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Abstract—The Software-Defined Networking approach permits
to realize new policies. In OpenFlow in particular, a controller
decides on behalf of the switches which forwarding rules must
be installed and where. However with this flexibility comes
the challenge of the computation of a rule allocation matrix
meeting both high-level policies and the network constraints such
as memory or link capacity limitations. Nevertheless, in many
situations (e.g., data-center networks), the exact path followed
by packets does not severely impact performances as long as
packets are delivered according to the endpoint policy. It is thus
possible to deviate part of the traffic to alternative paths so
to better use network resources without violating the endpoint
policy. In this paper, we propose a linear optimization model of
the rule allocation problem in resource constrained OpenFlow
networks with relaxing routing policy. We show that the general
problem is NP-hard and propose a polynomial time heuristic,
called OFFICER, which aims to maximize the amount of carried
traffic in under-provisioned networks. Our numerical evaluation
on four different topologies shows that exploiting various paths
allows to increase the amount of traffic supported by the network
without significantly increasing the path length.

I. INTRODUCTION

The role of a network is to route each packet from an
ingress link (i.e., the link from which the packet entered the
network) to an egress link (i.e., the link at which the packet
leaves the network).1 According to operational and economical
requirements, the choice of the egress link to which a packet
must be forwarded is dictated by the Endpoint Policy and the
actual path followed by a packet in the network is decided by
the Routing Policy [1].

Endpoint policies are driven by high-level economical and
technical considerations. For example, shared-cost links are
often privileged by ISPs and data-centers make sure that packets
are delivered to servers able to handle them. On the other hand,
routing policies are related to the good use of resources in the
network. Shortest-path routing is the most common routing
policy. Its advantages stem from the fact that it minimizes the
amount of links and nodes traversed by a packet across the
network and that routing tables are computed in polynomial
time [2] but other routing policies are also possible, for instance,
compact routing [3].

From that point of view, respecting the endpoint policy is
essential while the routing policy is just a tool to achieve
this goal [4]. Unfortunately, relaxing routing policies and

1In this paper we use the terms packet, router and routing table in their
general sense, making no fundamental distinction between packets and frames,
routers and switches, or between routing tables and forwarding tables.

removing strong path requirements is not practically doable
when the network relies on distributed routing algorithms as it
would imply a high signaling overhead to ensure consistency
of decisions [5]. But with the advent of Software-Defined
Networking (SDN) and OpenFlow in particular, it is now
possible to manage routing using a centralized approach without
losing in terms of scalability or robustness [6]. OpenFlow
allows operators to conceive their network as a black box
aiming at carrying packets from sources to destinations [6],
[4], [7]. The network thus becomes a single entity that the
operator can program instead of a bunch of devices to configure.
This is achieved in OpenFlow thanks to a logically centralized
controller that fetches information from the network, computes
appropriate routes according to the operator wills and network
conditions, and then transparently pushes the corresponding
forwarding rules into the switches.

We illustrate the gain from relaxing routing policy in Fig. 1
that shows a symmetric network of 8 switches with two ingress
links (East and West) and two egress links (North and South).
In this example, the endpoint policy stipulates that destinations
A and B must be reached by the North egress link while
any other destination must be reached by the South egress
link. With the shortest path routing policy (Fig. 1(a)), every
destination is reached in 3 hops and for a total of 15 routing
entries. With a policy minimizing the number of routing entries
(Fig. 1(b)), the routing table is reduced to 9 entries but the
memory reduction comes at the cost of longer paths for A and
B (i.e., 4 hops). However, in practice networks might have
bandwidth or memory constraints to be respected. For instance,
suppose in our network example that each switch can store 2
routing entries. In this case, the two previous routing policies
cannot be applied as they would violate the constraints whereas
Fig. 1(c) shows an allocation that respects both the endpoint
policy and the switches’ constraints.

