEJ*H"-

&",7.D#$(*"%&1!&"#$"%&"9.'C;LM"&?@&&?-

!"#$"%&"N(220"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*IO(220J*H"-

&"$(,E.05()2"%&"*<$.&O(220J*H"-

&",7.D#$(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?@&&?-

&

!"#$"%&"'()*+,,"-

&>

&"$(,E.05()2"%&"*<$.&*()*A,,J*H"-

&"7(K<#7(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?-

&& &&&&&&&&&&&&!&"#$"%&"9.'C;LM"&?@&&?

@

?&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&JJJ

!"#$"%&"'()*+,,"-

&&").$(/0,(*"%&1!&"#$"%&"2345#67."-

& &&&&&&&&".*"%&"89:;#)<="-

& &&&&&&&&&> ?&@-

&&"A72(BA62/0,(*"%&1

!"#$"%&"9.'C;"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*I).*KEJ*H"-

&"$(,E.05()2"%&"*<$.&).*KEJ*H"-

&",7.D#$(*"%&1!&"#$"%&"9.'C;LM"&?@&&?-

!"#$"%&"N(220"-

&"7(27#(DAE"%&"FG(2&H22,%II6E.<$5EJ.7GI*(7D#6(*IO(220J*H"-

&"$(,E.05()2"%&"*<$.&O(220J*H"-

&",7.D#$(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?@&&?-

&

!"#$"%&"'()*+,,"-

&>

&"$(,E.05()2"%&"*<$.&*()*A,,J*H"-

&"7(K<#7(*"%&1!&"#$"%&"N(220P.)2A#)(7"&?-

&& &&&&&&&&&&&&!&"#$"%&"9.'C;LM"&?@&&?

@

?&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&JJJ

7+89+6$4+1

!"#$%&'()&"*+,-(./0'(1(

Cloud 
Knowledge

Model

Requirements
Specification

Features
Selection

Configuration
Analysis

configuration

Cloud A

Cloud i

Cloud N

...

...

1

2

65

3

defines
Dom

defines

Dom

Dev

Dev

!"#(/(

!"#(2(

$(

        Derivation        

Cost
Estimation

4

: Manual Tasks

: Automated Tasks

: Domain Architect

: Developer Dev

Dom

executes

Feature Model A

Figure 2. SALOON Platform Overview

4



5

Our approach distinguishes between two roles, domain architects and developers. The domain
architect is expert in the particular domain targeted by the software product lines, the cloud
computing one in SALOON. He/She is responsible for defining both the cloud feature models and
the Cloud Knowledge Model. A domain architect has all information about commonalities
and variabilities of one particular cloud environment, and thus defines the related cloud feature
model. Then, all domain architects gather their knowledge to build the Cloud Knowledge Model,
which is a reification of cloud services and functionalities provided by all cloud environments and
defined in all SALOON feature models. The developer is the final user of SALOON. She/He interacts
with the platform through the Cloud Knowledge Model, which is the entry-point of SALOON.
Then, after several automated stages, she/he selects a cloud environment among suitable ones to
automatically retrieve the related configuration files and scripts and executes them to configure the
cloud environment.

Configuring a cloud environment using SALOON relies on several phases. First, the developer
specifies her/his requirements using the Cloud Knowledge Model (FIG. 2 1 ). Then, features and
attributes of each FM are selected regarding the mapping between this cloud model and the FMs
2 . Each FM Configuration is then checked 3 and given as input, if valid, to the Cost
Estimation engine to help the user making her/his choice 4 . Finally, the Derivation tool
yields the related configuration files and/or deployment scripts 5 , executed by the developer 6 .
We describe in details in the following sections the different concerns of the SALOON platform.

4.1. SALOON Core

Our recent work in the European PaaSage project [15] regarding deployment of cloud applications
and configuration of cloud environments provides evidence that support for expressing constraints
in terms of cardinality or attribute values and reasoning about these values has become necessary
[16, 4]. SALOON Core provides such a support.

4.1.1. Abstract Syntax. SALOON Core enables the definition, the configuration and the analysis of
FMs extended with cardinalities and attributes. In particular, it provides a support for new means
of expression for feature modeling approaches regarding cardinality and attributes in constraints.
FIG. 3 depicts the abstract syntax of the FMs supported by SALOON Core. Metaclasses drawn in
dotted line are well-known in the variability modeling community, but may have different names.
We refer to this part of the metamodel as FMMM . This FMMM metamodel remains valid for most
feature modeling languages and tools that handle boolean FMs as well as cardinality-based FMs.
More precisely for the latter, FMMM is used in the literature [17, 10, 18] to define a graphical
notation for features with cardinality. Even though the definition of cardinality is well-known, to
the best of our knowledge, there is no available tool able to handle cardinalities properly during the
reasoning and verification stages, in particular regarding constraints over them.

We extend this abstract syntax to support both modeling and configuration of FMs extended
with cardinalities and attributes, depicted as solid line metaclasses in FIG. 3. Thus, we refer
to the SALOON metamodel as SALOONMM , where SALOONMM = FMMM + EXTMM . These
extensions can be plugged in any existing FM metamodel, e.g., [17, 18], and relies on the
CardExConstraint which allows variability modeler to define cardinalities and attributes
for both features and constraints. A CardExConstraint is written condition→ action. For
example, such a syntax provides a support to express the following constraints:

A′ → 3 B (1)
[3, 6] A → B.size ≥ 2 (2)

Constraints (1) and (2) illustrate the extensions the SALOONMM provides for modeling FMs
with cardinalities, attributes and constraints over them. Constraint (1) depicts an example of a
CardExConstraint meaning that for each instance of A configured (for each is depicted by the
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apostrophe), then there must be at least three more instances of B in the configuration. The condition
of this constraint is set through an AbstractOperation to the ConstrainableElement
feature A, while the action is a FunctionalOperation, whose value attribute is set to 3 and
the local one to true. The local attribute is used to express that a constraint must hold for each
instance of a feature or for the feature itself. If the same constraint is written without assigning the
local attribute to true, then it means that three instances of B must be added in the configuration if A
is selected, whatever the number of (potentially) configured instances. Constraint (2) describes that
if there is at least three and at most six instances of A, then the value of the size attribute of feature B
must be greater or equal than two. It relies on two ValueOperations as condition and action of
the constraint. For both of them, the Cardinality meta-class is used to define the value range,
e.g., [3,6] for the condition and [2,*] for the action, where the “*" multiplicity is used to define that
the given bound is not a fixed value and will not be taken into consideration.

