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Abstract: We address in this work the uniqueness issue in the classical Robin
inverse problem with the Laplace equation on a Dini-smooth domain Ω ⊂ R2, with
L∞ Robin coe�cient and L2 Neumann data. We prove uniqueness of the Robin
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Résultats d'unicité pour le problème inverse de

Robin 2D avec coe�cient borné

Résumé : Ce travail concerne la question de l'unicité pour le problème inverse
de Robin avec équation de Laplace dans un domaine Ω ⊂ R2 régulier au sens de
Dini, le coe�cient de Robin étant dans L∞ et la donnée de Neumann dans L2.
Nous prouvons l'unicité du coe�cient de Robin sur une partie du bord connaissant
les données de Cauchy sur la partie complémentaire.

Mots-clés : Problème inverse de Robin, domaine Dini-régulier, analyse com-
plexe, fonctions holomorphes, espace de Hardy H2, prolongement unique.
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1 Introduction

This study deals with uniqueness issues for the classical Robin inverse boundary
value problem. Mathematically speaking, the inverse Robin problem for an elliptic
partial di�erential equation on a domain consists in �nding the ratio between the
normal derivative and the trace of the solution (the so-called Robin coe�cient) on
a subset of the boundary, granted the Cauchy data (i.e. the normal derivative and
the trace of the solution) on the complementary subset. Here, we deal with L∞

Robin coe�cients and L2 Neumann data, for the Laplace equation on Dini-smooth
domains Ω ⊂ R2.
The main results (and the present introduction) are part of our work [2], where
we addressed the same uniqueness problem in a more general situation. There,
on the one hand, we consider a Lipschitz-smooth domain Ω instead of a Dini-
smooth one. On the other hand, we consider isotropic conductivity equations
instead of the Laplace equation, with a conductivity chosen in the Sobolev class
W 1,r(Ω) where r > 2. These more general assumptions, which concerns both
the regularity of the domain and the equation that governs the physics of the
problem, required us to introduce in [2] rather sophisticated tools from complex
and harmonic analysis. Our objective in the present research report is to describe
and establish our uniqueness results in a less technical mathematical framework,
for the simpler case of Laplace equation in a Dini-smooth domain.
The Robin inverse problem arises for example when considering non-destructive
testing of corrosion in an electrostatic conductor. In this case, data consist of sur-
face measurements of both the current and the voltage on some (accessible) part
of the boundary of the conductor, while the complementary (inaccessible) part of
the boundary is subject to corrosion. Non-destructive testing consists in quan-
tifying corrosion from the data. Robin boundary condition can be regarded as a
simple model for corrosion [10]. Indeed, as was proved in [5], such boundary condi-
tions arise when considering a thin oscillating coating surrounding a homogeneous
background medium such that the thickness of the layer and the wavelength of
the oscillations tend simultaneously to 0. A mathematical framework for corrosion
detection can then be described as follows. We consider a Laplace equation in an
open domain Ω, the boundary of which is divided into two parts. The �rst part
Γ is characterized by a homogeneous Robin condition with functional coe�cient
λ. A non vanishing �ux is imposed on the second part Γ0 of the boundary. This
provides us with a well-posed forward problem, that is, there uniquely exists a
solution in Ω meeting the prescribed boundary conditions. The inverse problem
consists in recovering the unknown Robin coe�cient λ on Γ from measurements
of the trace of the solution on Γ0. Further motivation to solve the Robin problem
are indicated in [12] and its bibliography.
A basic question is uniqueness: is the coe�cient λ on Γ uniquely de�ned by the
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4 L. Baratchart, L. Bourgeois and J. Leblond

