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Abstract. This paper investigates the effect of affine transformations
of the Sbox on the maximal expected differential probability MEDP and
linear potential MELP over two rounds of a substitution-permutation
network, when the diffusion layer is linear over the finite field defined by
the Sbox alphabet. It is mainly motivated by the fact that the 2-round
MEDP and MELP of the AES both increase when the AES Sbox is re-
placed by the inversion in F28 . Most notably, we give new upper bounds
on these two quantities which are not invariant under affine equivalence.
Moreover, within a given equivalence class, these new bounds are maxi-
mal when the considered Sbox is an involution. These results point out
that different Sboxes within the same affine equivalence class may lead
to different two-round MEDP and MELP. In particular, we exhibit some
examples where the basis chosen for defining the isomorphism between
Fm

2 and F2m affects these values. For Sboxes with some particular prop-
erties, including all Sboxes of the form A(xs) as in the AES, we also
derive some lower and upper bounds for the 2-round MEDP and MELP
which hold for any MDS linear layer.
Keywords. Sboxes, affine equivalence, differential cryptanalysis, linear
cryptanalysis, AES.

1 Introduction

Cryptographic functions, including the so-called Sboxes, are usually classified up
to affine equivalence (see e.g. [6, 34, 11]) since many of the relevant cryptographic
properties are invariant under affine transformations. Indeed, both Sboxes S and
A2 ◦ S ◦ A1, where A1 and A2 are two affine permutations, have the same al-
gebraic degree, the same non-linearity (even the same square Walsh spectrum)
and the same differential uniformity (even the same differential spectrum), which
are the usual criteria measuring the resistance of an Sbox against higher-order
differential attacks [29, 31], linear cryptanalysis [44, 37] and differential crypt-
analysis [5] respectively. However, it is well-known that equivalent Sboxes may
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have different implementation costs and may also provide different security lev-
els. For instance, the number of terms in their polynomial representations may
highly vary within an equivalent class. This has motivated the choice of the AES
Sbox: it corresponds to the inversion in F28 , which is a power permutation with
the best known resistance against the previously mentioned attacks; but this
power permutation is then composed with an F2-affine permutation of F8

2 which
makes its polynomial representation much more complex. Composing the inverse
function with an affine permutation then thwarts potential attacks exploiting a
simple algebraic representation of the Sbox, like an extremely sparse polynomial.
Some other relevant properties (usually of minor importance) are also affected
by composition with affine transformations, like the number of fixed points and
the bitwise branch number [43].

But, when focusing on statistical attacks, especially on differential and linear
cryptanalyses, the Sboxes within the same equivalence class are often consid-
ered to have similar behaviors. The main reason is that all known upper bounds
on the maximal expected differential probability, and on the maximal expected
square correlation (aka maximum expected linear potential) [41] are invariant
under the affine transformations of the Sbox. However, the exact values of these
two quantities for two rounds of the AES have been computed by Keliher and
Sui with a sophisticated pruning algorithm [28], and it appears that the values
obtained for the multiplicative inverse in F28 and for the original AES Sbox are
different, while these two Sboxes belong to the same equivalence class. Going
further in the analysis, Daemen and Rijmen have then determined the expected
probabilities of all two-round differentials with 5 or 6 active Sboxes in the AES
for both Sboxes [20]. After this analysis, they have even conjectured that, for
any number of rounds, the maximal expected differential probability of the AES
is always higher with the inversion in F28 than with the AES Sbox [17]. The
aim of this paper is then to have a better understanding of this phenomenon.
For instance, we would like to determine whether these different behaviors orig-
inate from the Sboxes only, independently of the choice of the diffusion layer,
or not. One of our main motivations is to help the designers choose an Sbox
within a given equivalence class. Indeed, in most situations, some appropriate
equivalence classes are known (e.g. 4-bit permutations are classified up to affine
equivalence [34]) and the search is often restricted to these classes.

Our contribution. In this paper, we investigate the maximal expected dif-
ferential probability MEDP and linear potential MELP over two rounds of an
SPN. We focus on diffusion layers which are linear over the field of size 2m, where
m is the number of bits of the Sbox, exactly as in the AES and several other
ciphers like LED [25], KLEIN [24], mCrypton [35], Prøst [27]... We give a new
upper bound on the two-round MEDP and MELP which supersedes the best
previous result [41], and which is not invariant under affine equivalence. This re-
sult is combined with the lower bounds corresponding to some minimum-weight
differentials (or linear masks). We are then able to exhibit different behaviors re-
garding differential and linear attacks on two rounds depending on the choice of
the Sbox within a given equivalence class. This includes some unexpected differ-



ences since we point out that, for a given m-bit Sbox, the choice of the basis used
for defining the finite field in the description of the linear layer may also affect
the value of the two-round MEDP or MELP. This is due to the F2m -linearity of
the mixing layer.

More interestingly from the designers’ viewpoint, for some classical families
of Sboxes including all functions of the form A(xs) or (A(x))s where A is an affine
function, like the AES Sbox, our results yield some lower and upper bounds on
the two-round MEDP and MELP which are independent of the choice of the
MDS linear layer. In other words, we show that, for these families of Sboxes,
the two-round MEDP and MELP are two quantities which essentially depend
on the Sbox only. Therefore, the designer can choose an Sbox and get a precise
estimation of the corresponding two-round MEDP and MELP, while all previous
methods [28] involved the specifications of both the Sbox and the diffusion layer
together. As an illustration, we prove that the previously known upper bounds on
MEDP2 and MELP2 due to Park et al. [41] are always tight for the multiplicative
inverse over F2m and for any MDS linear layer. In other words, the inversion is
the mapping within its equivalence class which has the highest two-round MEDP
and MELP, independently of the choice of the MDS linear layer. This situation
mainly originates from the fact that this Sbox is an involution.

2 Maximum Expected Differential Probability and Linear
Potential for Substitution-Permutation Networks

2.1 Substitution-Permutation Networks

One of the most widely-used constructions for iterated block ciphers is the so-
called key-alternating construction [15, 18] (aka iterated Even-Mansour construc-
tion), which consists of an alternation of key-independent (usually similar) per-
mutations and of round-key additions. The round permutation usually follows
the principles introduced by Shannon. It is decomposed into a nonlinear substi-
tution function Sub which provides confusion, and a linear permutation which
provides diffusion1. In order to reduce the implementation cost of the substi-
tution layer, which is usually the most expensive part of the cipher in terms of
circuit complexity, a usual choice for Sub consists in concatenating several copies
of a permutation S which operates on a much smaller alphabet. In the whole
paper, we will concentrate on such block ciphers, and use the following notation
to describe the corresponding round permutation.

Definition 1. Let m and t be two positive integers. Let S be a permutation
of Fm2 and M be a linear permutation of Fmt2 . Then, SPN(m, t, S,M) denotes
any substitution-permutation network defined over Fmt2 whose substitution func-
tion consists of the concatenation of t copies of S and whose diffusion function
corresponds to M .
1 Here, the terminology substitution-permutation has to be understood in a broad sense
without any restriction on the linear permutation, while in some other papers, it is
limited to the class of bit permutations.



For instance, up to a linear transformation, two rounds of the AES can be
seen as the concatenation of four similar superboxes [20]. The superbox, de-
picted on Fig. 1, is linearly equivalent to a two-round permutation of the form
SPN(8, 4, S,M) where the AES Sbox S corresponds to the composition of the
inversion in F28 with an affine permutation A. More precisely, S(x) = A ◦
ϕ−1

(
ϕ(x)254

)
where ϕ is the isomorphism from F8

2 into F28 defined by the
basis {1, α, α2, . . . , α7} with α a root of X8 +X4 +X3 +X + 1.
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Fig. 1. The AES superbox.

Differential [5] and linear [44, 37] cryptanalyses are the most prominent sta-
tistical attacks. The complexity of differential attacks depends critically on the
distribution over the keys k of the probability of the differentials (a, b), i.e.,

DP(a, b) = PrX [Ek(X) + Ek(X + a) = b]

where Ek corresponds to the (possibly round-reduced) encryption function under
key k. This probability may highly vary with the key especially when a small
number of rounds is considered (see e.g. [32], [19, Section 8.7.2], [21], [22] and
[7]). But computing the whole distribution of the probability of a differential is
a very difficult task, and cryptanalysts usually focus on its expectation.

Definition 2. Let (Ek)k∈Fκ2 be an r-round iterated cipher with key-size κ. Then,
the expected probability of an r-round differential (a, b) is

EDPEr (a, b) = 2−κ
∑
k∈Fκ2

PrX [Ek(X) + Ek(X + a) = b] .

The maximum expected differential probability for r rounds is

MEDPEr = max
a6=0,b

EDPEr (a, b) .



The index in MEDPEr will be omitted when the number of rounds is not specified.
It is worth noticing that the MEDP is relevant for estimating the resistance
against classical differential cryptanalysis, not against its variants like truncated
differential attacks (which provide better attacks on the AES since the AES
resists differential cryptanalysis by design).

Similarly, the resistance of a cipher against linear cryptanalysis can be eval-
uated by determining the distribution over the keys of the correlation of each
r-round mask (u, v):

C(u, v) = 2−n
∑
x∈Fn2

(−1)u·x+v·Ek(x),

where n is the block-size. For a key-alternating cipher with independent round
keys, the average over all keys of the correlation C(u, v) is zero for any nonzero
mask (u, v) (see e.g. [19, Section 7.9] or [1, Prop. 1]). Then, the major parameter
investigated in this paper is the variance of the distribution of the correlation,
which corresponds to the average square correlation. The way it affects the com-
plexity of linear cryptanalysis is discussed for instance in [40, 19, 38, 33, 1].