Although we introduce a new notation to illustrate these examples, the contribution of the
SALOON core is not to provide such a notation, but an extension of the existing expression means,
to define constraints over attribute and cardinality values, required in particular when modeling
cloud environments.

4.1.2. Semantics. The above-described cardinality and attribute-based expressions offer a support
to precisely define how constraints are expressed in terms of feature instances and their value. We
describe below a formal semantics for such constraints. Considering that:

- M = (F ,ϕ) is a FM extended with attributes and cardinalities, with F its non empty set of
features and ϕ its set of constraints;

- ω : F → N × N indicates the range of cardinality of each feature, i.e., ∀f ∈ F , ω(f) = [n,m];
- card: F → N indicates the number of instances for a feature, i.e., ∀f ∈ F , card(f) = n

with n ∈ N;
- attr : F → A returns the set of attributes of f , i.e., ∀f ∈ F , attr(f) = α with α ⊆ A, the

set of all the attributes inM;
- val : A → E returns the value of each attribute, i.e., ∀a ∈ A, val(a) = v), with v ∈ E , and
E = R or E = the set of strings.

A CardExConstraint constraint ρ is written

Condition→ Constraint

with

- Condition ∈ {ffrom, cfrom ffrom, ffrom.afrom comp vfrom};
- Constraint ∈ {fto, cto fto, fto.ato comp vto, nto fto}};
- ffrom, fto ∈ F , ffrom 6= fto, nto ∈ N;
- afrom ∈ attr(ffrom), ato ∈ attr(fto);
- cfrom, cto are ranges. They define an interval [i, j] with i, j ∈ N and i ≤ j. cfrom and cto are

the ranges over the set of required feature instances for ffrom and fto respectively. vfrom and
vto are values for the ffrom.afrom and fto.ato attributes respectively;

- comp ∈ {=, <,≤, >,≥};

Considering σ the boolean interpretation of each form of Condition and each form of Constraint,

σ(Condition) =


card(ffrom) ≥ 1, if Condition = ffrom

ω(ffrom) ∈ cfrom, if Condition = cfrom ffrom

val(afrom) comp vfrom, if Condition = ffrom.afrom comp vfrom
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σ(Constraint) =


card(ffrom) ≥ 1, if Constraint = fto

ω(ffrom) ∈ cfrom, if Constraint = cto fto

val(afrom) comp vfrom, if Constraint = fto.ato comp vto

card(fto) ≥ (n × card(ffrom)), if Constraint = nto fto

Then, ρ is satisfied if

σ(Condition)⇒ σ(Constraint)

The SALOON Core thus supports the definition of FMs extended with cardinality and attributes.
Even though feature models defined in the SALOON platform are used to describe cloud
environments, SALOON Core is not domain specific and can be used to handle extended FMs from
other domains.

4.2. Automated Feature Models Configuration

The SALOON platform relies on three metamodels, as depicted by FIG. 4 (a). The Domain
Knowledge Metamodel is an abstract model used to define specific domain knowledge. There are
three types of concepts in the Domain Knowledge Model, either Concept, CountableElement
or QuantifiableElement. These concepts are mapped to features or attributes in the FMs, as
depicted by the Mapping metamodel, using ConceptToFeature or ConceptToAttribute
relationships. In SALOON, cloud environments are defined as FMs to check the validity of their
configuration in an automated way. In a typical SPL engineering process, the selection of the required
features is done by hand. Applied to our approach, this means selecting features in each FM, one
FM after the other, which is a tedious and error-prone task since there are currently tens of cloud
environments available. To cope with this issue, our approach relies on a cloud model, the Cloud
Knowledge Model, describing the domain knowledge (here the one of cloud environments), together
with a mapping between this model and the FMs to automate the feature selection process for these
FMs. We describe below these two elements.

4.2.1. The Cloud Knowledge Model. The Cloud Knowledge Model describes the domain the SPL
has been built for, here cloud environments. It defines formally all the concepts relevant to the
domain, and thus gathers all the features from different cloud FMs, reifying them as concepts as
depicted by FIG. 4 (b). The Cloud Knowledge Model is defined as an instance of the Domain
Knowledge Metamodel. It is used by the developer to specify the application requirements, by
selecting concepts and defining, when required, the related values. Basic concepts are defined as
Concepts, e.g., Language, that defines the language the application to deploy has been developed
with and thus, the support the cloud environment must provide. CountableElement is used
to define concepts whose required amount can be specified, e.g., 4 application servers. On the
other hand, QuantifiableElement is used to define concepts whose provided quantity and
its related unit can be specified, e.g., 500 MB of RAM. Some constraints are also defined over
these concepts, e.g., C4: ASP.NET→Windows Server, meaning that if the application to deploy is
written in ASP.NET, then the cloud environment must provide the Windows Server support to host
it. Constraints defined in the Cloud Knowledge Model are constraints that are not cloud-specific,
e.g., C4. Thus, these constraints are shared among every cloud environment, e.g., if ASP.NET is
required, any cloud environment that does not provide a Windows Server support is not well-suited
and it is unnecessary to configure the related cloud FM. On the other hand, constraints defined in
the FMs are cloud-specific, and thus can not be defined in the Cloud Knowledge Model.

4.2.2. The Mapping. The mapping relationships link concepts in the Cloud Knowledge Model
with features or attributes in the FMs, using mappings from Concept to Feature or from
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Figure 4. SALOON Metamodels and Related Instances

QuantifiableElement to Attribute as depicted by FIG. 4 (a). The former is used for
functional requirements, like “Tomcat" or “4 Databases" (using the CountableElement type).
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The latter defines relationships for non-functional requirements, e.g., “200 MHz CPU". FIG. 4 (b)
depicts how the mapping works with excerpts of the different models and relationships, Heroku and
OpenShift being two other cloud environments in addition to Windows Azure. Let us now consider
as an example the set of requirements REQ1: {Tomcat, 1 GB RAM}. For instance, regarding the
models and mapping relationships depicted in FIG. 4 (b), countable element Tomcat is mapped to
the Tomcat feature in the Openshift FM while quantifiable element RAM is mapped to attributes
RAM in all of them. For the former, the related feature is selected and a value may be given to
the feature cardinality if several instances are required, while for the latter (i) the attribute parent
features are selected and (ii) a value alignment algorithm taking units into account is processed
that may affect feature cardinality.For example, for REQ1 to be satisfied, the cardinality of the
Dyno feature must be set to at least 2 (other features or constraints may require some more Dynos)
in the Heroku FM, since its RAM attribute has 512 as value and MB as unit, and 2*512 MB≥ 1 GB.

