Skip to Main content Skip to Navigation
Reports

Uniqueness results for 2D inverse Robin problems with bounded coefficient

Laurent Baratchart 1 Laurent Bourgeois 2 Juliette Leblond 1
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
CNRS - Centre National de la Recherche Scientifique : UMR7231, UMA - Unité de Mathématiques Appliquées, Inria Saclay - Ile de France
Abstract : We address in this work the uniqueness issue in the classical Robin inverse problem with the Laplace equation on a Dini-smooth planar domain, with uniformly bounded Robin coefficient and L2 Neumann data. We prove uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on the complementary part.
Document type :
Reports
Complete list of metadatas

https://hal.inria.fr/hal-01104629
Contributor : Juliette Leblond <>
Submitted on : Sunday, January 18, 2015 - 4:52:18 PM
Last modification on : Thursday, March 5, 2020 - 6:49:56 PM
Document(s) archivé(s) le : Friday, September 11, 2015 - 6:44:17 AM

File

RR-v2-2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01104629, version 1

Citation

Laurent Baratchart, Laurent Bourgeois, Juliette Leblond. Uniqueness results for 2D inverse Robin problems with bounded coefficient. [Research Report] RR-8665, INRIA Sophia Antipolis; INRIA Saclay; INRIA. 2015. ⟨hal-01104629⟩

Share

Metrics

Record views

606

Files downloads

176