Departing from the flexibility offered by OpenFlow, we
present OFFICER, a general algorithm to calculate and imple-
ment efficient forwarding rules in switches. OFFICER treats
the network as a black box that must satisfy the endpoint policy
imposed by the operator and tries to get the maximum from
the available resources by adapting the routes followed by the
different packets towards their desired egress links. When the
network is under-provisioned, least valuable packets are routed
through a default slow path designed to minimize resource
usages. As suggested in [4] and [7], we believe that in most
networks, enforcing a particular path is not necessary as long as



Dest To
A E
B E

Dest. To
A N
B N

Others E

Dest. To
Others E

Dest. To
Others S

Dest. To
Others W

Dest. To
A N
B N

others W

Dest. To
A N
B N

Dest. To
A W
B W

A,B A,B

A,B A,B

Others Others Others Others

A,B

Others

(a) Shortest path routing policy

Dest. To

Dest. To
Others E

Dest. To
Others E

Dest. To
A N
B N

Others S

Dest. To
Others W

Dest. To
others W

Dest. To
A N
B N

Dest. To

A,BA,B A,B A,B

A,B

Others Others Others Others

A,B

Others

(b) Minimize table routing policy

Dest. To
A E

Dest. To
A N

Others E

Dest. To
Others E

Dest. To
B N

Others S

Dest. To
Others W

Dest. To
A N

others W

Dest. To
A N
B N

Dest. To
A W

BB B B

BA A

A A

Others Others Others Others

A,B

Others

(c) Constrained network

Fig. 1: Example of the routing policy on the path followed by packets

the endpoint policy is respected. Actually, not relying on strict
routing policies allows better utilization of the network capacity,
reducing so bandwidth wastage and congestion events [4].
Relaxing routing policy is particularly useful in case of scarce
network resources as shown in Fig. 1 and in [7].

The remaining of this paper presents our algorithm OFFICER
to allocate forwarding rules in OpenFlow networks. This
algorithm is the result of a general ILP optimization model
formulated in Sec. II, where the OpenFlow network is modeled
as a directed graph interconnecting switches and the rules to
install on switches are to be found. Our model is general in the
sense it can accept any endpoint policies and can accommodate
any reward functions (i.e., high-level objective) that the operator
aims to maximize. Its novelty can be summarized in two main
points: (i) modeling the network as a black box respecting
the endpoint policy, and (ii) getting the maximum from the
available resources by relaxing routing policy, the rest of the
traffic that cannot be installed is routed on a default path.
As to be discussed in the related work section (Sec. VI), we
are the first to propose a solution making such abstraction
of an OpenFlow network, with a clear gain in terms of the
volume of traffic that can be correctly assigned to its desired
egress point. To illustrate the flexibility of our proposition, we
study the particular case of network that is missing memory to
account for all forwarding rules in Sec. III. This is a growing
problem in networks because of the increase in size of routing
tables but also due to the trend to keep outdated routers in
operation [8]. This problem can even be exacerbated with
OpenFlow as it enables very fine granularity on forwarding
decisions. In Sec. IV we numerically evaluate the costs and
benefits of relaxing routing policy on ISP and data-center
topologies and present different heuristics that approximate
the optimal algorithm in polynomial time. We open some
discussion in Sec. V and consider the related work in Sec. VI
to finally conclude in Sec. VII.

II. GENERAL MODEL TO ALLOCATE RULES IN OPENFLOW

In this section, we formalize a general optimization model
for OpenFlow rule allocation and endpoint policy enforcement.
The goal of the optimization is to find an allocation of
forwarding rules in an OpenFlow network such that the high-

level objectives of the operator are respected and network
constraints are satisfied. However, depending on the high-level
objectives and the network constraints, it may not be possible
to satisfy the endpoint policy for every flow and packets of
flows that cannot respect the endpoint policy are then forwarded
on an arbitrary default path. In the context of OpenFlow, we
assume the existence of: (1) a centralized controller that can
be reached from every switch in the network and (2) a default
path used in every switch to forward packets that do not match
any forwarding rule to the controller. 2

Based on these assumptions, our optimization model is
expressed as an Integer Linear Program (ILP) with constraints
and the goal is to maximize an objective function that abstracts
the high-level objectives of the operator. Without loss of
generality, we assume that one forwarding rule is used for
at most one flow. This assumption is also used in [9] to keep
the core simple with exact matching rules and easy to manage
flows (e.g., rate limitation, accounting). Moreover this has the
advantage of keeping our model linear (see V-B).

In the following, we define a flow f ∈ F as a set of packets
matching a pattern, starting from one ingress link lf ∈ I and
targeting one of the egress links el ∈ E(f). We mean by F the
network workload, I the set of ingress links of the network,
E(f) ⊆ E is the set of all possible egress links and pf is the
packet rate of flow f .

The optimization builds an |F |-by-|L| Boolean allocation
matrix denoted by A = (af,l), where af,l indicates whether
flow f passes through the directional link l = (u, v);u, v ∈ S+

from node u to node v or not. We refer to Table I for the
definition of the different notations used along this paper.