4.2.3. Advantages of this approach. Using such a mapping between the Cloud Knowledge Model
and the FMs has mainly three benefits. First, it automates the feature selection process. The developer
thus does not have to select features by hand in every FM, which is considerably error-prone, but
simply defines the application requirements once in the Cloud Knowledge Model. Second, it bridges
the semantic gap between cloud environments by mapping one Cloud Knowledge Model concept
to features in different FMs with the same semantics. For example, features Load Balancer and
HAProxy are mapped to the same Cloud Knowledge Model concept Load Balancer, since
they are semantically (and functionally) equivalent even if their names differ. Finally, it reduces
the range of FMs to be configured by acting like a filter. Indeed, it avoids checking the validity of
certain FMs whose configuration can not cope with the requirements set. For example, if Tomcat
is part of these requirements, then this concept can not be mapped to FMs which do not provide this
application server support, e.g., Heroku regarding FIG. 4. Thus, these FMs are not considered for
the rest of the configuration process, since the related cloud environment is unsuitable. Constraints
defined in the Cloud Knowledge Model, e.g. C4, are also used to avoid configuring unsuitable FMs.

Even if the selection of features in the different FMs is automated regarding the defined mapping
relationships, the developer still has to select the final cloud environment. Indeed, several cloud
FM configurations may be valid regarding the given requirements. In such a case, the developer
selects the one that best fits the requirements defined in the Cloud Knowledge Model or relying
on additional criteria such as the price. This choice may be driven by the way the tool support
is configured, e.g., a solver, since weights can be given to the most important requirements and an
optimal configuration can be found regarding those requirements. In SALOON, such an optimization
is handled relying on objective functions at solver level, e.g., to find a configuration that maximizes
the memory resources while minimizing the configuration cost.

Since the SALOON platform relies on metamodels, it can be used for any domain where several
FMs are required to describe the domain variability, with the related Domain Knowledge Model
instance to specify the requirements and automate the feature selection and configuration analysis
processes. Thus, what make SALOON tailored for cloud environments selection and configuration
are (i) the Domain Knowledge Model and feature model instances and (ii) the artifacts used to yield
the final software product, described further. Moreover, SALOON Core can be used independently
from the rest of the SALOON platform, as a support to manage and configure FMs extended with
cardinalities and attributes.

4.3. Cost Estimation

As described in the previous section, the configuration analysis phase allows developers to
identify the cloud environments that satisfy their application requirements. However, at the end
of this process, several environments can be suitable. In order to refine the selection, additional
dimensions can be taken into consideration such as the cost, which represents one of the main
concerns when choosing a cloud environment [19]. Therefore, once a valid configuration is found,
SALOON provides a mean to compute the cost for such a configuration through a cost estimation
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engine integrated to the platform. However, the real price paid by the developer once the cloud
environment is configured and the application is running cannot be precisely computed, since it
depends on how such an application is used, e.g., the load it will support. SALOON thus estimates
the minimum cost of a given configuration, i.e., the cost to run an application on this cloud
configuration. The SALOON cost estimation engine relies on a plugin-based architecture, where
each cloud environment supported by the platform owns its specific plugin dedicated to estimating
the cost of the related feature model’s configurations. The cost estimation engine can thus be
easily extended in order to support new cost plugins. LISTING 1 defines the interface implemented
by the cost plugins. Depending on the cloud environment, the estimated cost is computed by
using different pricing models, i.e., either per hour, per month or per year. For instance, regarding
Windows Azure, it is possible to select among the three of them. At this point, the reader may
wonder why we did not decide to model the cost in the feature models, e.g., using feature attributes.
The reason is about the complexity of calculating a configuration cost, which is not as simple as the
multiplication of the feature cost by the number of feature instances. Indeed, for a feature f whose
cost would be 0, 02 $/h, a configuration with 10 instances of f would not necessarily costs 0, 2 $/h
(10× 0, 02 $/h). For instance, a discount can be given starting from 5 instances, with a decreasing
price for instances 5 to 10. Therefore, capturing the cost information in the feature models would
require more attributes and complex constraints, thus hindering their readability and use.

public interface IProviderCostEstimator extends IProviderCostEstimatorFactory{

public double estimateCost(FeatureModel fm);

public double estimateCostPerHour(FeatureModel fm);

public double estimateCostPerMonth(FeatureModel fm);

public double estimateCostPerYear(FeatureModel fm);

}

Listing 1: Cloud environment Cost Estimator Interface

4.4. Configuration Files Derivation

In a SPL, features hold as assets reusable software artifacts that are put together to yield the final
product. Thus, reasoning on feature combinations to find a valid product configuration means
searching for a proper way to derive concrete software artifacts (e.g., code snippets, aspects or model
fragments) to yield the software product. In SALOON, feature assets are (i) cloud configuration
files and (ii) configuration commands that can be executed in a command line interface or a
dedicated environment. Therefore, each cloud environment FM holds its own dedicated assets.
Feature can hold none, one or several assets, while an asset can be shared among several features.
We illustrate the use of such assets through the Heroku PaaS example, depicted by FIG. 5. For
instance, the 1.7 feature holds as asset the system.properties file. By default, OpenJDK 1.6 is
installed on Heroku when configuring the environment to host a Java-based application. However,
the developer can choose to use a newer JDK by specifying e.g., java.runtime.version=1.7 in a
system.properties file that must be located in the root directory of the application to be deployed.
Another asset example is the Procfile. The Procfile is a mandatory text file that must be located in
the root directory of the application as well, that explicitly defines, among others, which process
must be run once the environment is configured, e.g., the main class for a Java application. While
being configured, Heroku searches for such a file. If not found, the configuration process is stopped.
It is thus held by the Heroku feature since it is required for each configuration, whatever the
selected features.