available Cauchy data on Γ0 as soon as the latter has positive measure? In other
words, can we �nd two di�erent Robin coe�cients that produce the same mea-
surements? The answer naturally depends on the smoothness assumed for λ.
On smooth domains, uniqueness of the inverse Robin problem for (piecewise) con-
tinuous λ has been known for decades to hold in all dimensions. The proof is
for example given in [10], and in [7] for the Helmholtz equation. It relies on a
strong unique continuation property (Holmgren's theorem), i.e. on the fact that a
harmonic function in Ω, the trace and normal derivative of which both vanish on
a non-empty open subset of the boundary ∂Ω, vanishes identically.
This argument no longer works for functions λ that are merely bounded. In this
case we meet the following weaker unique continuation problem: does a harmonic
function, the trace and normal derivative of which both vanish on a subset of ∂Ω
with positive measure, vanish identically? A famous counterexample in [3] shows
that such a unique continuation result is false in dimension 3 and higher. In di-
mension 2, a proof that such a unique continuation property holds for the Laplace
equation can be found in [1] when the solution is assumed to be C1 up to the
boundary and Ω is the unit disk.
In this work, we prove more generally that this unique continuation result still
holds in a simply connected domain Ω ⊂ R2 bounded by a Dini-smooth curve,
for a harmonic function u that belongs to the Sobolev class W 1,2(Ω) and that ad-
mits a L2 normal derivative on the boundary ∂Ω. This enables us to conclude to
uniqueness in the inverse Robin problem. Our present proofs rely on classical tools
from complex analysis, more speci�cally conformal mappings and a fundamental
uniqueness property of holomorphic functions in Hardy classes from their values
on boundary subsets of positive measure, as well as on a Rolle-type theorem for
W 1,2 Sobolev functions on the real line.
Our uniqueness result for the Robin inverse problem generalizes that of [6] estab-
lished in smoother cases and under the restriction that the imposed �ux is non
negative. The proof therein is based on positivity and monotonicity arguments
and does not use complex analysis.
We �nally point out that the counterexample of [3] is turned in [2] into a coun-
terexample to uniqueness in the Robin problem in dimension 3.
The research report is organized as follows. The inverse Robin problem, in par-
ticular the statement of our uniqueness result, is presented in Section 2. Proofs
of the results given in Section 2 are provided in Section 3. Section 4 contains a
discussion about the more general results and techniques from [2].

Inria



Uniqueness results for 2D inverse Robin problems 5

2 The inverse Robin problem

2.1 Preliminaries

2.1.1 Notation

For an open domain Ω ⊂ R2 and a boundary subset Γ ⊆ ∂Ω, we will make use
of the classical Lebesgue spaces Lp(Γ), for p = 1, 2,∞, together with the Sobolev-
Hilbert spaces W 1,2(Ω), W 1,2(∂Ω) and W 1,2(0, 1) [4]. The space C1([0, 1]) will be
simply denoted C1(0, 1).

We put D ⊂ C for the unit disk of the complex plane and T = ∂D for the unit
circle.

Throughout, l(·) denotes the 1-dimensional Lebesgue measure.

Let L∞+ (Γ) := {λ ∈ L∞(Γ), λ ≥ 0 a.e. on Γ, λ 6≡ 0} (there exists a subset of Γ
with positive Lebesgue measure on which λ does not vanish).

Partial derivatives will be written ∂ν (normal derivative), or ∂xi
, i = 1, 2, ∂z, ∂z̄

(derivatives w.r.t. coordinates xi, associated complex a�x z, or its conjugate z̄,
respectively); when no confusion occurs, the �rst derivative may be indicated by
a prime ′.

2.1.2 Dini-smooth domains

Let us consider a continuous function ρ : [0, 2π] 7→ R+, its modulus of continuity is
de�ned by [8]: ω(δ) = sup{|ρ(t1)−ρ(t2)|, t1, t2 ∈ [0, 2π], |t1−t2| ≤ δ}. Since ρ is a
uniformly continuous function, we have that ω(δ)→ 0 when δ → 0. The function
ρ is said to be Dini-continuous if, in addition, the non negative function t 7→ ω(t)/t
is integrable in a vicinity of 0. In particular, a Hölder-continuous function with
exponent α ∈ (0, 1] is Dini-continuous.

Then, a Jordan curve in R2 is said to be Dini-smooth if it admits a di�erentiable
parametrization (on [0, 2π]), whose derivative is a non vanishing Dini-continuous
function [15, Sec. 3.3].

A simply connected domain Ω ⊂ R2 whose boundary ∂Ω is a Dini-smooth Jordan
curve is called a Dini-smooth domain.

Observe that a Dini-smooth domain is of class C1, whence also Lipschitz-smooth.