Definition 3. Let (Ek)k∈Fκ2 be an r-round iterated cipher with block-size n and
key-size κ. Then, the expected square correlation (aka linear potential [40]) of
an r-round mask (u, v) is

ELPEr (u, v) = 2−2n−κ
∑
k∈Fκ2

∑
x∈Fn2

(−1)u·x+v·Ek(x)

2

.

The maximum expected square correlation for r rounds is

MELPEr = max
u,v 6=0

ELPEr (u, v).

2.2 Known results on two-round MEDP and MELP

Computing the MEDP and MELP for an SPN, even for a small number of
rounds, is usually non-trivial. An easier task consists in computing the expected
probability of an r-round differential characteristic (i.e., a collection of (r+1) dif-
ferences), or the expected square correlation of a linear trail (i.e., a collection of
(r + 1) linear masks). In particular, a simple upper bound on this quantity can
be derived from the differential uniformity [39] (resp. the nonlinearity) of the
Sbox, and from the differential (resp. linear) branch number of the linear layer.
We will then extensively use the following notation for these quantities.

Definition 4. Let S be a function from Fm2 into Fm2 .

– For any a and b in Fm2 , we define

δS(a, b) = #{x ∈ Fm2 , S(x+ a) + S(x) = b} .

The multi-set {δS(a, b), a, b ∈ Fm2 } is the differential spectrum of S and its
maximum ∆(S) = maxa6=0,b δ

S(a, b) is the differential uniformity of S.



– For any u and v in Fm2 , we define

WS(u, v) =
∑
x∈Fm2

(−1)u·x+v·S(x) ,

where · is the usual scalar product in Fm2 . The multi-set {WS(u, v), u ∈
Fm2 , v ∈ Fm2 } is the Walsh spectrum of S, and its highest magnitude L(S) =
maxu,v 6=0

∣∣WS(u, v)
∣∣ is the linearity of S.

The branch number of the diffusion layer then determines the minimum num-
ber of active Sboxes within a differential or linear trail.

Definition 5. [15] Let M be an F2-linear permutation of (Fm2 )t. We associate
with M the codes CM and C⊥M of length 2t and size 2t over Fm2 defined by

CM = {(c,M(c)), c ∈ (Fm2 )t} and C⊥M = {(M∗(c), c), c ∈ (Fm2 )t} ,

where M∗ is the adjoint of M , i.e., the linear map such that x ·M(y) = M∗(x) ·y
for any (x, y). The differential branch number (resp. linear branch number) of
M is the minimum distance of the code CM (resp. of C⊥M ).

From Singleton’s bound, the maximum branch number of M is (t + 1) and is
achieved when CM is MDS. Since the codes CM and C⊥M are dual to each other,
M has optimal differential branch number if and only if it has optimal linear
branch number. A simple upper bound for both the two-round MEDP and MELP
can then be derived from the branch numbers of M , and from the differential
uniformity and the linearity of the Sbox (see [26] and [19, Section B.2]):

MEDP2 ≤
(
2−m∆(S)

)t and MELP2 ≤
(
2−mL(S)

)2t
. (1)

This result has then be refined in [14, 41].

Theorem 1 (FSE 2003 bounds). [41, 14] Let E be a block cipher of the form
SPN(m, t, S,M) where M is a linear permutation with differential (resp. linear)
branch number d (resp. d⊥). Then, we have

MEDPE2 ≤ 2−md max

 max
a∈(Fm2 )∗

∑
γ∈(Fm2 )∗

δS(a, γ)d, max
b∈(Fm2 )∗

∑
γ∈(Fm2 )∗

δS(γ, b)d

 ,

MELPE2 ≤ 2−2md⊥max

 max
u∈(Fm2 )∗

∑
γ∈(Fm2 )∗

WS(u, γ)2d⊥, max
v∈(Fm2 )∗

∑
γ∈(Fm2 )∗

WS(γ, v)2d⊥


It is worth noticing that the FSE 2003 bounds always supersede (1).

The main question is now to determine the gap between the FSE 2003 bounds
and the exact values of MEDP2 and MELP2 for a given cipher. An interesting
property is that the FSE 2003 bound is invariant under affine equivalence, i.e.,
under left or right composition of the Sbox with an affine permutation. Actually,
the following well-known property holds.



Lemma 1. Let S be permutation of Fm2 and A1 and A2 be two affine permuta-
tions of Fm2 . Then S′ = A2 ◦ S ◦A1 satisfies

δS
′
(a, b) = δS(L1(a), L−1

2 (b)) and WS′(u, v)2 =WS((L−1
1 )∗(u), L∗2(v))2

where L1 and L2 correspond to the linear parts of A1 and A2, and L∗ denotes
the adjoint of L.

However, while the previous bounds are invariant under affine equivalence, it
appears that the exact values of MEDP2 and MELP2 may vary when the Sbox
is composed with an affine permutation. For instance, for the AES with its
original Sbox, the exact values of the two-round MEDP2 and MELP2 have been
computed by a pruning search algorithm [28]: MEDP2 = 53×2−34 and MELP2 =
109, 953, 193× 2−54 ≈ 1.638× 2−28. But, if the AES Sbox is replaced by the so-
called naive Sbox [17], obtained by removing the affine permutation from the
AES Sbox, MEDP2 = 79× 2−34 [20] which corresponds to the FSE 2003 bound.
To our best knowledge, the exact value of MELP2 for the naive Sbox has not
been computed, but we will deduce from our results in Section 4.3 that, for the
multiplicative inverse over F2m and any MDS F2m-linear layer, the FSE 2003
bound is always tight. In particular, for m = 8, MELP2 = 192, 773, 764×2−54 ≈
2.873×2−28. Then, the AES Sbox provides a better resistance against differential
and linear cryptanalyses for two rounds of the AES than the naive Sbox. More
generally, it has been conjectured in [17, Conjecture 1] that, for any number of
rounds r, MEDPr is smaller for the AES Sbox than for the naive Sbox.

2.3 SPNs over F2m

A special case of affine equivalent Sboxes corresponds to the mappings over
Fm2 which are derived from the same function over the finite field F2m , but from
different correspondences between F2m and the vector space Fm2 . Such equivalent
Sboxes appear in several situations. Indeed, a simple construction for an optimal
linear layer consists in choosing for M a permutation of Fmt2 associated with a
code CM which is linear over the field F2m , where m is the size of the Sbox.
Then, this diffusion layer has to be defined over Ft2m , instead of Fmt2 . To this
end, we need to identify the vector space Fm2 with the finite field F2m by the
means of an isomorphism ϕ associated to a basis (α0, . . . , αm−1), namely:

ϕ : Fm2 → F2m

(x0, . . . , xm−1) 7→
∑m−1
i=0 xiαi .

Then, both the Sbox and the diffusion layer can be represented as functions over
the field F2m by

S = ϕ ◦ S ◦ ϕ−1 andM = ϕ̃ ◦M ◦ ϕ̃−1 ,

where ϕ̃ is the concatenation of t copies of ϕ. In this case, as noticed in [19,
Section A.5], any r rounds of SPN(m, t, S,M) can be written as ϕ̃−1◦Addkr ◦ . . .◦



R ◦ Addk1 ◦R ◦ Addk0 ◦ϕ̃ where the round function R = M ◦ (S, . . . ,S) is a
permutation of (F2m)t and Addx denotes the addition of x in (F2m)t. Obviously,
composing by ϕ̃ at the beginning and by ϕ̃−1 at the end changes neither the
MEDP nor the MELP. This implies that MEDPEr and MELPEr depend on M
and S only, i.e., on the representations of the Sbox and of the diffusion layer
over F2m . In particular, the choice of the basis (α0, . . . , αm−1) has no influence
on the differential and linear properties of the cipher. For this reason, we use the
following alternative notation for defining an SPN from these representations.

Definition 6. Let m and t be two positive integers. Let S be a permutation
of F2m and M be a permutation of (F2m)t which is linear over F2m . Then,
we denote by SPNF (m, t,S,M) a substitution-permutation network defined over
(F2m)t whose substitution function consists of the concatenation of t copies of S
and whose diffusion function corresponds toM.

For the sake of clarity, all quantities related to the representation in the field
F2m will be indexed by F , and all functions defined over F2m will be denoted by
calligraphic letters. As pointed out in [23], the differential and linear properties
of any SPN(m, t, S,M) can be equivalently studied by considering the alterna-
tive representation SPNF (m, t,S,M). This alternative analysis then involves the
differential spectrum and the Walsh spectrum of the Sbox S over F2m , which
are related to the spectra of the corresponding function S over Fm2 as follows.

Proposition 1. (see e.g. [23]) Let (α0, . . . , αm−1) be a basis of F2m , and ϕ the
corresponding isomorphism from Fm2 into F2m . Let S be a mapping over Fm2 ,
and S = ϕ ◦ S ◦ ϕ−1. Then, for any (α, β) ∈ F2m ,

δSF (α, β) = #{x ∈ F2m ,S(x+ α) + S(x) = β} = δS(ϕ−1(α), ϕ−1(β))

WSF (α, β) =
∑

x∈F2m

(−1)Tr(αx+βS(x)) =WS(ψ−1(α), ψ−1(β))

where ψ is the isomorphism from Fm2 into F2m defined by the dual basis, i.e.,
the basis (β0, . . . , βm−1) such that Tr(αiβj) = 0 if i 6= j and Tr(αiβi) = 1.