Our optimization model is twofold. One part implements
the high-level objectives and the other defines the constraints
imposed by the network. For the first part, and without loss of
generality, the optimization of the high-level objectives can be
written as the maximization of an objective function F(A, . . . ).
Additional constraints can be added to account for the real
network conditions and to limit the space of possible solutions.

The second part of the model consists of a set of constraints
on the allocation matrix A to ensure that network limitations

2Our model supports multiple controllers.



TABLE I: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S ∪ Se).
L Set of directed links, defined by (s, d) ∈ S×S, where

s is the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) ∈ Se × S.
The particular ingress link of a flow f ∈ F is written
lf by abuse of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) ∈ S×Se.

L+ Set of all directed links (i.e., L+ = L ∪ I ∪ E).
N→(s) ⊆ S+ set of incoming neighboring nodes of switch s ∈ S

(i.e., neighbors from which s can receive packets).
N←(s) ⊆ S+ Set of outgoing neighboring nodes of switch s ∈ S

(i.e., neighbors towards which s can send packets).
E(f) ⊆ E Set of valid egress links for flow f ∈ F according to

the endpoint policy.
E∗(f) ⊆ E E∗(f) = E(f) ∪ ∗, where ∗ denotes the set of

links attached to the controller.
def(s) ∈ S+ Next hop toward the controller from switch s ∈ S.
M Total switch memory limitation.
Cs Memory limitation of switch s ∈ S.
Bl Capacity of link l ∈ L+.
pf Packet rate of flow f ∈ F .

and the endpoint policy are respected. Constraints related to the
network are defined so to avoid forwarding loops, bandwidth
overload, or memory overflow while endpoint policy constraints
ensure that packets can only be delivered to valid egress links.
Network constraints:

∀f ∈ F,∀l ∈ L+ : af,l ∈ {0, 1} (1)

∀f ∈ F,∀s ∈ S :
∑

v∈N→(s)

af,(v,s) =
∑

v∈N←(s)

af,(s,v) (2)

∀f ∈ F : af,l =

{
0 if l ∈ I \ {lf}
1 if l = lf

(3)

Constraint (1) verifies that af,l is a binary variable. To
avoid forwarding loops, acceptable solutions must satisfy flow
conservation constraints (2) that ensure that the traffic entering
a switch always leaves the switch. Constraint (3) is a sanity
constraint. It indicates that among all ingress links, packets of
the flow can only traverse the ingress link of f .
Bandwidth Constraints:

∀l ∈ L+ :
∑
f∈F

pfaf,l ≤ Bl (4)

Constraint (4) accounts for bandwidth limitation and ensures
that the sum of the rates of the flows crossing a link l does
not exceed its capacity.3

3The capacity of a link corresponds to the minimum capacity reserved for
delivering packets of flows satisfying the endpoint policy. If the link may be
used to forward packets of flows not satisfying the endpoint policy, capabilities
must be set up to reserve a capacity of at least Bl on the link for flows
satisfying the endpoint policy, independently of the total traffic carried by the
link.

Memory Constraints:

∀s ∈ S :
∑

v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) ≤ Cs (5)

∑
s∈S

∑
v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) ≤M (6)

Constraint (5) accounts for when the memory of each switch
is known in advance. On the contrary, when the memory to be
allocated on a switch is flexible (e.g., in a Network-as-a-Service
context or in virtual private networks where the memory is
divided between multiple tenants), the operator may see the
memory as a total budget that can be freely divided between
switches which is accounted by constraint (6).

To route a flow f via a directed link l = (s, d), a rule must
be installed on switch s. However, if the next hop dictated
by the forwarding rule is the same as the one of the default
action of the switch, it is unnecessary to install the rule. This
simple aggregation of forwarding rules is taken into account in
constraints (5) and (6). We refer to Sec. V-B for a discussion
about rule aggregation.
Endpoint policy constraints:

∀f ∈ F,∀l ∈ E \ E∗(f) : af,l = 0 (7)

∀f ∈ F :
∑

l∈E∗(f)

af,l = 1 (8)

Flows need to satisfy the endpoint policy, i.e., packets of flow
f should exit the network at one of the egress points predefined
in E(f). However, it may not be possible to allocate each single
flow and thus, some will be diverted to the controller instead
of their preferred egress point. Constraint (7) and (8) ensure
that the endpoint policy is respected by imposing that packets
of a flow either exit at one valid egress link or at the controller.