2.1.3 Geometrical assumptions

Throughout, we consider a bounded simply connected Dini-smooth domain Ω ⊂
R2. It's boundary ∂Ω is partitioned into two non-empty subsets Γ and Γ0: ∂Ω =
Γ ∪ Γ0 and Γ ∩ Γ0 = ∅, such that l(Γ) > 0, l(Γ0) > 0.
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6 L. Baratchart, L. Bourgeois and J. Leblond

2.2 Forward problem

Let g ∈ L2(Γ0) such that g 6≡ 0 and λ ∈ L∞+ (Γ).
The forward problem we look at consists in �nding u ∈ W 1,2(Ω) solution to

∆u = 0 in Ω
∂νu = g on Γ0

∂νu+ λu = 0 on Γ,
(1)

where ν is the outward unit normal of Ω. Problem (1) admits the following weak
formulation: �nd u ∈ W 1,2(Ω) such that for all v ∈ W 1,2(Ω),∫

Ω

∇u · ∇v dx+

∫
Γ

λuv dτ =

∫
Γ0

gv dτ. (2)

Well-posedness of problem (2) follows from Lemma 2.1 below and Lax-Milgram's
theorem [4, Cor. V.8], which ensures existence and uniqueness of a solution u ∈
W 1,2(Ω). Indeed, whenever λ ∈ L∞+ (Γ) we have the following result, which implies
a Poincaré-Friedrichs type inequality together with the coercivity of the bilinear
form in the left-hand side of (2).

Lemma 2.1. On W 1,2(Ω), the norm whose square is de�ned by∫
Ω

|∇u|2 dx+

∫
Γ

λu2 dτ

is equivalent to the standard ‖·‖W 1,2(Ω) one.

Proof. Let us establish that there exist two constants c, C > 0 such that

c ‖u‖2
W 1,2(Ω) ≤

∫
Ω

|∇u|2 dx+

∫
Γ

λu2 dτ ≤ C ‖u‖2
W 1,2(Ω) , ∀u ∈ W 1,2(Ω).

The right inequality comes from the hypothesis that λ ∈ L∞+ (Γ), and from the
standard trace inequality on ∂Ω for W 1,2(Ω) functions. Indeed, the trace operator
W 1,2(Ω) → L2(∂Ω) is continuous for Lipschitz-smooth domains Ω [14]. Let us
prove the left inequality. Assume to the contrary that there exists a sequence (un)
in W 1,2(Ω) such that

‖un‖W 1,2(Ω) = 1,

∫
Ω

|∇un|2 dx+

∫
Γ

λu2
n dτ ≤

1

n
, ∀n ≥ 1. (3)

Since Ω is a Lipschitz-smooth domain, the compact injection W 1,2(Ω) ⊂ L2(Ω)
implies that we can extract a subsequence from un, still denoted un, such that

Inria



Uniqueness results for 2D inverse Robin problems 7

un → u in L2(Ω), as n → ∞, for some u ∈ L2(Ω). Besides, the inequality in (3)
then implies that

‖∇un‖2
L2(Ω) ≤

1

n
,

whence (un) satis�es the Cauchy criterium in W 1,2(Ω). Thus un → u in W 1,2(Ω)
and

‖∇un‖L2(Ω) → 0 as n→∞.

Hence, a.e. in Ω, we have ∇u = 0, and u is equal to a constant Cu. Further, as
n→∞, ∫

Γ

λu2
n dτ → 0 =

∫
Γ

λu2 dτ = C2
u

∫
Γ

λ dτ.

Since λ does not identically vanish, we necessarily have Cu = 0, which contradicts
the fact that ‖u‖W 1,2(Ω) = 1 from the equality in (3).

2.3 Inverse problem, uniqueness results

The associated Robin inverse problem consists in �nding some unknown impedance
λ in L∞+ (Γ) from available measurements (Dirichlet boundary data) u|Γ0

in L2(Γ0)
of the solution u to (1) on Γ0.
The following uniqueness theorems are the main results of this work, for domains
Ω ⊂ R2 that satisfy the assumptions of Section 2.1.3.

Theorem 2.2. Let g ∈ L2(Γ0), g 6≡ 0, and λ1, λ2 ∈ L∞+ (Γ) such that the cor-
responding solutions u1, u2 ∈ W 1,2(Ω) to problem (1) satisfy u1|Γ0

= u2|Γ0
. Then

λ1 = λ2.