Feature may also hold as assets configuration commands. Regarding the Heroku example, those
commands are commands provided by the Heroku SDK, accessible from the developer’s command
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Figure 5. The Heroku FM and its Assets (excerpt)

shell. For instance, the Dyno feature holds as assets commands, or more precisely command parts.
Thus, these commands have to be completed to be properly executed. For the Dyno feature, its
attributes and cardinality are used to complete the commands. For instance, let us consider a valid
configuration involving 8 Dynos whose size is 1X. Taking into account this configuration, SALOON
derives the two following commands, heroku ps:scale web=8 and heroku run --size=1X. When
several commands are required to configure the cloud environment, they are gathered in a single
script shell file, which can then be executed in a command line interface.

Let us now consider as an example the set of requirements REQ2: {Scala, 1.5 GB RAM}.
Then, for Heroku to be properly configured to host a Scala application, several configuration
files are required: the Procfile, the build.sbt and a project directory including a build.sbt and
a build.properties files. All these files must be placed at the root of the Scala application, for
the Heroku environment to recognize the Scala nature of the application and thus be properly
configured. SALOON also derives the related commands.sh file to automate the configuration of
the environment regarding the requirements. FIG. 6 depicts the different files derived by SALOON
regarding REQ2. In particular, it defines the size of the Dyno to 1X and requires three of them to
run, since 3*512 MB ≥ 1.5 GB (see FIG. 5 for Dyno values).

▼       Heroku

     ▼     project

  build.properties 

  build.sbt

    build.sbt

    Procfile

(a) Generated files

import com.typesafe.startscript.StartScriptPlugin

seq(StartScriptPlugin.startScriptForClassesSettings: _*)

name := "hello"

version := "1.0"

scalaVersion := "2.9.2"

(b) build.bst (excerpt)

 #!/bin/bash
 git init
 git add .
 git commit -m "Scala app"
 heroku create
 git push heroku master
 heroku run --size=1X
 heroku ps:scale web=3
 heroku open

(c) commands.sh

Figure 6. Generated files to fulfill REQ2: {Scala, 1.5 GB RAM} when deploying on Heroku

FIG. 6 (a) illustrates the derived tree view, with the 4 required configuration files. An excerpt
of the build.sbt file is depicted by FIG. 6 (b), while FIG. 6 (c) shows the derived commands,
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gathered in the commands.sh file. This example illustrates how defining such files by hand can be
error-prone. First, the tree view must be well defined, and the files must be correctly located. Then,
the files must be properly written, e.g., the build.bst FIG. 6 (b). For example, the correct Scala
version must be defined, and even the blank lines are required, otherwise Heroku does not recognize
the file and the configuration fails. Finally, the commands must be well-written, and in the correct
order, to be properly executed. Since the Heroku feature model holds these artifacts as assets, they
can be automatically generated by SALOON, and the commands.sh file can thus be executed in a
reliable way. As each cloud environment relies on its own commands, SALOON presupposes that
the correct set of libraries are present when executing the commands, e.g., Git for FIG. 6 (c).

When dealing with IaaS environments, SALOON relies on the same derivation principles but
derived files are slightly different. The derivation process is twofold. First, scripts and commands
for virtual machine creation are derived. Then, SALOON derives the scripts required to configure
the whole environment to host the application, e.g., install the Tomcat application server. Let us take
as example the Windows Azure environment. To configure a virtual machine, one must (i) create a
cloud service that will host the virtual machine, (ii) create a storage service to be used as hard drive
of the virtual machine, (iii) retrieve an operating system image and (iv) create the virtual machine.
This configuration steps can be automated, e.g., by relying on the Windows Azure REST API. For
instance, the request defined in LISTING 2 creates the cloud service that hosts the virtual machine.

$ -X POST --key arg1 --cert arg2 -H arg3 -d @arg4
https://management.core.windows.net/arg5/services/hostedservices

Listing 2: REST request to create a Windows Azure cloud service

In this REST request, arg1, ..., arg5 are parameters given to the derivation engine of SALOON.
arg1 and arg2 are private key and certificate used to authenticate the developer configuring the
environment, arg3 is the header for the request body and arg4 is the body of the request, as
defined in LISTING 3, specifying in particular the location used to deploy the virtual machine.

<CreateHostedService xmlns="http://schemas.microsoft.com/windowsazure">
<ServiceName>SALOON</ServiceName>
<Label>Label4SALOON</Label>
<Location>North Europe</Location>

</CreateHostedService>

Listing 3: Body.xml for the cloud service creation request

Finally, arg5 is the identifier used to define the cloud service, e.g., SALOON_ID. All these
arguments are automatically filled when SALOON derives the related request.

Once created, the virtual machine is said empty, i.e., there is no service running on top of the
operating system to host the application. Based on the developer choices done through the Cloud
Knowledge Model, SALOON can, according to the operating system, derive the commands used
to install the required software. For instance, if the Tomcat 7 application server is part of the
requirements, the SALOON derivation engine yields the commands depicted in LISTING 4.

$ sudo apt-get update
$ sudo apt-get install tomcat7

Listing 4: Installing software components on a Linux-based virtual machine

This example is based on the apt-get command-line tool, used in particular to handle the
installation of software components on Linux-based distributions. Line 1 is used to update the list
of available packages, i.e., software components, to be sure to get the last available packages from
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the apt repository. Executing line 2 installs the Tomcat 7 application server.

4.5. Contribution Summary

The approach we described in this section tackles the challenges identified in SEC. 2. To help
the developer selecting a suitable cloud environment (challenge C1), we provide the Cloud
Knowledge Model together with mapping relationships from this model to features and attributes
of all cloud feature models, as described in SEC. 4.2. Thus, once requirements are defined in
the Cloud Knowledge Model by the developer, SALOON searches for a cloud environment that
fulfill these requirements. This search is automated by relying on feature models with attributes
and cardinalities, extended with CardExConstraints, as explained in SEC. 4.1. Once a
configuration is defined for each feature model thanks to the mapping relationships, SALOON
provides a reasoning engine to (i) check whether the configuration is valid or not and (ii) estimate
the cost of such a configuration, if valid (SEC. 4.3), thus tackling challenge C2 about defining a
proper configuration. Finally, from a valid configuration, SALOON provides an automated support
to generate configuration files and executable scripts as explained in SEC. 4.4. Parts of configuration
files and executable commands artifacts are held as assets by features in the feature models, and used
in the SALOON’s derivation engine together with the related feature model configuration to yield the
correct set of configuration files and an executable configuration script. The developer then executes
this script to properly configure the cloud environment, thus ensuring the application to be deployed
in a reliable way (challenge C3).