The allocation matrix is a source of information for an
operator as it provides at the same time the forwarding table,
switch memory occupation, and link usage for a given high-
level objective and endpoint policy. It is also important to notice
that while a problem may have several equivalent solutions, it
may also be unsolvable, depending on the objective function
and the constraints. In addition, the general problem is NP-hard
as Sec. III-B demonstrates.

III. RULE ALLOCATION UNDER MEMORY CONSTRAINTS

Considering the network as a black box offers flexibility
but may lead to the creation of a potentially very large set
of forwarding rules to be installed in the network [1], [7],
[10]. With current switch technologies, this large volume of
rules poses a memory scaling problem. Such problem can be
approached in two different ways: either the memory capacity
of switches is not known and the problem is then to minimize
the overall memory usage to reduce the cost, or the memory
capacity is known and the problem becomes the one of finding
an allocation matrix that satisfies as much as possible high-level
objectives of the operator and the endpoint policy.

In Sec. III-A, we show how to use our model to address the
memory minimization problem while in Sec. III-B we use our



model to maximize the traffic satisfaction in case of constrained
switch memory. Unfortunately, finding the optimal solution in
all circumstances is NP-hard, so we propose a computationally
tractable heuristic in Sec. III-C and evaluate different allocation
schemes over representative topologies in Sec. IV.

A. Minimizing memory usage

A first application of our model is to minimize the
overall amount of memory used in the network to store
forwarding rules. This objective is shared by Palette [10] and
OneBigSwitch [1], with always the possibility in our case to
relax the routing policy and view the network as a black box.
To do so, one has to define the objective function so as to
count the number of assigned entries in the allocation matrix
as detailed in Eq. (9).

F(A,S,N←, F ) = −
∑
s∈S

∑
v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) (9)

Constraint (10), derived from constraint (8), is added to
prevent packets to always be diverted to the controller (which
would effectively minimize memory usage).

∀f ∈ F :
∑
l∈∗

af,l = 0 (10)

Parameters Cs,∀s ∈ S and M used by constraints (5) and (6)
should be set to ∞. However, if for technical or economical
reasons the individual memory of switches cannot exceed a
given value, then Cs must be set accordingly.

B. Maximizing traffic satisfaction

When the topology and switch memory are fixed in advance,
the problem transforms into finding a rule allocation that
satisfies the endpoint policy for the maximum percentage of
traffic. The definition given in Sec. III-A is sufficient to this
end. It must however be complemented with a new objective
function, that models the reward from respecting the endpoint
policy where a flow that does not see its endpoint policy
satisfied is supposed not to bring any reward. A possible
objective function for this problem is:

F(A,F,E) =
∑

f∈F

∑
l∈E(f)

wf,l af,l (11)

where wf,l ∈ R+ is the normalized gain from flow f ∈ F if
forwarded on link l ∈ E(f). In other words, wf,l rewards the
choice of a particular egress link. In the typical case where the
goal is to maximize the volume of traffic leaving the network
via an egress point satisfying the endpoint policy, we have
∀f ∈ F,∀l ∈ E(f) : wf,l = pf .

Theorem 1. The rule allocation problem defined to maximize
traffic satisfaction is NP-hard.

Proof. Let us consider an instance of the problem defined with
the objective function (11), with the topology consisting of
one OpenFlow switch, one ingress link, and one egress link e
for all flows. Then, let us assume that the switch memory is
larger than the number of flows and thus the limitation only

comes from the available bandwidth at the egress link e. The
problem then becomes how to allocate rules so as to maximize
the gain from the traffic exiting the network at egress link e
(the rest of the traffic is forwarded to the controller over the
default path). For this instance, we can simplify the problem
as follows:

maximize
∑
f∈F

wf,eaf,e (12)

∀f ∈ F : af,e ∈ {0, 1} (13)∑
f∈F

pfaf,e ≤ Be (14)

This is exactly the 0-1 Knapsack problem, which is known as
NP-hard. In consequence, the rule allocation problem defined
with the objective function (11) and from which this instance
derives is NP-hard.

C. Heuristic

Finding a rule allocation that maximizes the value of the
traffic correctly forwarded in the network when switch memory
is predefined is not tractable (see Theorem 1). Therefore, an
optimal solution can only be computed for small networks
with a few number of flows. Consequently, we propose in this
section a heuristic to find nearly optimal rule allocations in
tractable time. The general idea of the heuristic is described
in Sec. III-C1 and the exact algorithm and the study of its
complexity is given in Sec. III-C2.