It is a consequence of the following result, whose proof is given in Section 3.

Theorem 2.3. Let u ∈ W 1,2(Ω) be harmonic in Ω and such that ∂νu ∈ L2(∂Ω).
If both u and ∂νu vanish on a subset γ ⊂ ∂Ω of positive Lebesgue measure, then
u ≡ 0 in Ω.

Proof. (of Theorem 2.2) The solutions u1 and u2 are both harmonic in Ω and have
normal derivatives in L2(∂Ω). By assumption, u1 and u2 have the same Cauchy
data on Γ0 ⊂ ∂Ω with l(Γ0) > 0. Theorem 2.3 then implies that u1 ≡ u2 in Ω, so
that u1|Γ and u2|Γ coincide, as well as ∂νu1|Γ and ∂νu2|Γ . Whence (λ1 − λ2)u1 = 0
on Γ, from Robin boundary condition.
Assume that λ1 6= λ2 a.e. on Γ: there exists a subset γ ⊂ Γ, l(γ) > 0, such that
λ1 − λ2 6= 0 on γ. Then u1 vanishes on γ and so does ∂νu1, since ∂νu1 = −λ1 u1.
From Theorem 2.3 again, this implies u1 ≡ 0 in Ω, thus ∂νu1 = 0 a.e. on ∂Ω which
contradicts the assumption g 6≡ 0 in Γ0.
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8 L. Baratchart, L. Bourgeois and J. Leblond

3 Proof of Theorem 2.3

3.1 Holomorphic functions, conformal mapping

For any harmonic function u in the simply connected domain Ω, let us introduce the
corresponding complex valued function f of the complex variable z = x1 +ix2 ∈ C,
associated to x = (x1, x2) ∈ R2, such that u = Re f and de�ned by [16, Ch. 11]:

f(z) = u(x) + iv(x) ,

where v is the conjugate harmonic function associated to u in Ω, de�ned up to an
additive constant by the Cauchy-Riemann equations:

∂x1v = −∂x2u , ∂x2v = ∂x1u .

Hence, the function f is holomorphic in Ω [16, Ch. 11], since it satis�es:

∂zf =
1

2
(∂x1f + i∂x2f) = 0 ,

and its holomorphic derivative is given there by:

f ′ = ∂zf =
1

2
(∂x1f − i∂x2f) = ∂x1u− i∂x2u = 2 ∂zu. (4)

Besides, because ∂Ω is a Jordan curve, the Riemann mapping theorem [16, Thm
14.19] is to the e�ect that there exists a conformal mapping ϕ from Ω onto the
unit disk D ⊂ C, which extends to a homeomorphism from Ω onto D. Recall that
a conformal mapping is a holomorphic function whose derivative (w.r.t. z) does
not vanish. Since ∂Ω is further assumed to be a Dini-smooth curve, it also holds
from [15, Thm 3.5] that ϕ admits a continuous derivative that does not vanish on
Ω. This is naturally true for the inverse map ψ = ϕ−1 : D → Ω as well. Hence,
ψ is continuously di�erentiable in D and ψ′ does not vanish in D, which implies
that:

∃ constants c, C > 0 such that ∀z ∈ D , c ≤ |ψ′(z)| ≤ C . (5)

Composition by such a conformal mapping associates the holomorphic function f
on Ω to the holomorphic function F = f ◦ ψ on D (holomorphy and harmonicity
are preserved by composition with conformal maps).

3.2 Hardy space H2(D)

Recall (see [8] or [16, Ch. 17]) that a holomorphic function g in D with complex
valued Fourier coe�cients (gn), n ≥ 0, belongs to H2 if and only if (gn) ∈ l2(N):

g(z) =
∞∑
n=0

gnz
n ∈ H2 ⇔ sup

0≤r<1

1

2π

∫ 2π

0

∣∣g(r eiθ)
∣∣2 dθ =

∞∑
n=0

|gn|2 < +∞.

Inria



Uniqueness results for 2D inverse Robin problems 9

In particular, from [16, Thm 17.10], g ∈ H2 admits a radial limit up to the
boundary, g|T ∈ L2(T), such that for a.e. eiθ ∈ T:

lim
r→1

∣∣g(reiθ)− g|T(eiθ)
∣∣ = 0, and lim

r→1

∫ 2π

0

∣∣g(reiθ)− g|T(eiθ)
∣∣2 dθ = 0 .