3 New upper bounds on the 2-round MEDP and MELP

Now, we study the exact values of the two-round MEDP and MELP for any
cipher of the form SPN(m, t, S,M) where the diffusion layer M is linear over
F2m , like in the AES. We aim at obtaining a better approximation of the MEDP2

and MELP2 by finding some improved lower and upper bounds. In particular,
we would like to be able to differentiate affine equivalent Sboxes.

3.1 The new upper bounds

From now on, when considering a cipher of the form SPNF (m, t,S,M), δF (α, β)
and WF (α, β) will denote the differential and Walsh spectra of the Sbox S. The
considered Sbox will be mentioned in the notation in case of ambiguity only.



Theorem 2. Let E be a block cipher of the form SPNF (m, t,S,M) whereM is
linear over F2m and has differential (resp. linear) branch number d (resp. d⊥).
For µ ∈ F2m and u > 0, we define

Bu(µ) = max
α,β,λ∈F∗

2m

∑
γ∈F∗

2m

δF (α, γ)uδF (γλ+ µ, β)(d−u) , (2)

B⊥u (µ) = max
α,β,λ∈F∗

2m

∑
γ∈F∗

2m

WF (α, γ)2uWF (γλ+ µ, β)2(d⊥−u) , (3)

B(µ) = max
1≤u<d

Bu(µ) and B⊥(µ) = max
1≤u<d⊥

B⊥u (µ) .

Then,

MEDPE2 ≤ 2−md max
µ∈F2m

B(µ) and MELPE2 ≤ 2−2md⊥ max
µ∈F2m

B⊥(µ) .

The proof is given in Appendix A. It mainly exploits the special form of the
codewords in an F2m-linear code (see Lemma 2 in Appendix A). In the whole
paper, the proofs in the context of differential attacks and of linear attacks are
similar. Actually, all results can be written in a more generic way, by replac-
ing the 2m × 2m matrix with coefficients 2−mδF (α, β), α, β ∈ F2m , or with
coefficients 2−2mWF (α, β)2, by any matrix (Λ(α, β))α,β∈F2m

, such that the co-
efficients Λ(α, β) lie between 0 and 1 and satisfy Λ(α, 0) = Λ(0, α) = 0 for any
nonzero α and

∑
β∈F2m

Λ(α, β) =
∑
β∈F2m

Λ(β, α) = 1 for all α ∈ F2m . Clearly,
both normalized differential and Walsh spectra satisfy these conditions.

Computing this new bound is obviously more expensive than computing the
FSE 2003 bound since we have to take the maximum of a similar quantity over
all λ and µ. We will see in Section 4 that this bound simplifies in some cases, for
instance for all Sboxes corresponding to the composition of a power permutation
with an affine mapping, like the AES Sbox. Also, we will show that this refined
bound may enable us to deduce the exact values of the MEDP2 and MELP2 in
a much more efficient way than the ad hoc search algorithm presented in [28].

In the case of the AES Sbox over F28 and d = d⊥ = 5, these new bounds lead
to MEDP2 ≤ 55.5×2−34 instead of MEDP2 ≤ 79×2−34 for the FSE 2003 bound,
and MELP2 ≤ 31, 231, 767× 2−52 instead of MELP2 ≤ 48, 193, 441× 2−52. This
seems to be a minor improvement since there is only a factor ρ ' 0.7 between
the two bounds. However, in AES-like constructions, the 2-round MEDP and
MELP correspond to the average differential uniformity and linearity of the
average superbox. Upper-bounds on the 4-round MEDP and MELP can then be
derived from these values using (1). Then, we get a factor ρd−1 (resp. ρd

⊥−1)
between the bounds on MEDP4 and MELP4.

While the FSE 2003 bound corresponds to the highest d-th power moment of
a row or a column in the difference table of the Sbox (or in the square correlation
table), our new bound involves together a row and a column in the table. In
other words, this new bound depends on the link between some quantity (e.g. a
derivative or the squared Walsh transform of a component) for S, and the same



quantity for the inverse permutation S−1. This clearly appears when S has a
two-valued differential spectrum, since the expression of B(µ) simplifies to

B(µ) = ∆(S)d max
α,β,λ∈F∗

2m

#
(
Im(DαS) ∩

[
λIm(DβS−1) + µ

])
,

where DαS denotes the derivative of S at point α, i.e., the function x 7→ S(x+
α) + S(x). Similarly, if S is a plateaued function [45], i.e., a function whose
Walsh spectrum contains the values 0 and ±L(S) only, we get

B⊥(µ) = L(S)2d⊥ max
α,β,λ∈F∗

2m

#
(
Supp(Ŝ−1

α ) ∩
[
λSupp(Ŝβ) + µ

])
,

where Sα denotes the Boolean function x 7→ Tr(αS(x)), and f̂ denotes the
Walsh transform of f , i.e., α 7→

∑
x∈F2m

(−1)Tr(f(x)+αx). It appears from these
formulas that the cardinality of the intersection of such sets cannot exceed the
cardinality of each set (equal to 2m/∆(S) and 22m/L(S)2 respectively), and
that this maximum is obviously tight when S is an involution, i.e., S−1 = S.
But when the Sbox is composed with a randomly chosen affine permutation,
the two sets can be considered as independent. Then, the expected cardinality
of their intersection is about 2mπ2

∆ = 2m/∆(S)2 (resp. 2mπ2
L = 23m/L(S)4)

where π∆ = 1/∆(S) is the proportion of nonzero elements within a row or a
column of the difference table, and πL = 2m/L(S)2 is the proportion of nonzero
elements within a row or a column of the square correlation table. For instance,
for an almost bent Sbox, i.e., with m odd, ∆(S) = 2 and L(S) = 2(m+1)/2, the
expected cardinality of the two sets involved in the previous formulas is 2m−2,
while it is equal to 2m−1 when S is an involution. More generally, our new upper
bound is always smaller than or equal to the corresponding FSE 2003 bound,
with equality when S is an involution, as stated in the following proposition (see
the proof in Appendix A).

Proposition 2. Let S be a permutation of F2m and d be some positive integer.
Then, each of the two upper bounds defined in Theorem 2 is less than or equal to
the corresponding FSE 2003 bound. Moreover, equality holds if S is an involution,
since for any integer u < d,

max
µ∈F2m

Bu(µ) = Bu(0) = max
a∈F∗

2m

∑
γ∈F∗

2m

δF (a, γ)d = max
b∈F∗

2m

∑
γ∈F∗

2m

δF (γ, b)d

and max
µ∈F2m

B⊥u (µ) = B⊥u (0) = max
a∈F∗

2m

∑
γ∈F∗

2m

WF (a, γ)2d = max
b∈F∗

2m

∑
γ∈F∗

2m

WF (γ, b)2d.

3.2 Some lower bounds

An interesting question is to determine whether these new bounds are optimal, in
the sense that, for a given Sbox, there exists a linear layer such that the bounds
are tight. Here, we exhibit some functionsM with optimal branch number such



that the EDP (resp. ELP) of some minimum-weight differential (resp. linear
mask) over two rounds is related to the upper bound of Theorem 2. This lower
bound results from the fact that the minimum-weight codewords with a given
support in an F2m-linear MDS code form a set of the form {λc, λ ∈ F∗2m} for
some fixed codeword c. Such a set is named a bundle in [20]. It is not difficult to
observe that B(0) (resp. B⊥(0)) corresponds to the maximum EDP (resp. to the
maximum ELP) of some particular minimum-weight bundles. Moreover, for any
such particular bundle, a functionM such that CM contains this bundle can be
constructed from some Generalized Reed-Solomon code.

Proposition 3. Let S be a permutation of F2m and t be any integer such that
t ≤ 2m−1. Then, there exist two F2m-linear diffusion layers M1 and M2 over
Ft2m with maximal branch number d = t+ 1 such that any block cipher E1 of the
form SPNF (m, t,S,M1) and E2 of the form SPNF (m, t,S,M2) satisfy

MEDPE1
2 ≥ 2−m(t+1)B(0) and MELPE2

2 ≥ 2−2m(t+1)B⊥(0)

where B(0) and B⊥(0) are defined as in Theorem 2.

Proof. We give here the proof for MEDP2 only, but it is similar for MELP2.
Actually, the proposition can be formulated in a generic way as the results
in Appendix A. Let α̂, β̂, λ̂ ∈ F∗2m and 1 ≤ û ≤ t be some values such that∑
γ∈F∗

2m
δF (α̂, γ)ûδF (γλ̂, β̂)t+1−û = B(0). Let a ∈ Ft2m be the input difference

whose first û coordinates equal α̂ and whose last (t−û) coordinates equal 0. Sim-
ilarly, b ∈ Ft2m denotes the output difference whose first (t+ 1− û) coordinates
equal β̂ and whose last (û− 1) coordinates equal 0. Since

EDP2(a,M(b)) =
∑
c∈CM

(
t∏
i=1

δF (ai, ci)

) t∏
j=1

δF (ct+j , bj)

 ,

it is equal to B(0) if the words of the form

γ(1, . . . , 1︸ ︷︷ ︸
û

, 0, . . . , 0︸ ︷︷ ︸
t−û

, λ̂, . . . , λ̂︸ ︷︷ ︸
t+1−û

, 0, . . . , 0︸ ︷︷ ︸
û−1

) (4)

are the codewords in CM having the same support as (a, b). Therefore, we aim at
finding a linear MDS diffusion layerM such that CM contains these codewords.
Since t ≤ 2m−1, we can choose 2t distinct elements x1, . . . , x2t in F2m . For any
choice of 2t elements v1, . . . , v2t, we define the t× t matrix

R =


1 1 ... 1

x1v1 x2v2 ... xtvt
x2

1v1 x2
2v2 ... x2

t vt
. . .

xt−1
1 v1 x

t−1
2 v2 ... xt−1

t vt


−1

×


1 1 ... 1

xt+1vt+1 xt+2vt+2 ... x2tv2t

x2
t+1vt+1 x

2
t+2vt+2 ... x2

2tv2t

. . .
xt−1
t+1vt+1 x

t−1
t+2vt+2 ... xt−1

2t v2t

 .