5. IMPLEMENTATION AND EVALUATION

This section describes the implementation of the SALOON platform and reports on some
experiments we conducted to evaluate the platform. These experiments show that the extra
capabilities in terms of configuration introduced in the SALOON platform do not penalize its
performance. We also evaluate its usefulness for selecting and configuring a well suited cloud
environment.

5.1. Implementation Details

As described in the previous section, the SALOON platform relies on three metamodels. These
metamodels are defined using the Eclipse Modeling Framework [20], which is one of the most
widely accepted metamodeling technologies. Each metamodel is thus described as an ecore file
while dynamic instances, i.e., cloud FMs, are defined as XMI models. The XMI format is used
to support model persistence, in particular for SALOON to store the FM models in a dedicated
repository. Once FMs are configured, SALOON loads each XMI model and parses it to generate
the corresponding set of constraints, thus representing the FM as a Constraint Satisfaction Problem
(CSP). CSP solvers are well-suited to reason about FMs extended with attributes and cardinalities,
and the translation of these FMs to CSP is well-known [21, 17]. In addition, SALOON provides
support for translating CardExConstraints described in SEC. 4.1 into CSP. Once FMs are
translated into CSP, SALOON relies on the off-the-shelf Choco CSP solver [22], version 3.1.1 to
reason on the configurations of these FMs [23]. We selected Choco because of its maturity and
spread usage in research, education and industry. However, the architecture of the SALOON platform
is flexible enough to facilitate the support for any Java CSP solver.

The configuration of these FMs is done in an automated way using the Cloud Knowledge Model
as entry point of the SALOON platform. We thus expose this Cloud Knowledge Model as a RESTful
service that allows its user to select concepts regarding the application requirements. We make the
use of SALOON easier by defining a HTML client that invokes the RESTful service by using jQuery,
a fast and feature-rich JavaScript library [24]. As depicted by FIG. 7, the client proposes the different
concepts present in the Cloud Knowledge Model. They can be selected and, in some cases, values
need to be specified. For example, when “PostgreSQL X.X" and “Tomcat 6.0" are selected, it is
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Figure 7. The Cloud Knowledge Model exposed as a RESTful service

necessary to specify the size in MB and the number of server instances respectively. The HTML
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client also enables the definition of the application name, which is required for the script generation
of some cloud providers.

5.2. SALOON Evaluation

In this section, we describe the experiments we conducted to evaluate the SALOON platform. This
evaluation aims at investigating the following research questions:

R1: Soundness. Is the platform, and SALOON CORE in particular, well-suited to support cloud
environment modeling and configuration?

R2: Scalability. Is SALOON still performing when handling FMs with a substantial amount of
features and constraints and when selecting among tens of cloud environments?

R3: Practicality. Does SALOON usage in the configuration of cloud environments and deploying
of applications improve reliability and efficiency?

Soundness. The aim of this evaluation is to empirically assess the soundness of our approach,
by using the SALOONMM as support to define a substantial number of cloud environments. This
evaluation is based on 10 cloud environments, each one then being modeled as a FM which conforms
to SALOONMM . We define this set of 10 cloud FMs in the following as the Cloudcorpus. This
selection is based on the following criteria:

- Representativeness. Both IaaS and PaaS clouds environments are represented in the
Cloudcorpus. Thus, we cover a broader range of cloud providers and show that our approach
is well-suited whatever the cloud layer involved is. Moreover, we select both well-known and
less-known cloud providers, e.g., Windows Azure and Jelastic respectively.

- Information access. We select clouds whose features are easily accessible either through a
web configurator or in the technical documentation. Indeed, a major issue when modeling
cloud environments is to find the functionalities they provide, an important information often
hidden in the huge amount of available documentation.

TABLE I shows the set of cloud environments we used in our empirical evaluation. For each one,
the table describes the cloud environment name (Cloud), its type (Type), the number of Features
defined in the related FM, the number of Attributes, and the number of Constraints. For
features and constraints, it gives details on the amount of features and constraints with cardinality
and attributes, Fcard, Fattr and Ccard, Cattr respectively.

Features Constraints
Cloud Type Total Fcard Fattr Attributes Total Ccard Cattr

Amazon EC2 IaaS 23 2 2 5 28 9 18

Cloudbees PaaS 23 2 1 4 12 3 9

Dotcloud PaaS 34 4 3 6 21 6 17

GoGrid IaaS 14 3 4 10 21 7 21

Google AE PaaS 23 1 5 13 10 0 10

Heroku PaaS 42 1 11 20 7 0 3

Jelastic PaaS 31 3 1 2 12 10 0

OpenShift PaaS 29 1 2 7 18 2 15

Pagoda Box IaaS/PaaS 28 5 5 9 8 4 8

Windows Azure IaaS/PaaS 31 6 12 29 46 0 46

Table I. Modeled cloud environments
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To assess the soundness of our approach, we determine how often do cardinalities and attributes
occur in cloud environments FMs, both for features and constraints. The number of features and
constraints with cardinalities and attributes varies from a cloud environment to another according to
the provided services and the way we modeled it, regarding the information access criteria described
above.

On the whole, regarding the Cloudcorpus, there are 28 features with cardinality and 46 features
with attributes, while 188 constraints are based on our CardExConstraint expressions,
which gives an average FM with about 3 features with cardinality, 5 with attributes and about
19 CardExConstraints. here exist some cloud feature models without constraint involving
cardinalities or attributes. The main reason is the way we modeled cloud environments. Feature
models used in this paper have been manually described for illustration purpose, based on our
experience in cloud services configuration and deployment. We thus had to limit our feature
modeling to features which are explicitly released by cloud providers, since constraints finding and
modeling for implicit features are far more complex. Therefore, there might be additional constraints
involving cardinalities or attributes we could not reify.

To summarize, while we can not yet conclude that our approach can be generalized to every
domain with variability, results raising from this evaluation show that it remains well-suited for
cloud environment modeling, while state-of-the-art approaches do not provide such a support.