1) Deflection technique: The number of paths between any
pair of nodes exponentially increases with the size of the
network. It is therefore impractical to try them all. To reduce
the space to explore, we leverage the existence of the default
path. Our idea is to forward packets of a flow on the shortest
path between the egress point of the flow and one of the nodes
on the default path. Consequently, packets of a flow are first
forwarded according to the default action and follow the default
path without consuming any specific memory entry, then are
deflected from the default path (consuming so memory entries)
to eventually reach an egress point. That way, we keep tractable
the number of paths to try while keeping enough choices to
benefit of path diversity in the network. The decision of using
the shortest path between default paths and egress points is
motivated by the fact that the shorter a path is, the least the
number of memory entries to be installed is, letting room for
other flows to be installed as well.

To implement this concept, for every flow, switches on the
default path are ranked and the algorithm tries each of the
switches (starting from the best ranked ones) until an allocation
respecting all the constraints is found. If such an allocation
exists, a forwarding rule for the flow is installed on each switch
of the shortest path from the selected switch on the default
path to the egress point. The rank associated to each switch on
a default path is computed according to a user-defined strategy.
Three possible strategies are:
• Closest first (CF): as close as possible of the ingress link

of the flow.
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Fig. 2: Deflection techniques illustrated with 3 deflection
strategies.

Algorithm 1 OFFICER
INPUT: flow weights collection W : F × E → R+, set
of network switches S, set of links L+, set of default path
for flows DefaultPath, a default path is a set of switches,
annotated with a rank, on the path towards the controller.
OUTPUT: A, a |F |-by-|L+| binary matrix

1: A ← [0]F.L+

2: M ← sort(W,descending)
3: for all (f, e) ∈M do
4: sequence ← sort(DefaultPath(f), ascending)
5: for all s ∈ sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

• Farthest first (FF): as close as possible of the controller.
• Closest to edge first (CE): as close as possible of the

egress link.
In CF (resp. FF) the weight of a switch on the path is then

the number of hops between the ingress link (resp. controller)
and the switch. On the contrary, the weight of a switch with CE
is the number of hops separating it from the egress point. The
deflection techniques and the three strategies are summarized
in Fig. 2.

2) Greedy algorithm: Algorithm 1 gives the pseudo-code
of our heuristic, called OFFICER, constructed around the
deflection technique described in Sec. III-C1. The algorithm is
built upon the objective function in (11) that aims at maximizing
the overall weight of flows eventually leaving the network at
their preferred egress point. The algorithm is greedy in the
sense that it tries to install flows with the highest weight first
and fill the remaining resources with less valuable flows. The
rationale being that the flows with the highest weight account
the most for the total reward of the network according to
Eq. (11).

Line 2 constructs an order between the flows and their
associated egress points according to their weights such that
the greedy placement starts with the most valuable flow-egress
option. Line 4 determines the sequence of switches along the
default path that the algorithm will follow to greedily determine
from which switch the flow is diverted from the default path
to eventually reach the selected egress point.

The canAllocate(A, f, e, s) function determines whether
or not flow f can be deflected to egress point e at switch s

according to memory, links, and routing constraints. Thanks
to constraint (8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the
allocate(A, f, e, s) function installs rules on the switches
towards the egress point by setting af,l = 1 for all l on the
shortest path from the deflection point to the egress point. If
there are many possible shortest paths, the allocate function
selects the path with minimum average load over all links on
that path.

When the number of flows is very large w.r.t. the number
of switches and the number of links, which is the common
case, the asymptotic time complexity4 of the greedy algorithm
is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortu-
nately, even with the polynomial time heuristic, computing an
allocation matrix may be challenging, since this matrix is the
direct product of the number of flows and links. For example,
in data-center networks both the number of links and flows can
be very large ([11]). With thousands of servers, if flows are
defined by their TCP/IP 4-tuple, the matrix can be composed
of tens of millions of entries. A way to reduce the size of the
allocation matrix is to ignore the small flows that, even if they
are numerous, do not account for a large amount of traffic and
can hence be treated by the controller.