Then, the code CM = {(x, xR), x ∈ Ft2m} is the generalized Reed-Solomon code
GRSt(x1, . . . , x2t; v). It is well-known [36, Page 303] that this code is MDS and is



composed of all words of the form (v1F (x1), . . . , v2tF (x2t)) where F ranges over
all polynomials in F2m [X] of degree strictly less than t. Then, the codewords in
CM having the same support as (a, b) correspond to the polynomials of degree
at most (t − 1) which vanish at all (t − 1) points xi for i 6∈ Supp((a, b)). Then,
these polynomials can be written as γF̂ (x), γ ∈ F∗2m , and F̂ (xi) 6= 0 for i ∈
Supp((a, b)) since F̂ cannot have more than (t − 1) roots. Therefore, we can
choose for v a vector such that vi = 1/F̂ (xi) for 1 ≤ i ≤ û and vi = λ̂/F̂ (xi) for
t + 1 ≤ i ≤ 2t + 1 − û. This guarantees that the words in CM having the same
support as (a, b) are the words of the form (4). It follows that

EDP2(a,M(b)) =
∑

γ∈F∗
2m

(
û∏
i=1

δF (α̂, γviF̂ (xi))

)t+1−û∏
j=1

δF (γvt+jF̂ (xt+j), β̂)


=

∑
γ∈F∗

2m

δF (α̂, γ)ûδF (γλ̂, β̂)t+1−û .

ut

Remark 1. In some particular cases, we can find a generalized Reed-Solomon
code corresponding to a linear layerM for which the two bounds hold together.
Indeed, we want to construct a code CM which contains the words (4) and whose
dual C⊥M contains the words

γ(0, . . . , 0︸ ︷︷ ︸
t−ū

, λ̄, . . . , λ̄︸ ︷︷ ︸
ū

, 0, . . . , 0︸ ︷︷ ︸
ū−1

, 1, . . . , 1︸ ︷︷ ︸
t+1−ū

)

for some given λ̄ and ū. But the dual of GRSt(x1, . . . , x2t; v) is another general-
ized Reed-Solomon code, GRSt(x1, . . . , x2t;w) with w−1

i = vi
∏
j 6=i(xi + xj). In

particular, if ū+ û = t, we can find a vector (v1, . . . , v2t) such that both condi-
tions hold together. This situation occurs for instance when S is an involution
since B(0) (resp. B⊥(0)) is attained for all û < d (resp. for all ū < d⊥).

An interesting situation is the case where the maximum over all µ ∈ F2m of
B(µ) (resp. of B⊥(µ)) is attained for µ = 0. Then there exists someM for which
the upper bound from Theorem 2 is tight for SPNF (m, t,S,M), implying that it
is impossible to find a general better bound which depends on S and t only. This
situation occurs in particular for any involutional Sbox. Indeed, by combining
Prop. 2 and 3, we deduce that, for any involutional Sbox and any t ≤ 2m−1,
there exists a linear layer over Ft2m such that the exact values of MEDP2 and of
MELP2 are equal to the FSE 2003 bounds.

Corollary 1. Let S be an involution of F2m and t be any integer with t ≤ 2m−1.
Then, there exist an F2m-linear diffusion layerM over Ft2m with maximal branch
number such that SPNF (m, t,S,M) satisfies

MEDP2 = max
a∈F∗

2m

∑
γ∈F∗

2m

(
δF (a, γ)

2m

)(t+1)

= max
b∈F∗

2m

∑
γ∈F∗

2m

(
δF (γ, b)

2m

)(t+1)



and MELP2 = max
a∈F∗

2m

∑
γ∈F∗

2m

(
WF (a, γ)

2m

)2(t+1)

= max
b∈F∗

2m

∑
γ∈F∗

2m

(
WF (γ, b)

2m

)2(t+1)

.

Proof. We know from Prop. 2 that for any u, maxµ∈F2m
Bu(µ) = Bu(0) = B(0),

and maxµ∈F2m
Bu(µ)⊥ = Bu(0)⊥ = B(0). Moreover, all these values are equal to

the FSE 2003 bounds. By combining Th. 2 and Prop. 3, we deduce the existence
of some linear layers for which MEDP2 (resp. MELP2) are lower- and upper-
bounded by B(0) (resp. B⊥(0)). Moreover, we have proved in Prop. 2 that B(0)
(resp. B⊥(0)) is attained for all values of u. This is a case where we can construct
a GRS code satisfying the conditions for MEDP2 and MELP2 together. ut

Example 1. The Prøst permutation over F16d
2 , d ≥ 1, is the core function of

several AEAD-schemes submitted to the CAESAR competition [27]. This per-
mutation is of the form SPN(4, 4d, S,M) where S is a 4-bit involution named
SubRows and M corresponds to the composition of two linear permutations,
MixSlices and ShiftPlanes. The round-constant addition is omited here since
it does not have any impact in our context. Similarly to the AES, two consec-
utive rounds of the Prøst permutation can be seen as the parallel application
of d copies of a superbox defined over F16. This superbox corresponds to two
SubRows layers separated by a MixSlices transformation. Moreover, even if it
is not mentioned in the design rationale, it can be checked that MixSlices is
linear over F16 if F16 is identified with F4

2 by the following isomorphism:

ϕ : (x0, . . . , x3) 7→ x1 + αx2 + α2x3 + α3x0

where α is a root of X4 + X3 + 1. Indeed, the function defined over F4
16 by

M = ϕ̃ ◦ MixSlices ◦ ϕ̃−1 corresponds to the multiplication by
1 α α+ α2 α2

α 1 α2 α+ α2

α+ α2 α2 1 α
α2 α+ α2 α 1

 .

The previous framework then directly applies2. In particular, since the Sbox is
an involution, our bounds are equal to the FSE 2003 bounds (Prop. 2): the Prøst
permutation with any F2-linear MDS MixSlices transformation satisfies

MEDP2 ≤ 2−8 and MELP2 ≤ 2−8 .

These bounds are tight as stated in Corollary 1: using the construction described
in the proof of Prop. 3, we obtain that the following matrix over F16 (with the
previously described representation) leads to a variant of the Prøst permutation

2 We here focus on the MEDP and MELP of the SPN with the same building blocks as
the Prøst permutation, but these expectations do not provide any direct information
on the security of the Prøst permutation in which the key is fixed.



with MEDP2 = MELP2 = 2−8:
α2 + α+ 1 α3 + α α3 + α+ 1 1
α+ 1 α3 + α2 + α α2 + α+ 1 1
α2 + 1 α3 + α2 + 1 α3 1
α2 α3 + α2 α3 + 1 1

 .

This implies that, for this particular Sbox, the MixSlices transformation must
be chosen with care to guarantee small MEDP2 and MELP2. Instead, for some
Sboxes within the same equivalence class as SubRows, we can guarantee that, for
any F16-linear MDS MixSlices, MEDP2 ≤ 3× 2−10. This does not make a big
difference in the case of Prøst since the alphabet is small and the exact MEDP2

and MELP2 can be easily computed. For instance, for the MixSlices transfor-
mation chosen by the designers, we have MEDP2 = 3 × 2−11 and MELP2 =
81 × 2−16. However, for Sboxes over F28 , computing the exact MEDP2 and
MELP2 is rather expensive and obtaining a better upper bound is very helpful.

3.3 Influence of the field representation

Clearly, there is no reason why the two-round MEDP or MELP should be the
same for affine equivalent Sboxes in general. Then, it makes sense that our
new bounds are not invariant under affine equivalence. More surprisingly, by
combining the upper bound from Theorem 2 with the lower bound provided by
Prop. 3, we can exhibit some examples showing that the choice of the field F2m ,
i.e., the choice of the isomorphism ϕ between Fm2 and F2m , may influence the
value of the MEDP and MELP.

Example 2. Let us consider 2 rounds of a cipher of the form SPN(4, 4, S,M),
where S is one of the permutations of F4

2 used in the PRINCE-family [9], namely
permutation S6 in [10, Table 3]:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5

where each element in F4
2 is here represented as an integer between 0 and 15.