Scalability. The aim of these experiments is to evaluate the performances of the SALOON
platform. This evaluation is threefold. First, we measure the overhead that results from the addition
of the cardinality and attribute-based constraints in the verification time of the underlying CSP
solver. This evaluation aims at showing that the time to solve the models does not grow significantly
with FMs modeled with the extension we provide. Second, we carried out further experiments to
measure the translation time from XMI format to constraints handled by the CSP solver. This
translation process, neither part of the feature modeling nor the configuration one, may be a threat
to scalability of SALOON if taking too much computation time. Finally, we compute the time
taken by SALOON to select features and analyze the related configuration regarding a given set
of requirements. The aim of this evaluation is to show that SALOON supports the configuration of
tens of cloud environments in a reasonable time.

For these experiments, we developed an algorithm that, given nbFeat, nbCons and cardMax,
generates a random FM with nbCons constraints and nbFeatures features, whose cardinality is in
the range [0..cardMax]. This algorithm works as follows. It creates nbFeat features, then randomly
builds the tree hierarchy. More precisely, while there exists remaining features, it randomly selects
a given amount of these features, assigns them a tree level value and increments this value, which
gives the tree depth. For instance, given nbFeat = 10, a random tree hierarchy with 4 levels is
{{f1,f2,f3},{f4},{f5,f6},{f7,f8,f9,f10}}. Then, for each feature of a given level, it randomly
assigns a given amount of child features, if possible. In the previous example, if f4 has already been
assigned as a child of f1, then f2 and f3 have no child feature. For features having more than one
child, the algorithm determines if the relationship is a basic parent-child relationship, an alternative
or an exclusive group (33% probability each). Then, 10% of features are randomly assigned an
attribute, which can be an enumeration or a fixed value, either integer or real (50% probability
each). The algorithm also generates nbCons constraints. Two features are selected randomly. If at
least one of them holds an attribute, then the generated constraint is either a boolean constraint
or a CardEx constraint (50% probability each). Whatever the operation generated for the CardEx
constraint, each value is generated to fit within the feature cardinality or attributes value, i.e., no
inconsistency is introduced. In our experiments, we only consider non-void random FMs, that is,
FMs with at least one valid configuration. Indeed, our algorithm sometimes generates void FMs by
unfortunate generation of constraints. We performed our experiments on a MacBook Pro with a 2,6
GHz Intel Core i7 processor and 8 GB of DDR3 RAM.

For the first experiment, we generate random FMs with 10, 50, 100, 500, 1000, 5000 and 10000
features and we perform 50 random generations for each problem size. We then measure the
overhead that may result from the additional verifications due to our CardEx constraints, as well as
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feature cardinality themselves. We thus perform the random generation process twice. First, setting
cardMax to 10 and generating attributes and related constraints. Second, setting cardMax to 1 and
disabling attribute generation, thus getting a boolean FM with feature cardinality set to [0..1] or
[1..1]. FIG. 8 depicts the time taken by SALOON to find a valid configuration, computed as the
average time for each feature amount.
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Figure 8. Time to find a valid configuration

For the second experiment, we measure the time taken by SALOON to translate XMI FMs into
CSP constraints. We thus check if this translation is not a threat to SALOON scalability, in particular
regarding large FMs (i.e., nbFeat > 500). We also performed 50 random generations for each feature
amount. We then measure the average computation time among these 50 runs, regarding the different
model sizes. The results are depicted in FIG. 9.
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Figure 9. Time to translate from XMI to CSP

For the third experiment, we measure the time taken by SALOON for selecting features in the
different FMs and check if the related configuration is valid or not. We thus pick randomly between
2 and 10 requirements in the Cloud Knowledge Model and compute the average time regarding the
FM set size, as described by TABLE II. In this experiment, generated FMs size is lower than 100
features, to be as close as possible to cloud environment FMs described above.

Nb models 10 50 100 200

Time (s) 1,3 2,8 3,3 4,4

Table II. Feature selection and configuration analysis time

Analysis. Regarding the first experiment, the aim was to compute the verification time overhead
for the same randomly generated FM, either with cardinality, attributes and constraints over them
or considerer as a boolean FM. As illustrated by FIG. 8, the support for our cardinality-based and
attribute-based expressions generates a small increase in the required time to find a solution. In
average, this overhead is about +8%. Although we did not define a threshold for this experiment,
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we can fairly argue that the overhead that results from using our approach is not a major threat to
scalability, as solving the FMs is done within a few milliseconds. Second, as shown by FIG. 9, the
translation time from a feature model described as an XMI model to CSP constraint is from 16 to
519 ms for 10 to 10000 features respectively. This time is slightly increasing with the size of the
model, but we believe that it is not a major threat to scalability for the two following reasons. First,
the bigger feature model from the cloud corpus contains “only” 42 features (Heroku). Moreover,
most of existing feature models contain less than 500 features, e.g., those from the S.P.L.O.T.
repository [25]. Then, one of the biggest existing FM, which is the Linux feature model, has over
5000 features [26]. This translation time overhead remains therefore fairly low and insignificant
and does not hinder the usability of the SALOON framework. Finally, SALOON is able to map the
requirements by selecting the related features and check whether the configuration is valid or not
within a few seconds, even for 200 FMs, as illustrated by TABLE II. This time is negligible and is not
a threat to the scalability of SALOON, compared to the time taken to configure those FMs manually.
We believe that 2 to 10 requirements is a representative amount. Basically, developers specifies
their requirements among the language support, the application server, the database, the number of
virtual machines or the amount of resources. Moreover, specifying more requirements would be
usually inefficient, as it increases the risk not to find any valid configuration for this requirements
set. Overall, as our empirical evaluation shows, we observe that SALOON is well-suited to (i) handle
an important number of cloud environments and (ii) deal with realistic cloud FMs, with a substantial
number of features and constraints, either over features, attributes or cardinalities.

Practicality. The aim of this last experiment is to evaluate the reliability and efficiency of the
SALOON platform, compared to a manual configuration process. This experiment is divided into
two stages. For the first stage, an experiment is conducted with a group of 10 participants, either
Ph.D. students or engineers. Each of these participants is given the same task: Configure an Heroku
environment, upload a web application, then add a PostgreSQL support. The prerequisite is that Git
and Eclipse must be installed on every participant computer, while we provide the web application
(a basic HelloWorld application as a .war file). They are then free to select the way they proceed,
either using Git (G), the Eclipse plugin (P) or the web interface (W). Participants are asked to time
their experiment and define their experience in cloud configuration and deployment in a range from
beginner (1) to expert (5). TABLE III describes the results of this first experiment.

