Skip to Main content Skip to Navigation
New interface
Reports (Research report)

Uniqueness results for 2D inverse Robin problems with bounded coefficient

Laurent Baratchart 1 Laurent Bourgeois 2 Juliette Leblond 1 
2 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : We address in this work the uniqueness issue in the classical Robin inverse problem with the Laplace equation on a Dini-smooth planar domain, with uniformly bounded Robin coefficient and L2 Neumann data. We prove uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on the complementary part.
Document type :
Reports (Research report)
Complete list of metadata
Contributor : Juliette Leblond Connect in order to contact the contributor
Submitted on : Sunday, January 18, 2015 - 4:52:18 PM
Last modification on : Wednesday, October 26, 2022 - 8:15:22 AM
Long-term archiving on: : Friday, September 11, 2015 - 6:44:17 AM


Files produced by the author(s)


  • HAL Id : hal-01104629, version 1


Laurent Baratchart, Laurent Bourgeois, Juliette Leblond. Uniqueness results for 2D inverse Robin problems with bounded coefficient. [Research Report] RR-8665, INRIA Sophia Antipolis; INRIA Saclay; INRIA. 2015. ⟨hal-01104629⟩



Record views


Files downloads