This Sbox is differentially 4-uniform and has linearity L(S) = 8. For this Sbox,
the FSE 2003 bound gives MEDPE2 ≤ 34 × 2−14, for any F2-linear diffusion
layer M over F16

2 with branch number 5. If we now consider a diffusion layerM
with branch number 5 which is linear over F24 where F24 is identified with
F4

2 by the basis {1, α, α2, α3} where α is a root of the irreducible polynomial
X4 +X3 +X2 +X + 1, we get from Theorem 2 that

MEDPE2 ≤ 33× 2−14 ,

and this inequality holds for any such functionM. However, we can now consider
a permutationM′ which is linear over F24 , but where the isomorphism between
F4

2 and F24 is defined by a different basis, namely {1, β, β2, β3} where β is a



root of the primitive polynomial X4 + X + 1. Then, the value B(0) involved in
Prop. 3 equals 17×27, implying that there exists an F24 -linear functionM′ with
branch number 5 such that

MEDPE2 = 34× 2−14 ,

which is strictly higher that the upper bound we have for any MDS diffusion
layer F24-linear where F24 is defined with the basis {1, α, α2, α3}.

There is no contradiction here since the two theorems apply to the represen-
tations of the Sbox and of the diffusion function over F24 only. Here, we have
proved that there is a particular M′ such that SPN(4, 4, S, ψ̃−1 ◦ M′ ◦ ψ̃) has
MEDP2 = 34×2−14, where ψ̃ is the concatenation of 4 copies of the isomorphism
ψ from F4

2 into F24 defined by the basis {1, β, β2, β3}. But if we consider the basis
{1, α, α2, α3} and the corresponding isomorphism ϕ, Th. 2 provides a bound for
all SPNF (4, 4, ϕ ◦S ◦ϕ−1,M) which does not include the previous case because
the permutation defined byM = ϕ̃ ◦ ψ̃−1 ◦M′ ◦ ψ̃ ◦ ϕ̃−1 is not linear over F24 ,
since (ψ◦ϕ−1) is not a ring isomorphism. This unexpected result comes from the
fact that the definitions of the Sbox and of the linear layer do not use the same
representation: the Sbox is defined over F4

2 while the linear layer is defined over
F24 . This is why the choice of the basis affects the MEDP while this is obviously
not the case when the two functions are defined over the same alphabet. But,
even if this does not correspond to a natural mathematical description, it may
be relevant to use the binary representation for the Sbox (chosen to minimize
the number of gates for instance), while the field representation is used for the
mixing layer since it is F2m -linear (see e.g. [25]).

It is worth noticing that the previous situation is not related to the fact that
one of the field representations is defined by a non-primitive polynomial. Indeed,
the following example shows that even changing the primitive polynomial used
for constructing F2m may affect the two-round MEDP and MELP.

Example 3. We now consider two rounds of a cipher SPN(5, 4, S,M) where S is
the following permutation of F5

2:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 1 18 20 25 16 6 27 17 3 22 15 31 7 30 26
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S(x) 4 23 29 21 9 10 24 2 14 5 13 8 28 19 12 11

When F25 is identified with F5
2 by the basis {1, α, α2, α3, α4} where α is a root of

the primitive polynomial X5 +X2 +1, Theorem 2 shows that any MDS diffusion
layer linear over F25 with this representation satisfies

MEDPE2 ≤ 13× 2−20 and MELPE2 ≤ 8407× 2−27 .

When F25 is constructed from the primitive polynomial X5 +X3 + 1, the lower
and upper bounds from Th. 2 and Prop. 3 are equal, and show that there exists
some MDS layer linear over F25 with this alternative representation such that

MEDPE2 = 14× 2−20 and MELPE2 = 8663× 2−27 .



The first primitive polynomial then guarantees lower two-round MEDP and
MELP than the second one.

Another example is the LED block cipher. In [25, Section 3.2], the design-
ers provide an upper bound on the four-round MEDP and MELP of a cipher
of the form SPNF (4, 4,S,M)3 where M is an F24 -linear function with branch
number 5, S corresponds to the Present Sbox and F24 is defined by the ba-
sis (1, α, α2, α3), with α a root of X4 + X + 1. To this end, they use the
FSE 2003 bound, which leads to MEDP2 ≤ 2−8 and MELP2 ≤ 2−8, imply-
ing that MEDP4 ≤ 2−32 and MELP4 ≤ 2−32. For this cipher, our new upper
bound is equal to the FSE 2003 bound and then does not improve the result.
However, if we consider the same Sbox, but modify the representation of F24 and
choose the basis defined by X4 +X3 +1, Theorem 2 leads to MEDP2 ≤ 3×2−10.
Then, with this minor modification, the upper bound on MEDP4 is improved
by a factor (3/4)4 = 0.3164 (while the bound on MELP4 is unchanged).

4 Multiplicative invariance for Sboxes

Power permutations are often considered as suitable Sboxes since determining
their differential and Walsh spectra is easier and also because they usually have
a lower implementation cost. This family of Sboxes is also of great interest in our
context since our bounds provide a very good approximation of the exact two-
round MEDP and MELP which depends on the Sbox and on the branch number
only. Indeed, for power permutations, we get a universal lower bound in the
sense that the bound provided in Prop. 3 holds for any F2m-linear permutation
M. This comes from the fact that all rows in the difference table (resp. in the
correlation table) of a power permutation can be deduced from a single one. This
is because any power function S is an endomorphism over the multiplicative
group F∗2m , i.e., S(xy) = S(x)S(y) for any pair of nonzero elements (x, y).
Unfortunately, there is no hope to capture a larger family of Sboxes with a
straightforward generalization of this property since it can be easily shown that
any function S satisfying S(xy) = S(x)S ′(y) for some S ′ is of the form S(x) =
cxs. However, we can define this suitable multiplicative property on the difference
table (resp. on the Walsh transform) of S, and not on the function itself.

4.1 Generalizing the multiplicative property

Definition 7. Let S be a mapping of F2m .

– S is said to have multiplicative-invariant derivatives if, for any x ∈ F∗2m
there exists a permutation πx of F∗2m such that

δF (α, xy) = δF (πx(α), y), ∀y ∈ F∗2m .

3 As for Prøst, this result does not directly apply to LED since the round keys are
inserted every four rounds only.



– S is said to have a multiplicative-invariant Walsh transform if, for any x ∈
F∗2m there exists a permutation ψx of F∗2m such that

WF (α, xy)2 =WF (ψx(α), y)2, ∀y ∈ F∗2m .

These definitions include all functions resulting from the composition on the right
of a power permutation with an F2-linear permutation (cf. proof in Appendix B).

Proposition 4. Let S = S ′ ◦ L where L is an F2-linear permutation of F2m

and S ′ : x 7→ xs is a power permutation over F2m . Then, both the derivatives of
S and its Walsh transform are multiplicative-invariant.

It is worth noticing that the fact that a permutation has multiplicative-invariant
derivatives (resp. Walsh transform) does not imply that a similar property holds
for its inverse. In other words, Prop. 4 does not apply to the composition on the
left of a power permutation with a linear permutation. The following proposi-
tion shows that the permutations with multiplicative-invariant derivatives (resp.
Walsh transform) are not all affine equivalent to a power permutation.

Proposition 5. Let m be an odd integer and S be a quadratic permutation
of F2m with ∆(S) = 2 (aka APN permutation). Then, S has multiplicative-
invariant derivatives and S−1 has a multiplicative-invariant Walsh transform.

This result actually applies to a (possibly) more general class of permutations
known as crooked permutations, which includes all quadratic APN permutations
(see details in Appendix B). Prop. 5 applies for instance to the infinite family of
APN permutations of degree 2

x 7−→ x2i+1 + ux2j
m
3 +2(3−j)m

3
+i

with gcd(i,m) = 1 and j = im/3 mod 3

over F2m , m odd, divisible by 3 and not by 9, which is not affine equivalent to
a power mapping [12].

4.2 A universal lower bound for Sboxes with some multiplicative
invariance

We now show that for Sboxes with multiplicative-invariant derivatives (resp.
Walsh transform), the previously established bounds simplify.

Proposition 6. Let S be a permutation of F2m such that either S or S−1 has
multiplication-invariant derivatives (resp. Walsh transform). For any integers d
and d⊥, we define

B′u(µ) = max
α,β∈F∗

2m

∑
γ∈F∗

2m

δF (α, γ)uδF (γ + µ, β)(d−u), with 1 ≤ u < d,

B′⊥u (µ) = max
α,β∈F∗

2m

∑
γ∈F∗

2m

WF (α, γ)2uWF (γ + µ, β)2(d⊥−u), with 1 ≤ u < d⊥ .



Then, for any u, we have

Bu(0) = B′u(0) and max
µ∈F∗

2m

Bu(µ) = max
µ∈F∗

2m

B′u(µ)

resp. B⊥u (0) = B′⊥u (0) and max
µ∈F∗

2m

B⊥u (µ) = max
µ∈F∗

2m

B′⊥u (µ) ,

where Bu(µ) and B⊥u (µ) are defined as in Theorem 2.

It follows that the upper bounds defined by Theorem 2 simplify to

MEDPE2 ≤ 2−md max
1≤u<d

max
µ∈F2m

B′u(µ) and MELPE2 ≤ 2−2md⊥max
1≤u<d⊥

max
µ∈F2m

B′⊥u (µ).

More interestingly, we now get some universal lower bound on MEDP2 and
MELP2, i.e., which hold for any diffusion layer with maximal branch number.

Theorem 3. Let S be a permutation of F2m . Then, for any F2m-linear diffusion
layer M over (F2m)t with maximal branch number d = t + 1, the MEDP2 and
MELP2 of any block cipher E of the form SPNF (m, t,S,M) satisfy the following.