Participant 1 2 3 4 5 6 7 8 9 10

Time (min) 26 19 32 26 48 60 17 - 23 28

Method G G G P P G G G W G

Experience 2 4 2 3 3 1 4 1 3 2

App running X X - X X - - - X -

Table III. Configuring Heroku and deploying the application

For the second stage, we conducted another experiment with a group of 8 participants, 5
from the first group and 3 persons which were not involved in the first stage, one engineer and
two researchers. They were assigned quite the same task: Use SALOON to configure an Heroku
environment, upload a web application and add a PostgreSQL support. TABLE IV describes the
results of this second experiment.

Analysis. The task assigned to the first group of participants is rather simple (adding a PostgreSQL
support is straight forward, it is not asked to connect the web application with the database) but
takes at least 19 minutes to be manually completed by an experienced participant. One of them
(#8) even gave up after several failed attempts. Moreover, the results show that whatever the way
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Participant 1 2 3 4 5 6 7 8

Time (min) 4 6 7 5 8 11 12 7

Method SALOON SALOON

Experience 4 1 4 1 2 2 2 3

App running X X X X X X X X

Table IV. Configuring Heroku and deploying the application using SALOON

used to deploy, it can be very long to achieve the task, e.g., participant #5 with a high level of
experience and a dedicated plug-in. The last row of the table indicates whether the application is
running or not at the end of the deployment. Indeed, an environment can be created and (incorrectly)
configured, leading to the application not to run properly. Overall, 50% of participants failed to
get the application running and the average time among those who succeeded was more than
28 minutes to configure the cloud environment and get the application running properly. For the
second stage, every participant succeeded. Using SALOON, there is no need to configure anything
manually. Participants (i) select the correct set of requirements in the Cloud Knowledge Model
(Java and PostgreSQL) then run SALOON, (ii) copy/paste the generated configuration files in the
application root directory and (iii) run the commands generated in the executable file to automate
the configuration. One can observe a difference in the time required by the five first participants and
the three last ones (6 and 10 minutes in average respectively). This is mainly due to the fact that
the first five participants already knew the task to achieve and experiment to be performed, while
the third last discovered at the same time the tool and the experiment. In average, the time required
to achieve this experiment was 8 minutes using SALOON and 30 minutes with a manual process
(for the latter, we consider the average value for the five successful deployments), leading to a time
reduction of 73%.

Over the five participants from the first stage who did not get their application running, four of
them had a Procfile that was not properly written, leading to a wrong configuration. This experiment
thus highlights the need for an automated support. Indeed, participants are asked to configure a
cloud environment to deploy a basic application, and 50% of them fail. We argue that this number
can be higher, especially if the configuration is more complex and requires more knowledge.
Moreover, we only consider in this experiment one given cloud provider while there are tens of
them to be taken into account when considering deploying an application.

Summary. Overall, as our empirical evaluation shows, we observe that SALOON is well-suited
to handle the configuration of cloud environments. Relying on FMs in SALOON CORE to describe
these environments is not a threat to practicality nor scalability as complex constraint expressions
can be defined, and finding a related configuration is achieved with a negligible overhead. When
handling a significant amount of modeled cloud environments, SALOON is still performing and the
computation time required to find a valid configuration from a requirements set remains fairly low,
thus not hindering its usability. Finally, automating the FM configuration files generation improves
the reliability of the deployment process compared to manual and error-prone process.

6. RELATED WORK

In these section, we describe the work that is close-related to our approach. First, we introduce works
that are specific to the cloud domain, focusing on cloud environment selection, configuration and
comparison. Then, we discuss existing approaches related to extended feature models in software
product lines.
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6.1. Cloud Environments Configuration

Several cloud environment variability modeling and configuration approaches have been proposed
in recent works.

In 2010, Van der Aalst [27] showed that handling variability is one of the main challenges
to support configurable cloud services, and proposed configurable models to support cross-
organizational processes mining. Calheiros et al. [28] developed the CloudSim framework for
modeling and simulating cloud infrastructures. Clouds are described as abstract classes or interfaces
at code level, which can then be implemented. This approach is well suited to simulate IaaS
clouds but misses an abstraction level to handle properly both cloud selection and configuration.
Ruiz-Alvarez et al. [29] use an XML schema format to describe cloud storage services and find
which one is the best suited for a given dataset, relying on a specifically developed application.
Our approach also supports that, and provides additionally a means of configuring automatically
these services and expressing constraints between them using FMs. Some authors [30, 31] proposed
a survey on existing approaches to model variability in cloud environment. Moreover, FMs have
been used in recent work to describe cloud services. Wittern et al. [32] present a cloud service
selection process based on variability modeling. They rely on FMs to describe cloud services, but
they handle neither cardinalities nor constraints over cardinalities and attributes. Galán et al. [33]
propose to use an SPL-based approach to configure the Amazon IaaS. They describe Amazon EC2,
EBS, S3 and RDS services as FMs and rely on off-the-shelf solvers to find a suitable configuration.
The approach we propose in this paper goes in the same direction, but we go further in the SPL
process. Our FM analysis is not limited to boolean FMs and thus handles properly the whole
configuration. We also provide a tool to build the related software artifacts. Schmid et al. [34]
combine SPL engineering with service-oriented computing to deal with the variability of service
platforms, e.g., cloud platforms. Their paper explains how SPLs could help in such a case, but
remains at a theoretical level, since no concrete example or validation is provided. Dougherty et
al. [35] explain how virtual machine (VM) configurations can be captured by feature models. They
also use attributes to define the energy consumption of a feature, in order to find a configuration
that meets the requirements with the least energy consumption. Although this approach is closely
related to ours, it does not provide means to reason about attributes and cardinalities, and does not
automatically derive the VM configuration. Di Cosmo et al. [36] describe an approach that proposes
a deployment configuration according to the requirements of the user or of a higher level application.
This approach is based on a component model, where components describe resources which provide
and require different functionalities. These components represent software packages, e.g., packages
in Debian, where components requires other ones, e.g., with Depends requirements.

Compared to these approaches, SALOON provides the whole automated support, from
requirements specification through the Cloud Knowledge Model to the automated configuration
using generated configuration files by leveraging the software product lines principles.