IV. EVALUATION

In this section, we evaluate our model and heuristic for the
particular case of memory constrained networks as defined in
Sec. III, for Internet Service Provider (ISP) and Data Center
(DC) networks. We selected these two particular deployment
scenarios of OpenFlow for their antagonism. On the one hand,
ISP networks tend to be built organically and follow the
evolution of their customers [12]. On the other hand, DC
networks are methodically structured and often present a high
degree of symmetry [13]. Moreover, while workload in both
cases is heavy-tailed with a few flows accounting for most of the
traffic, DCs exhibit more locality dependency in their traffic
with most of communications remaining confined between
servers of the same rack [11].

A. Methodology

We use numerical simulations to evaluate the costs and
benefits of relaxing routing policy in a memory constrained
OpenFlow network. There are four main factors that can influ-
ence the allocation matrix: the topology, the traffic workload,
the controller placement, and the allocation algorithm.

1) Topologies: For both ISP and DC cases we consider two
topologies, a small one and a large one. As an example of small
topology for ISP we use the Abilene [14] network with 100
servers attached randomly (labeled Abilene in the remaining
of the paper). For the large one we use a synthetic scale-free
topology composed of 100 switches with 1000 servers attached
randomly (labeled ScaleFree).

The topologies for DC consist of a synthetic fat tree with 8
pods and 128 servers (labeled FatTree8) for the small one,

4It is worth to notice that we assume that the algorithm to construct the
DefaultPath input is O(|F |) when the number of flows is large.
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Fig. 3: Proportion of traffic covered

and a synthetic fat tree with 16 pods and 1024 servers (labeled
FatTree16) for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al.
in [15]. Details of the topologies are summarized in Table II. To
concentrate on the effect of memory on the allocation matrix,
we consider infinite bandwidth links in all four topologies.

TABLE II: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 30 100 O(104)

ScaleFree Large ISP 100 292 1000 O(106)
FatTree8 Small DC 80 512 128 O(104)

FatTree16 Large DC 320 4096 1024 O(106)

2) Workloads: For each topology, we randomly produce 24
workloads using publicly available workload generators [15],
[16], each represents the traffic in one hour. For each workload,
we extract the set F of origin-destination flows together with
their assigned source and destination servers. We then use the
volume of a flow as its normalized value for the objective
function (11) (i.e., ∀f ∈ F,∀l ∈ E(f) : wf,l = pf ). A flow
f ∈ F starts from the ingress link of the source server and
asks to exit at the egress link of the destination server.

3) Controller placement: The controller placement and the
default path towards it are two major factors influencing the
allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized
position (i.e., the node that has minimum total distance to
other nodes, denoted by MIN), and least centralized position
(i.e., the node that has maximum total distance to other nodes,
denoted by MAX). In all cases, the default path is constituted
by the minimum shortest path tree from all ingress links to
the controller. The most centralized position limits the default
path’s length and hence the number of possible deflection
points. On the contrary, the least centralized position allows a
longer default path and more choices for the deflection point.

4) Allocation algorithms: To evaluate the quality of the
heuristic defined in Sec. III-C, we compare it with the following
two allocation algorithms:

• Random Placement (RP): It is a variant of OFFICER
where flow sets are randomly ranked and deflection points
are randomly selected.

• Optimum (OP): The allocation matrix corresponds to
the optimal one as defined in Sec. III-B and is computed
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Fig. 4: Average path stretch of deflected flows

using CPLEX. 5 Unfortunately, as computing the optimum
is NP-hard, it is impossible to apply it to the large ISP
and large DC topologies.

Because of room constraints, we only present results for the
CE strategy to choose the deflection point. Nevertheless, with
extensive evaluations, we observed that this strategy outper-
forms the two others by consuming less memory resources.

B. Results

In this section, we compare rule allocation obtained with
OFFICER with the optimal allocation and random allocation.
We also study the impact of the controller placement on the
allocation. The benefit of OFFICER is identified as the amount
of traffic able to strictly respect the endpoint policy while the
drawback is expressed with the path stretch. We also link the
number of flows passing through nodes with their topological
location.

In Fig. 3 and Fig. 4, the x-axis gives the normalized total
memory capacity computed as the ratio of the total number
of forwarding entries to install in the network divided by
the number of flows (e.g., a capacity of 2 means that on

5http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

average flows consume two forwarding entries). Thin curves
refer to results obtained with the controller placed at the most
centralized location (i.e., MIN) while the thick curves refer
to results for the least centralized location (i.e., MAX). The
y-axis indicates the average value and standard deviation over
the 24 workloads for the metric of interest. Curves are labeled
by the concatenation of their allocation algorithm acronym
(i.e., CE, RP, and OP) and their controller location (i.e., MIN
and MAX).