– If both S and S−1 have multiplicative-invariant derivatives, then

MEDPE2 ≥ 2−m(t+1) max
1≤u<d

B′u(0);

– if both S and S−1 have a multiplicative-invariant Walsh transform, then

MELPE2 ≥ 2−2m(t+1) max
1≤u<d

B′⊥u (0) ;

– if S has multiplicative-invariant derivatives (resp. Walsh transform), then

MEDPE2 ≥ 2−m(t+1)B′t(0), resp. MELPE2 ≥ 2−2m(t+1)B′⊥t (0).

– if S−1 has multiplicative-invariant derivatives (resp. Walsh transform), then

MEDPE2 ≥ 2−m(t+1)B′1(0), resp. MELPE2 ≥ 2−2m(t+1)B′⊥1 (0).

Let us focus on all permutations of F28 of the same form as the AES Sbox:
S(x) = A(x254), where A is an F2-affine permutation of F28 . Since S−1 has
multiplication-invariant derivatives and Walsh transform (cf. Prop. 4), we derive
from Theorems 2 and 3, and Prop. 6 that, for t = 4,

2−40B′1(0) ≤ MEDP2 ≤ 2−40 max
1≤u≤4

max
µ∈F∗

28

B′u(µ)

and 2−80B′⊥1 (0) ≤ MELP2 ≤ 2−80 max
1≤u≤4

max
µ∈F∗

28

B′⊥u (µ) .

These bounds do not depend on the isomorphism between F8
2 and F28 since their

expressions do not involve any multiplication in F28 , while this was not the case
of the more general bound in Theorem 2. Then, we get the following results for
different choices of the affine permutation A.



– For the affine function A used in the AES, SPNF (8, 4,S,M) satisfies

53×2−34 ≤ MEDP2 ≤ 55.5×2−34 and 1.638×2−28 ≤ MELP2 ≤ 1.86×2−28

for any F28-linear MDS diffusion layerM and any isomorphism between F28

and F8
2. The exact values for the diffusion layer used in the AES correspond

to the lower bounds in both cases. But, we have exhibited in Prop. 3 an
MDS diffusion layer for which MELP2 ≥ 1.66 × 2−28. Then, the choice of
the MDS linear layer affects the value of MELP2 within this interval.

– For the affine function A′ used in SHARK [42] and Square [16] which are
two predecessors of the AES, SPNF (8, 4,S,M) satisfies

53×2−34 ≤ MEDP2 ≤ 56×2−34 and 1.7169×2−28 ≤ MELP2 ≤ 1.9847×2−28

for any F28-linear MDS diffusion layerM. Then, the affine function chosen
in the AES Sbox offers a slightly better guarantee than the one chosen in
Square. Indeed, it is impossible with the Square affine function to obtain
a two-round MELP which is as small as the one of the AES. Note that the
isomorphism between F8

2 and F28 is different in Square and in the AES [2].
– We have exhibited a linear permutation A′′ of F8

2 for which the corresponding
Sbox is such that SPNF (8, 4,S,M) satisfies

MEDP2 = 56× 2−34 and 1.8354× 2−28 ≤ MELP2 ≤ 1.8684× 2−28

for any F28-linear MDS diffusion layerM. Then, this Sbox always provides
a higher two-round MEDP than the AES Sbox.

Even if we are not able to explicitly construct an affine permutation A which
minimizes the values of MEDP2 and MELP2, our results clearly simplify the task
of the designer. Indeed, the affine permutation A and the diffusion layerM can be
chosen separately since a very good estimate of MEDP2 and MELP2 is obtained
independently of the diffusion layer. This is more efficient than computing these
values for many pairs (A,M).

4.3 Involutions with some multiplicative invariance

A particular case of interest is when S is an involution with multiplicative-
invariant derivatives (or Walsh transform). Then, the lower bound in the previous
theorem corresponds to the upper bound in Theorem 2, and both values are equal
to the FSE 2003 bound.

Corollary 2. Let S be an involution of F2m with multiplicative-invariant deriva-
tives (resp. Walsh transform). Then, for any t and any F2m-linear diffusion
layer M over Ft2m with branch number t + 1, any block cipher of the form
SPNF (m, t,S,M) satisfies

MEDPE2 = 2m(t+1) max
α∈F∗

2m

∑
γ∈F∗

2m

δF (α, γ)t+1,

resp. MELPE2 = 22m(t+1) max
α∈F∗

2m

∑
γ∈F∗

2m

WF (α, γ)2(t+1).



The naive Sbox, i.e. the inversion in F2m , satisfies all hypotheses of the previous
corollary. The exact values of MEDP2 and MELP2 for an SPN combining the
naive Sbox over F2m and any F2m-linear layer with maximal branch number are
then always equal to the FSE 2003 bounds. For instance, for the two-round AES
with the naive Sbox, we have MEDP2 = 79× 2−34 and MELP2 = 48, 193, 409×
2−52, and this is independent of the F28 -linear MDS layer. In particular, the exact
MEDP2 and MELP2 do not depend on the field representation since Coro. 2
provides the same value for any basis. Also, this explains why, among all Sboxes
in the same equivalence class, the naive Sbox is the one which leads after two
rounds both to the highest MEDP and to the highest MELP for any F2m-linear
diffusion layer with maximal branch number. And this situation is independent
of the size of the Sbox, and of the choice of the F2m-linear MDS layer.

5 Conclusions

We have improved the general upper bounds on the two-round MEDP and MELP
for a given Sbox over Fm2 and any F2m -linear diffusion layer with given branch
numbers. One of the main properties of these new bounds is that they are not
invariant under affine equivalence, and then they enable the designers to choose
an appropriate Sbox within an equivalence class, independently of the diffusion
layer. These bounds point out the importance of some interactions between the
Sbox and its inverse. In particular, the involutions play a special role since there
always exists some diffusion layer for which both MEDP2 and MELP2 achieve the
highest possible value we can obtain for an Sbox in the same equivalence class.
Also, we have shown that, for the Sboxes with multiplicative-invariant derivatives
or Walsh transform, we can compute a lower bound on MEDP2 and MELP2

independently of the choice of the MDS diffusion layer. This result applies for
instance to all Sboxes of the form x 7→ A(xs), as in the AES. In particular,
we have proved that, independently of the specifications of the MDS diffusion
layer, the naive Sbox leads to the highest possible MEDP2 and MELP2. The
exact MEDP2 and MELP2 may even vary with the basis used for defining F2m .
Our work then raises several open questions. We have shown that involutional
power permutations are the weakest Sboxes in their equivalence class whatever
MDS linear layer is chosen. For involutions which do not have any multiplicative-
invariant property, this result holds but for some MDS layers only. Then, it would
be interesting to determine whether this weakness is more general, and whether
an involution is always the worst choice within an equivalent class. This issue is
of practical interest since involutional Sboxes are a natural choice for minimizing
the implementation overhead of decryption on top of encryption. Another open
question is whether the use of an involutional Sbox, especially of the naive Sbox,
introduces a similar weakness for a higher number of rounds, in the sense of
the conjecture in [17]. The difficulty comes from the fact that, exactly as for
the FSE 2003 bound, applying our upper bound twice successively requires the
knowledge of the whole difference table of the superbox. Our new bound can then
be combined with (1) only, to get a bound of the 4-round MEDP and MELP.
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A Proofs of Theorem 2, Prop. 2 and 6, and Theorem 3

The new upper bounds on MEDP2 and MELP2 exploit the particular structure
of the codewords in an F2m-linear code, which is related to the notion of bundle
introduced in [20]. In particular, we use the structure of the subsets of the code
of the following form.

Definition 8. Consider a word c of length n and a subset I ⊆ {1, . . . , n}. The
decomposition of c with respect to I is denoted by (x, y)I : x corresponds to the
restriction of c to I, and y corresponds to the restriction of c to the complement
subset Ī. For the sake of simplicity, the |I| coordinates of x (resp. the coordinates
of y) will be indexed by the elements of I (resp. of Ī), i.e., xi = ci for all i ∈ I
and yj = cj for all j ∈ Ī.

Lemma 2. Let C be a linear code of length n, dimension k and minimum dis-
tance d over F2m . For any subset I ⊂ {1, . . . , n} of size (n − d), and any
x ∈ (F2m)n−d, we define

Z(I, x) = {y : (x, y)I ∈ C} .

Then, for any I of size (n− d),

– either Z(I, 0) is empty or there exists some y0 ∈ (F∗2m)d such that Z(I, 0) =
{γy0, γ ∈ F2m};



– For any x 6= 0, either Z(I, x) is empty or there exist some y0 ∈ (F∗2m)d and
some y1 ∈ (F2m)d such that Z(I, x) ⊆ {y1 + γy0, γ ∈ F2m}.

Proof. – Assume that Z(I, 0) is not empty. Since C is F2m-linear, for any
y0 ∈ Z(I, 0), (0, y0)I belongs to C, implying that all γ(0, y0)I with γ ∈ F2m

belong to C too.
– Let x 6= 0. Since the result obviously holds if |Z(I, x)| ≤ 1, we suppose that
|Z(I, x)| ≥ 2. For any distinct y and y′ in Z(I, x), we get that both c = (x, y)I
and c′ = (x, y′)I belong to C, implying that (y + y′) ∈ Z(I, 0). From the
previous result, there exists some y0 such that y+y′ = γy0 for some γ ∈ F2m .
It follows that y′ is of the form y′ = y + γy0. Since wt(c + c′) = wt(y + y′)
cannot be less than d, all coordinates of y0 should be nonzero. ut

A.1 Proofs of Theorem 2 and Proposition 2

As in [41], we will use the following generalized version of Hölder inequality.