6.2. Cloud Environments Comparison

Several tools have been developed which enable the comparison of cloud environments (PaaS and
IaaS) through a friendly user interface [37, 38, 39, 40, 41, 42]. Most of them focus on criteria such as
location, required resources and price. For instance, Cloudorado [38] compares the cost of 23 IaaS
environments regarding the region, the operating system and the provides resources such as RAM,
storage space and CPU power. Other criteria may be taken into consideration when comparing
cloud environments per se. FindTheBest [37], allows the user to compare 176 environments in
terms of service model, deployment model, subscription options (e.g., price rates, free plan, and
trials), server locations, services (e.g., autoscaling, storage and firewalls) and average user rates.
Cloud Finder [39], provided by Intel, considers 70 environments with two different variants: (i)
quick search and (ii) detailed search. The former enables the cloud search by using criteria such
as interface model (e.g., GUI, proprietary and standard APIs), development support (e.g., custom
image and open virtualization format), subscription options (e.g., self service, monthly subscription
and pay as you go) and locations. The latter allows the definition of more specialized searches by
using criteria such as security, usability, quality, availability and technology. Cloud Screener [40]
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proposes a web tool enabling the comparison of cloud environments using similar criteria that the
previously presented tools. However, it allows the definition of priorities (i.e., medium, important,
critical) in terms of price, performance and security. Cloud Surfing [41] is a charged solution for
searching for IaaS and PaaS based on different needs such as automation, data centre, optimization,
storage, security, hosting and virtualization. In this solution, it is possible to select in a catalog
different cloud environments to be compared. Finally, CloudSleuth provides real time monitoring
regarding availability and response time [42]. Although this is not a real comparison tool, the
monitored information can be used as a base to select cloud environments.

Compared to these approaches, the main objective of the SALOON platform is not to compare
cloud environments but assisting developers in selecting and configuring a suitable cloud
environment according to application requirements. However, we could be inspired by those existing
tools in order to improve SALOON’s support by including additional dimensions in the cloud
analysis, e.g., environment rankings, response time and availability as well as the relevance given to
these dimensions.

6.3. Extended Feature Modeling

FMs were first introduced in 1990 [8] and various extensions have been proposed since then [43].
Cardinality-based feature models support in addition feature cardinalities [10, 11], first introduced
as UML-like multiplicities [9], while attributes were already part of the FODA seminal report.
Then, several authors proposed the inclusion of attributes in FMs. For example, Czarnecki et al. [44]
describe the inclusion of attributes, reference attributes and cardinalities for dealing with variability
in embedded systems. Authors identify the shortcomings with boolean FMs in the context of this
kind of systems but they do not mention the issues related to the management of constraints on
attributes and cardinalities. Furthermore, they described some modeling tools such as MetaCASE,
Ami Eddi and ConfigEditor, which do not provide a full support for the reasoning on extended
FMs. Other approaches such as Clafer [45], VELVET [46] or TVL [47] only partially support
constraints on attributes values. For instance, assigning a value to an attribute is not fully supported
by these variability modeling approaches [48], while SALOON does provide such a support. Authors
also proposed approaches regarding constraints with cardinalities. For instance, Zhang et al. [49]
presented a binary decision diagram based approach to verify constraints with cardinalities, based
on their own semantics of cloning. They described their different constraint patterns and the way
they can be verified but did not provide any abstract syntax or tool support to define such constraints
in FMs. In [50], the authors present their own metamodel and the way they rely on model-driven
engineering to configure their FMs. However, they only introduce a new kind of constraint denoted
as Use, where a feature A can use a given amount of features B.

Compared to these approaches, SALOON provides an automated support to reason both on
constraints with cardinalities and attributes. Moreover, they can be combined in the same constraint
since the value of an attribute may imply a value for a cardinality, and conversely. In addition,
SALOON relies on an abstract syntax to describe such extended feature models, thus being
implementation-independent and allowing any approach to use this abstract syntax.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented SALOON, a platform for selecting a suitable cloud environment,
defining a valid configuration for this environment and generating the required configuration scripts
and files to automate the configuration of this cloud environment. The SALOON platform relies
on software product lines principles, enabling the developer to automatically (i) select the cloud
environment that fits a set of requirements and (ii) get the description files and executable scripts to
configure the related cloud environment. In particular, SALOON is based on feature models extended
with cardinalities and attributes with constraints over them, together with a Cloud Knowledge
Model used as entry point of the platform. Such extended feature models are independent of cloud
environments and can be applied to different application domains, e.g., real time systems [44].
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Mapping rules are then established between the Cloud Knowledge Model and the FMs to enable an
automated configuration of the different feature models. The Cloud Knowledge Model, the mapping
rules and the FMs are all instances of their related metamodel. Such a model-based structure results
in an highly modular and extensible platform. The experiments we conducted show that SALOON
provides a reliable support when selecting and configuring a cloud environment. The extensions
we propose to express constraints over both cardinality and attributes when feature modeling cloud
environments are not a threat to practicality nor scalability as finding a valid configuration from a
requirements set is done in a negligible amount of time.

Regarding future work, we plan to extend the SALOON platform towards three directions:
software product lines evolution, dynamic software product lines and multi-cloud configuration.
Concerning evolution, the feature models within a software product line evolve over time [51].
In particular with SALOON, since the cloud market evolves constantly, the underlying models
have to evolve consequently. To deal with such changes, the evolution of feature models extended
with attributes and cardinalities must be taken into consideration. Evolving such FMs is error-
prone, as inconsistencies may arise, e.g., between feature cardinalities and values defined in
constraints. Evolving SALOON also includes improving the platform. For instance, we can include
new dimensions or metrics, such as response time and availability, in order to help the developer for
the cloud selection. Such a support can be included using external services, e.g., Global Provider
View from CloudSleuth providing real time values for those metrics [42]. The second domain of
extension of SALOON, dynamic SPL, is about adding support for product adaptation at runtime [52].
Indeed, changes can occur that require the application environment to be reconfigured, e.g., non-
functional requirements such as response-time, availability or pricing are violated or new cloud
providers, which better meet these non-functional requirements, are now available. In such cases,
the SPL has to be well-suited to handle this adaptation, e.g., defining a feedback control loop [53]
that monitors the metrics, detects adaptation situations and execute the required actions in order to
modify the deployment of applications. Finally, we believe that our approach could also be relevant
to target a multi-cloud configuration [54]. In the current version of the SALOON platform, a cloud
environment is not considered anymore if it does not provide the whole set of services matching the
developer requirements. However, a multi-cloud configuration may be better suited regarding these
requirements if one could configure several environments.
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