Reference points indicate the value of the metric of interest
if all flows are delivered to their egress link when (i) strictly
following the shortest path and denoted with a square and
(ii), if ever computable, when minimizing memory usage as
formulated in Sec. III-A and denoted with a circle. For a fair
comparison with OFFICER, we also use the aggregation with
the default path for these reference points. It is worth noting
that the squares are on the right of the circles confirming so
that by relaxing routing policy it is possible to deliver all the
flows with less memory capacity.

Fig. 3 evaluates the proportion of the volume of traffic that
can be delivered to an egress point that satisfies the endpoint
policy as a function of the capacity. In all situations, OFFICER



is able to satisfy 100% of the traffic with less capacity than
with a strict shortest routing policy. In addition, when the
optimal can be computed, we note that OFFICER is nearly
optimal and is even able to satisfy 100% of the traffic with
the optimal minimum capacity. This happens because there
are no link bandwidth nor per-switch memory limitations and
that in our two examples flows never cross twice the default
path. On the contrary, the random allocation behaves poorly
in all situations and requires up to 150% more memory than
OFFICER to cover the same proportion of traffic.

Also, with only 50% of the minimal memory capacity
required to satisfy 100% of the traffic, OFFICER satisfies from
75% to 95% of the traffic. The marginal gain of increasing the
memory is hence limited and the choice of the memory to put
in a network is a tradeoff between memory costs and the lost
of revenues induced by using the default path.

Relaxing routing policy permits to deliver more traffic as
path diversity is increased but comes at the cost of longer
paths. Fig. 4 depicts the average path stretch (compared to
shortest path in case of infinite memory) as a function of the
capacity. Fig. 4 shows that the path stretch induced by the
optimal placement is negligible in all type of topologies and
is kept small for OFFICER using the CE strategy (i.e., less
than 5%). On the contrary, the random placement significantly
increases path length. In DC topologies, the average path stretch
is virtually equal to 1 (Fig. 4(c) and Fig 4(d)). The reason is
that in DC networks there is a high diversity of shortest path
between node pairs, so it is more likely to find a shortest path
satisfying all constraints than in ISPs topologies. It also worth
noting that in DCs, there are many in-rack communications
that consumes less memories than out-rack communications,
thus the risk of overloading memory of inter-rack switches is
reduced. Interestingly, even though there is a path stretch, the
overall memory consumption is reduced indicating that it is
compensated by the aggregation with the default rule.

For ISP networks, when the optimal allocation is computed
or approximated with OFFICER, there is a high correlation
(i.e., over 0.9) between the memory required on a switch and
its topological location (e.g., betweeness centrality and node
degree). On the contrary, no significant correlation is observed
in DCs where there are much more in-racks communication
than out-racks communication [16]. This suggests to put
switches with the highest memory capacity at the most central
locations in ISPs and within racks in DCs.

Even though the controller placement is important in
OFFICER as it leverages the default path, Fig. 3 and Fig. 4 do
not exhibit a significant impact of the location of the controller.
Nevertheless, no strong conclusion can be drawn from our
evaluation. Actually, there are so many factors that drive the
placement of the controller [17] that we believe it is better to
consider controller placement as an input of the rule allocation
problem and we let its full study for future work.

V. DISCUSSION

With this section we provide a broad discussion on the model
presented in Sec. II as well as the assumptions that drove it.

A. Routing policy

Relaxing routing policy allows better usage of the network
but comes with the expense of potential high path stretch.
Nevertheless, nothing prevents to add constraints in our model
to account for a particular routing policy. For example, the
constraint ∀f ∈ F :

∑
l∈L+ af,l ≤ α(f) can be added to

control the maximum path length of each flow. This constraint
binds the path length to an arbitrary value pre-computed by
the operator, with α(f) : F → R. For example, α(f) =
h · shortest path length(f) to authorize a maximum path
stretch h (e.g., h = 1.5 authorizes paths to be up to 50% longer
than the corresponding shortest paths).