Lemma 3. [41, Lemma 1] Let {x(j)
i }ni=1, 1 ≤ j ≤ p, be p sequences of n real

numbers. Then
n∑
i=1

∣∣∣∣∣∣
p∏
j=1

x
(j)
i

∣∣∣∣∣∣ ≤
p∏
j=1

(
n∑
i=1

|x(j)
i |

p

) 1
p

.

Now, we prove the following generic version of Theorem 2.

Theorem 4. Let m and t be two positive integers. Let Λ be a 2m × 2m matrix
with coefficients Λ(α, β), (α, β) ∈ (F2m)2 in [0; 1] such that Λ(α, 0) = Λ(0, α) = 0
for any α 6= 0, and∑

β∈F2m

Λ(α, β) =
∑

β∈F2m

Λ(β, α) = 1, for all α ∈ F2m .

Then, for any F2m-linear code C of length (2t) with minimum distance d and for
any nonzero a and b in Ft2m , we have:

Λa,b =
∑
c∈C

(
t∏
i=1

Λ(ai, ci)

) t∏
j=1

Λ(ct+j , bj)

 ≤ max
1≤u<d

max
µ∈F2m

Bu(µ)

where Bu(µ) = max
α,β,λ∈F∗

2m

∑
γ∈F∗

2m

Λ(α, γ)uΛ(γλ+ µ, β)d−u.

Proof. Let a, b be nonzero elements of (F2m)t. For any codeword c such that
Supp(c) 6= Supp(a, b), there exists ` ∈ {1, . . . , t} such that Λ(a`, c`) = 0 or
Λ(ct+`, b`) = 0. Then,

Λa,b =
∑

c∈C:Supp(c)=Supp(a,b)

(
t∏
i=1

Λ(ai, ci)

) t∏
j=1

Λ(ct+j , bj)

 .



We assume that wt(a) + wt(b) ≥ d, otherwise the value Λa,b is equal to zero,
as there is no c ∈ C such that Supp(c) = Supp(a, b). Then we can choose a pair
of subsets I1 and I2 of {1, . . . , t} such that I1 ⊆ Supp(a), I2 ⊆ Supp(b) and
|I1|+ |I2| = d. We decompose any codeword c whose support equals Supp((a, b))
into two parts: c = (y, x)I where I = ({1, . . . , t} \ I1) ∪ {t + j, j 6∈ I2}. In other
words, y corresponds to the restriction of c to the positions outside I1 and I2,
while x corresponds to the other d positions. Recall that, following Definition 8,
the coordinates of y (resp. of x) are indexed by the elements of I (resp. of
I1 ∪ {t+ j, j ∈ I2}). Then, for Z(I, y) = {x : (y, x)I ∈ C},

Λa,b =
∑

y∈Fn−d
2m

∏
i 6∈I1

Λ(ai, yi)

∏
j 6∈I2

Λ(yt+j , bj)

Qa,b(I, y) (5)

where Qa,b(I, y) =
∑

x∈Z(I,y)

(∏
i∈I1

Λ(ai, xi)

)∏
j∈I2

Λ(xt+j , bj)

 .

We aim at finding an upper bound on Qa,b(I, y). Let u = |I1|. From Lemma 3,

Qa,b(I, y) =
∑

x∈Z(I,y)

∏
i∈I1

Λ(ai, xi)

∏
j∈I2

Λ(xt+j , bj)

 1
u


≤
∏
i∈I1

 ∑
x∈Z(I,y)

Λ(ai, xi)
u

∏
j∈I2

Λ(xt+j , bj)

 1
u

.

For any i ∈ I1, we apply Lemma 3 again:

∑
x∈Z(I,y)

Λ(ai, xi)
u

∏
j∈I2

Λ(xt+j , bj)

=
∑

x∈Z(I,y)

∏
j∈I2

(
Λ(ai, xi)

u
d−uΛ(xt+j , bj)

)

≤
∏
j∈I2

 ∑
x∈Z(I,y)

Λ(ai, xi)
uΛ(xt+j , bj)

d−u

 1
d−u

Now, we know from Lemma 2 that, if Z(I, y) 6= ∅, there exist α ∈ (F∗2m)d

and β ∈ (F2m)d such that Z(I, y) ⊆ {γα + β, γ ∈ F2m}. Then, for any pair
(i, j) ∈ I1 × I2, we can write:∑
x∈Z(I,y)

Λ(ai, xi)
uΛ(xt+j , bj)

d−u ≤
∑

γ∈F2m

Λ(ai, γαi + βi)
uΛ(γαt+j + βt+j , bj)

d−u

=
∑

γ′∈F∗
2m

Λ(ai, γ
′)uΛ(γ′λ+ µ, bj)

d−u ,



where the last equality is obtained by replacing γαi + βi by γ′ since αi 6= 0, and
by setting λ = αt+jα

−1
i and µ = βt+j + αt+jα

−1
i βi. Moreover the sum can be

taken over all nonzero γ′ since Λ(ai, γ
′) = 0 for γ′ = 0. Let

Bu = max
a,b,λ∈F∗

2m

max
µ∈F2m

∑
γ∈F∗

2m

Λ(a, γ)uΛ(γλ+ µ, b)d−u .

Then, we get

Qa,b(I, y) ≤
∏
i∈I1

∏
j∈I2

 ∑
x∈Z(I,y)

Λ(ai, xi)
uΛ(xt+j , bj)

d−u

 1
u(d−u)

≤ B
u(d−u)
u(d−u)
u = Bu .

Using (5) and
∑
β∈F2m

Λ(α, β) =
∑
α∈F2m

Λ(α, β) = 1, we eventually deduce

Λa,b =
∑

y∈Fn−d
2m

∏
i 6∈I1

Λ(ai, yi)

∏
j 6∈I2

Λ(yt+j , bj)

Qa,b(I, y)

≤ Bu
∑

y∈Fn−d
2m

∏
i 6∈I1

Λ(ai, yi)

∏
j 6∈I2

Λ(yt+j , bj)

 ≤ Bu .
ut

Theorem 2 is derived by observing that, up to a constant factor, Λa,b =
EDP2(a,M(b)) for Λ(α, β) = 2−mδF (α, β) and C is the code CM defined in
Definition 5, while Λa,b = ELP2(a, (M∗)−1(b)) for Λ(α, β) = 2−2mWF (α, β)2

when C is the code C⊥M andM∗ denotes the adjoint ofM.
In the same way, we now prove the following generic version of Prop. 2.

Proposition 7. Let m and d be two positive integers and Λ be a 2m×2m matrix
satisfying the same hypotheses as in Theorem 4. Then, for any 1 ≤ u < d and
any µ ∈ F2m , we have

Bu(µ) ≤ max

 max
a∈F∗

2m

∑
γ∈F∗

2m

Λ(a, γ)d, max
b∈F∗

2m

∑
γ∈F∗

2m

Λ(γ, b)d

 .

Moreover, if Λ(α, β) = Λ(β, α) for any (α, β) ∈ (F2m)2, we have that, for any
1 ≤ u < d,

max
µ∈F2m

Bu(µ) = Bu(0) = max
a∈F∗

2m

∑
γ∈F∗

2m

Λ(a, γ)d = max
b∈F∗

2m

∑
γ∈F∗

2m

Λ(γ, b)d .

Proof. Lemma 2 implies that, for any set of p sequences {x(j)
i }ni=1, 1 ≤ j ≤ p,

n∑
i=1

∣∣∣∣∣∣
p∏
j=1

x
(j)
i

∣∣∣∣∣∣ ≤ max
1≤j≤p

n∑
i=1

|x(j)
i |

p .



Using this inequality with p = d, we get that, for any 1 ≤ u < d, α, β, λ ∈ F∗2m
and µ ∈ F2m

∑
γ∈F∗

2m

Λ(α, γλ+µ)uΛ(γ, β)d−u ≤ max

 ∑
γ∈F∗

2m

Λ(α, γ)d,
∑

γ∈F∗
2m

Λ(γλ+ µ, β)d

 .

Since λ 6= 0, we have
∑
γ∈F∗

2m
Λ(γλ+µ, β)d =

∑
γ′∈F∗

2m
Λ(γ′, β)d. The inequality

then follows.
Now, we assume that Λ(a, b) = Λ(b, a) for any pair (a, b). Then,∑

γ∈F∗
2m

Λ(α, γ)uΛ(γλ+ µ, β)d−u =
∑

γ∈F∗
2m

Λ(α, γ)uΛ(β, γλ+ µ)d−u .

For µ = 0, the maximum of this value over all nonzero α, β, λ is then greater
than or equal to the value obtained for β = α and λ = 1, implying that

Bu(0) ≥
∑

γ∈F∗
2m

Λ(α, γ)uΛ(α, γ)d−u =
∑

γ∈F∗
2m

Λ(α, γ)d .

Then, maxa∈F∗
2m

∑
γ∈F∗

2m
Λ(a, γ)d is a lower bound for Bu(0), and then for

maxµ Bu(µ). Since we have proved that it is also an upper bound, we conclude
that both quantities are equal. ut

A.2 Proofs of Proposition 6 and of Theorem 3

We now prove that for any Sbox S such that either S or S−1 has multiplicative-
invariant derivatives (resp. Walsh transform), the bound defined in Theorem 2
simplifies as explained in Prop. 6. Again, we give a generic version of this propo-
sition which captures both settings.