Alternatively, boundary values (radial or non-tangential limits) on T of H2 func-
tions form the subspace of L2(T) whose Fourier coe�cients of negative indices
vanish.
The unique continuation result which is fundamental for the proof of Theorem 2.3
is the following result [8, 11, 16]:

Theorem 3.1. If G belongs to the Hardy space H2 and it's radial limit G|T (de�ned

in L2(T)) vanishes on a subset of T with positive measure, then G ≡ 0 in D.
Since it is crucial here, we give a sketch of its proof following [16, Thm 17.18].

Proof. It is enough to prove that if G does not vanish identically in D then
log |G|T | ∈ L1(T). We �rst remark that H2 ⊂ N , where N is the set of holo-
morphic functions G such that

sup
0≤r<1

m0(r) < +∞, m0(r) :=

∫ 2π

0

log+
∣∣G(r eiθ)

∣∣ dθ,
where ·+ is meant for the non negative part. Since the real-valued function
z 7→ log+ |G(z)| is continuous and subharmonic in D (G is not identically 0),
the function r 7→ m0(r) is non decreasing, so that the supremum over r < 1 in the
previous de�nition of N coincides with the limit when r → 1−.
The second step consists in pointing out that if B denotes the Blaschke product
formed by the zeroes of the function G [16, Thm 15.21], then since G ∈ H2, the
function G̃ = G/B belongs to H2 as well and satis�es G̃|T = G|T a.e. on T, so that
it su�ces to prove the theorem for G̃ instead of G.
In the last step, G is now a function of H2 ⊂ N which does not vanish in D, so that
the real-valued function z 7→ log |G(z)| is harmonic in D. We may set G(0) = 1
without loss of generality. As a consequence of the mean value characterization of
harmonic functions, we have for r < 1

log |G(0)| = 0 =

∫ 2π

0

log
∣∣G(r eiθ)

∣∣ dθ,
and then, by using the fact that log = log+− log−,∫ 2π

0

log−
∣∣G(r eiθ)

∣∣ dθ =

∫ 2π

0

log+
∣∣G(r eiθ)

∣∣ dθ ≤ sup
0≤r<1

m0(r) < +∞.

From Fatou's lemma, we conclude that both functions log+ |G|T| and log− |G|T|
belong to L1(T), whence log |G|T| belongs to L1(T), which completes the proof.
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10 L. Baratchart, L. Bourgeois and J. Leblond

3.3 An extended Rolle-type theorem

We prove below that if a W 1,2 function de�ned on a segment of the real line
R vanishes on a set B of positive measure, then its derivative (in the sense of
distributions) also vanishes on a subset B′ ⊂ B of positive measure.

Theorem 3.2. Let us consider a function u ∈ W 1,2(0, 1), such that u = 0 in a
subset B ∈ [0, 1] with l(B) > 0. Then there exists B′ ⊂ B with l(B′) > 0 such that
u′ = 0 in B′.

Such a result is obvious when B is an open set. In the general case, it is a
consequence of an extension of Lusin's theorem for W 1,2 functions (Lemma 3.3),
and of the fact that isolated points of any subset of R form a countable set (Lemma
3.4), together with Rolle's theorem (for C1 functions).
Lemma 3.3 is an intermediate value theorem which holds as a particular case of [17,
Thm 3.10.5] (where the result is stated in R and from which the present statement
in (0, 1) directly follows, using the extension theorem):

Lemma 3.3. Let u ∈ W 1,2(0, 1) and ε > 0. There exists an open set U ⊂ (0, 1)
and a function v ∈ C1(0, 1) such that l(U) < ε and v(t) = u(t), v′(t) = u′(t),
∀t ∈ (0, 1) \ U .

Lemma 3.4 may be found in [9]. However, we give a proof below for the sake of
completeness.

Lemma 3.4. Let B denote a subset of [0, 1]. The subset I formed by the isolated
points of B is countable.