B. Rule Aggregation

To aggregate two rules having the same forwarding action
into one single rule, a common matching pattern must be found
between the two rules. Constraints (5) and (6) provide a first
step towards rules aggregation: on a switch, if the forwarding
decision for a flow is the same as the default action, the rule
for the flow does not need to be installed. However, a problem
occurs when the common matching pattern also matches for
another rule that has a different action. The latter rule should
not be covered by the aggregating rule as that could create loop
events or incorrect forwarding. Consequently, the construction
of the minimal set of rules in a switch by using aggregation
requires the knowledge of the allocation matrix that, in turn,
will be affected by the aggregation. This risk of non-linearity
is a reason why we assume that one forwarding rule is used for
at most one flow and why we limit aggregation to the default
rule only.

C. Multipath

The model presented in Sec. II assigns one forwarding path
per flow. As a result, all the packets of a flow follow the
same path to the egress link, which ensures that packet arrival
order is maintained. Nevertheless, our model does not prevent
multipath routing. To do so, the pattern matching of a flow to
be forwarded on several paths must be redefined from the one
used in case of one forwarding path. From a network point
of view, the flow will then be seen as multiple flows, one
per matching pattern. Consequently, the optimizer might give
different forwarding paths for packets initially belonging to
the same flow. For example, one can assign a label to packets
when they enter the network and then use labels to decide to
which rule the packet matches. This may increase significantly
the number of rules to be installed in the network and the gain
of having several such paths must be compared to the cost
of having them. In most situations, multipath routing at the
flow level might not be necessary as we are not enforcing any
routing policy in our model, which limits the risk of having
the traffic matching one rule to be enough to saturate one link.

VI. RELATED WORK

Rule allocation in OpenFlow has been largely covered over
the last years. Part of the related work proceeds by local
optimization on switches to increase their efficiency in handling



the installed rules. The other part, which is more relevant to
our work, solves the problem network-wide and produces a
set of compressed rules together with their placement. Our
present research builds upon this rich research area and presents
an original model, together with its solution, for the rule
allocation problem where the routing can be relaxed for the
only objective of placing as many as rules as possible that
respect the predefined endpoint policy.

For the first part, several mechanisms based on wildcard rules
have been proposed to minimize the rule space consumption
on switches as well as to limit the signaling overhead between
switches and controller. DevoFlow [18] uses wildcard rules
to handle short flows locally on switches. DomainFlow [19]
divides the network into one domain using wildcard rules and
another domain using exact matching rules. SwitchReduce [20]
proposes to compress all rules that have the same actions into
a wildcard rule with the exception of the first hop switch.

To reduce further memory usage, latest versions of OpenFlow
support pipelining and multi-level flow tables [21]. Conse-
quently, the large forwarding table is split in a hierarchy
of smaller tables that can be combined to build complex
forwarding rules with less entries. However, even though these
techniques improve memory usage, they do not remove the
exponential growth of state with the number of flows and nodes
in the network.

As for the second part, some works suggest to use special
devices to perform rule placement. DIFANE [22] places the
most important rules at some additional devices, called authority
switches. Then, ingress switches redirect unmatching packets
towards these specific devices, which enables reducing load
on the controller and, at the same time, decreasing the number
of rules required to be stored on ingress switches. vCRIB [23]
installs rules on both hypervisors and switches to increase
performance while limiting resource usage. Other works
optimize rule allocation on switches themselves. Palette [10]
and OneBigSwitch [1] produce the aggregated rule sets that
satisfy the endpoint policy and place them on switches while
respecting the routing policy and minimizing the resources.
However both Palette and OneBigSwitch cannot be used in
scenarios where resources are missing to satisfy the endpoint
policy. In [24], the rule allocation is modeled as a constrained
optimization problem focusing on the minimization of the
overall energy consumption of switches. Finally, the authors
in [7] propose a network-wide optimization to place as many
rules as possible under memory and link capacity constraints.

While the related works presented above focus on particular
aspects of the rule allocation problem in OpenFlow, with
OFFICER we are the first to propose a general solution that
is able to cope with endpoint and routing policies, network
constraints, and high-level operational objectives.

VII. CONCLUSION

We presented in this work a new algorithm called OFFICER
for rule allocation in OpenFlow. Starting from a set of endpoint
policies to satisfy, OFFICER respects as many of these policies
as possible within the limit of available network resources

both on switches and links. The originality of OFFICER is in
its capacity to relax the routing policy inside the network
for the objective of obtaining the maximum in terms of
endpoint policies. OFFICER is based on an integer linear
optimization model and a set of heuristics to approximate the
optimal allocation in polynomial time. The gain from OFFICER
was shown by numerical simulations over realistic network
topologies and traffic traces.
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