Proposition 8. Let m and d be two positive integers and Λ be a 2m×2m matrix
satisfying the same hypotheses as in Theorem 4. Let

B′u(µ) = max
α,β∈F∗

2m

∑
γ∈F∗

2m

Λ(α, γ)uΛ(γ + µ, β)(d−u), with 1 ≤ u < d .

Assume that one of the following two conditions holds:

(i) for any x ∈ F∗2m there is a permutation πx of F∗2m such that Λ(α, xy) =
Λ(πx(α), y), ∀y ∈ F∗2m ;

(ii) for any x ∈ F∗2m there is a permutation ψx of F∗2m such that Λ(xy, α) =
Λ(y, ψx(α)), ∀y ∈ F∗2m .

Then, the quantities Bu(µ) defined in Theorem 4 satisfy

Bu(0) = B′u(0) and max
µ∈F∗

2m

Bu(µ) = max
µ∈F∗

2m

B′u(µ) .



Proof. If Condition (i) holds, we have for any α, β, λ ∈ F∗2m and any µ ∈ F2m ,

Bu(α, β, λ, µ) =
∑

γ∈F∗
2m

Λ(α, γ)uΛ(γλ+ µ, β)d−u

=
∑

γ′∈F∗
2m

Λ(α, λ−1(γ′ + µ))uΛ(γ′, β)d−u = Bu(πλ−1(α), β, 1, µ) .

The result then follows. If (ii) holds, we get Bu(α, β, λ, µ) = Bu(α,ψλ(β), 1, µλ−1)
in a similar way. ut
A generic version of Theorem 3 is then the following.
Theorem 5. Let m and t be 2 positive integers and Λ a 2m × 2m matrix satis-
fying the hypotheses of Th. 4. Assume that one of the following holds:

(i) for any x ∈ F∗2m there is a permutation πx of F∗2m such that Λ(α, xy) =
Λ(πx(α), y), ∀y ∈ F∗2m ;

(ii) for any x ∈ F∗2m there is a permutation ψx of F∗2m such that Λ(xy, α) =
Λ(y, ψx(α)), ∀y ∈ F∗2m .

Let MΛ be defined by

MΛ = max
a,b6=0

∑
c∈C

(
t∏
i=1

Λ(ai, ci)

) t∏
j=1

Λ(ct+j , bj)

 .

with C any F2m-linear code of length 2t, dimension t and dmin = t+ 1. Then,

– If both (i) and (ii) hold, then MΛ ≥ max1≤u<d B′u(0).
– If (i) holds, then MΛ ≥ B′t(0).
– If (ii) holds, then MΛ ≥ B′1(0).

Proof. For any fixed u, 1 ≤ u ≤ t, we consider α̂, β̂ ∈ F∗2m some values for which∑
γ∈F∗

2m

Λ(α̂, γ)uΛ(γ, β̂)(d−u) = B′u(0) .

Since C is MDS, any set of (t+ 1) positions is the support of a minimum-weight
codeword [36, Page 319]. Let then c ∈ C with support I = {1, . . . , u} ∪ {t +
1, . . . , 2t+ 1− u}. From Lemma 2, we know that the codewords with support I
are the elements γc, γ ∈ F∗2m . We now examine the 3 cases.
– If both (i) and (ii) hold, then for any pair (a, b), we have

Λa,b =
∑
c∈C

(
t∏
i=1

Λ(ai, ci)

) t∏
j=1

Λ(ct+j , bj)


=

∑
γ∈F∗

2m

(
t∏
i=1

Λ(ai, γci)

) t∏
j=1

Λ(γct+j , bj)


=

∑
γ∈F∗

2m

(
t∏
i=1

Λ(πci(ai), γ)

) t∏
j=1

Λ(γ, ψct+j (bj))

 .



We choose a and b as ai = π−1
ci (α̂) for 1 ≤ i ≤ u, ai = 0 otherwise, and

bj = ψ−1
ct+j (β̂) for 1 ≤ j ≤ t+ 1−u, bj = 0 otherwise. Then, for these values,

Λa,b =
∑

γ∈F∗
2m

(
t∏
i=1

Λ(α̂, γ)

) t∏
j=1

Λ(γ, β̂)

 = B′u(0) .

Since such a pair (a, b) can be defined for any 1 ≤ u < d, we deduce that
MΛ ≥ max1≤u<d B′u(0).

– If only (i) holds, then we consider u = t and we define a and b by ai =

π−1

cic
−1
t+1

(α̂) for 1 ≤ i ≤ t, b1 = β̂ and bj = 0 for j > 1. Then, we get

Λa,b =
∑

γ∈F∗
2m

(
t∏
i=1

Λ(ai, γci)

)
Λ(γct+1, b1)

=
∑

γ′∈F∗
2m

(
t∏
i=1

Λ(ai, γ
′cic
−1
t+1)

)
Λ(γ′, b1)

=
∑

γ′∈F∗
2m

(
t∏
i=1

Λ(πcic−1
t+1

(ai), γ
′)

)
Λ(γ′, b1)

=
∑

γ′∈F∗
2m

Λ(α̂, γ′)tΛ(γ′, β̂) = B′t(0) .

– If only (ii) holds, then we choose u = 1 and define a and b by a1 = α̂, ai = 0

for i > 1, and bj = ϕ−1

ct+jc
−1
1

(β̂) for 1 ≤ j ≤ t. Then we get that Λa,b = B′1(0)

ut

B Proofs of Propositions 4 and 5

We now prove that for any mapping S = S ′ ◦A where A is an F2-affine permuta-
tion of F2m and S ′ : x 7→ xs, both the derivatives of S and its Walsh transform
are multiplicative-invariant.

Proof. From Lemma 1, it is known that

δSF (a, b) = δS
′

F (L(a), b) and WSF (a, b)2 =WS
′

F ((L−1)∗(a), b)2 ,

where L : x 7→ A(x) +A(0). Since S ′(x) = xs, we have

δS
′

F (a, bc) = #{x ∈ F2m , (x+ a)s + xs = bc}
= #{x ∈ F2m ,

(
c−ex+ c−ea

)s
+ (c−ex)s = b} = δS

′

F (c−ea, b)

where x 7→ xe is the compositional inverse of S ′, i.e., e is the inverse of s
modulo (2m − 1), and

WS
′

F (a, bc) =
∑

x∈F2m

(−1)Tr(bcxs+ax) =
∑

x∈F2m

(−1)Tr(bys+ac−ey) =WS
′

F (c−ea, b) .



Therefore, it follows that

δSF (a, bc) = δS
′

F (c−eL(a), b) = δSF (πc(a), b) with πc(a) = L−1(c−eL(a)) ,

and WSF (a, bc) =WS
′

F (c−e(L−1)∗(a), b)2 =WSF (ψc(a), b)

with ψc(a) = L∗(c−e(L−1)∗(a)), since (L−1)∗ = (L∗)−1. Clearly, both πc and ψc
are permutations for any nonzero c. ut

Now, we prove a generalized version of Prop. 5, which applies to a (possibly)
larger family of mappings named crooked permutations.

Definition 9. [3] A function S from F2m into F2m is said to be crooked if, for
any nonzero α ∈ F2m , Im(DαS) is a linear or affine subspace of codimension 1,
where DαS : x 7→ S(x+ α) + S(x).

It is known that all crooked permutations are APN and almost bent [3], and
exist for m odd only. Clearly, any quadratic APN permutation is crooked. And
it is highly conjectured that the crooked functions exactly correspond to the
quadratic APN functions. This has been proved in [30] in the case of monomial
functions and in [4] in the case of binomials. Now we can prove the following.

Proposition 9. Let S be a crooked permutation. Then, S has multiplicative-
invariant derivatives and S−1 has a multiplicative-invariant Walsh transform.

Proof. Since S is a permutation, for any nonzero a, DaS cannot vanish implying
that Im(DaS) is an affine hyperplane. Moreover, it is known that the (2m −
1) affine hyperplanes corresponding to Im(DaS) for all a 6= 0 are distinct [13,
Lemma 5]. Therefore, there exists a permutation ϕ of F2m with ϕ(0) = 0 such
that Im(DaS) = F2m \ 〈ϕ(a)〉⊥ for any nonzero a. Moreover, it is known (see
e.g. [8]) that, for u, v ∈ F∗2m ,

W2
F (u, v) =

∑
a,b∈F2m

(−1)Tr(au+bv)δF (a, b) = 2m+
∑

a,b∈F2m ,a 6=0

(−1)Tr(au+bv)δF (a, b).

The differential spectrum of S is determined by ϕ: for any a 6= 0, δF (a, b) =
1− (−1)Tr(ϕ(a)b). Then, for any v 6= 0, we get

W2
F (u, v) = 2m +

∑
a,b∈F2m ,a 6=0

(−1)Tr(au+bv) −
∑

a,b∈F2m ,a6=0

(−1)Tr(au+bv+ϕ(a)b)

= 2m −
∑

a∈F2m ,a6=0

(−1)Tr(au)

 ∑
b∈F2m

(−1)Tr(b(v+ϕ(a)))


= 2m − 2m(−1)Tr(uϕ−1(v))

where the last equality uses the fact that ϕ−1(v) 6= 0 when v 6= 0. It follows that

W2
F (xy, v) = 2m − 2m(−1)Tr(xyϕ−1(v)) = 2m − 2m(−1)Tr(yϕ−1(πx(v)))

where πx(v) = ϕ(xϕ−1(v)). Moreover, for any nonzero x, πx is a permutation.
ut