Proof. For t ∈ I \ {sup I}, let d(t) = inf{s− t, s > t, s ∈ I}, which is well de�ned.
Since any point t is an isolated point of B, it is also an isolated point of I, whence
d(t) > 0. But the intervals (t, t+d(t)), t ∈ I \{sup I}, are non-overlapping and all
contained in [0, 1]. Hence the family {d(t), t ∈ I \{sup I}} is summable, its sum is
bounded by 1 and its support is equal to the set I \ {sup I}. As a consequence of
a classical result on summable families, the support of such a family is countable.
The set I is hence countable.

We are now in a position to establish Theorem 3.2.

Proof. (of Theorem 3.2) Consider a function u which satis�es the assumptions of
the theorem. Choose ε ∈ (0, l(B)) and consider the associated open set U and
function v from lemma 3.3. We then de�ne Bs = B \ U = B ∩ ([0, 1] \ U). If we
had l(Bs) = 0, then

l(B ∪ ([0, 1] \ U)) = l(B) + l([0, 1] \ U) = l(B) + 1− l(U) > 1,

Inria



Uniqueness results for 2D inverse Robin problems 11

because l(U) < ε < l(B) by assumptions, which is impossible since B ⊂ [0, 1].
Thus l(Bs) > 0. The set Bs has the decomposition Bs = I∪A, I∩A = ∅ , where I
and A denote the sets of isolated and accumulation points of Bs, respectively. From
Lemma 3.4, the set I is countable, whence l(I) = 0, and then l(A) = l(Bs) > 0.
Lastly, let us consider t ∈ A. There exists a non-stationary sequence (tn) in the
set Bs, n ∈ N, such that tn → t. Without loss of generality we may assume that
tn < tn+1, for all n ∈ N. The sequence (tn) satis�es u(tn) = v(tn) for all n ∈ N, so
that, by applying Rolle's theorem to the function v ∈ C1(0, 1), we get that for all
n, there exists sn ∈ (tn, tn+1) such that

0 = u(tn+1)− u(tn) = v(tn+1)− v(tn) = v′(sn)(tn+1 − tn).

This implies that v′(sn) = 0 for all n ∈ N, and by passing to the limit, v′(t) = 0,
that is u′(t) = 0. We conclude that u′ vanishes on the subset A ⊂ B with l(A) > 0,
which establishes the result with B′ := A.

3.4 Proof of Theorem 2.3, with a regularity result

Let us consider a function u as in the statement of Theorem 2.3.
Step 1. Denote U = u ◦ ψ = Re F , where ψ and F are de�ned as in Section 3.1.
Step 2. Now let us prove that F ′ = (f◦ψ)′ belongs to the Hardy spaceH2 = H2(D)
of the unit disk de�ned in Section 3.2.
Since F is holomorphic on D, U in harmonic in D. Next, it follows from property (5)
of ψ that u ∈ W 1,2(Ω) implies that U ∈ W 1,2(D). Besides, some easy computations
lead to the following relationships between the normal (resp. tangential) derivative
of U on T and the corresponding normal (resp. tangential) derivative of u on ∂Ω:
for all θ ∈ [0, 2π],

∂rU(eiθ) = |ψ′(eiθ)| (∂νu ◦ ψ)(eiθ), ∂θU(eiθ) = |ψ′(eiθ)| (∂τu ◦ ψ)(eiθ). (6)

By using the �rst identity of (6) and the fact that the Lebesgue measure on ∂Ω is
related to the Lebesgue measure on T by dτ = |ψ′(eiθ)| dθ,∫

∂Ω

|∂νu|2 dτ =

∫ 2π

0

|ψ′(eiθ)|
∣∣(∂νu ◦ ψ)(eiθ)

∣∣2 dθ
=

∫ 2π

0

1

|ψ′(eiθ)|
∣∣∂rU(eiθ)

∣∣2 dθ ≥ 1

C

∫ 2π

0

∣∣∂rU(eiθ)
∣∣2 dθ.

We conclude that the normal derivative ∂rU|T belongs to L2(T).
A classical interpolation result for smooth domains [13] ensures that since U ∈
W 1,2(D) is harmonic in D and has a normal derivative ∂rU|T in L2(T), then U
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12 L. Baratchart, L. Bourgeois and J. Leblond

belongs to the Sobolev space W 3/2,2(D), whence its trace U|T on T belongs to
W 1,2(T). Now, by using the second identity of (6), we obtain∫

∂Ω

|∂τu|2 dτ =

∫ 2π

0

|ψ′(eiθ)|
∣∣(∂τu ◦ ψ)(eiθ)

∣∣2 dθ
=

∫ 2π

0

1

|ψ′(eiθ)|
∣∣∂θU(eiθ)

∣∣2 dθ ≤ 1

c

∫ 2π

0

∣∣∂θU(eiθ)
∣∣2 dθ.

This proves that the trace u|∂Ω
of u on ∂Ω satis�es u|∂Ω

∈ W 1,2(∂Ω), and the
following regularity result.

Proposition 1. Let u ∈ W 1,2(Ω) be harmonic in Ω and such that ∂νu ∈ L2(∂Ω).
Then, its trace u|∂Ω

on ∂Ω belongs to W 1,2(∂Ω).

In particular, U|T ∈ C(T) and the holomorphic function F admits the following
Poisson representation in D [8, Sec. 4.4], [16, Thm 11.12]:

F (z) =
1

2π

∫ 2π

0

U|T(eiθ)
eiθ + z

eiθ − z
dθ,

so that

F ′(z) =
1

π

∫ 2π

0

eiθ U|T(eiθ)

(eiθ − z)2
dθ.

From the fact that, for z ∈ D,

eiθ

(eiθ − z)2
=

+∞∑
n=0

e−i(n+1)θ(n+ 1)zn,

we obtain

F ′(z) =
+∞∑
n=0

anz
n,

where, for n ∈ N,

an := (n+ 1)bn, bn :=
1

π

∫ 2π

0

U|T(eiθ)e−i(n+1)θ dθ .

Hence, the bn are the Fourier coe�cients of the function 2e−iθU|T(eiθ) which be-
longs to W 1,2(T), since U|T does. Thus, (an) ∈ l2(N), and this implies that the
holomorphic function F ′ belongs to the Hardy space H2.
Step 3. In order to apply Theorem 3.2 from Section 3.3, we introduce the parametriza-
tion of ∂Ω given by:

t ∈ [0, 1] 7→ Ψ(t) = ψ(e2iπt) .
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We get from Proposition 1 that the function

t ∈ [0, 1] 7→ ũ(t) = (u ◦Ψ)(t)

belongs to W 1,2(0, 1) and vanishes on Ψ−1(γ) = B ⊂ [0, 1], by assumption. We
have, for all t ∈ [0, 1],

ũ′(t) = (u ◦Ψ)′(t) = |Ψ′(t)| (∂τu ◦Ψ)(t).

From Theorem 3.2, there exists a subset B′ ⊂ B of positive measure, on which the
derivative ũ′ of ũ also vanishes. In turn, by using the fact that the function Ψ′(t)
does not vanish in [0, 1] (because |Ψ′(t)| = 2π |ψ′(e2iπt)| 6= 0) we conclude that the
tangential derivative ∂τu vanishes on a subset γ′ = Ψ(B′) ⊂ γ of positive measure;
so does the normal derivative ∂νu, by assumption.
Step 4. As a consequence, from identities (6) again, both ∂rU and ∂θU vanish on
the same subset of T with positive measure. Because F ′ ∈ H2 from Step 2, both
Cauchy-Riemann equations and formula (4) hold true up to the boundary where

F ′(eiθ) = −i e−iθ (∂θU + i∂rU) (eiθ) ,

from [8, Thm 3.11], and we conclude that F ′ vanish on some subset of T with
positive measure.
Once applied to G = F ′ ∈ H2, Theorem 3.1 implies that F ′ ≡ 0 in D, then
∂x1U = ∂x2U = 0 in D, that is U is a constant. Such a constant is 0 since u
vanishes on γ. Eventually, u vanishes in Ω.

Remark 1. Proposition 1 ensures that the tangential derivative of a harmonic
function on the boundary is a well de�ned L2 function as soon as the tangential
derivative of its conjugate function, that is the normal derivative on the boundary,
is assumed to be a L2 function. This regularity result is established in Dini-smooth
domains where conformal mappings are C1-smooth with non vanishing derivative.

4 Extensions

When the domain is assumed to be Lipschitz-smooth only, the conformal mapping
may no longer be smooth. However, the regularity result of Proposition 1 still
holds, and relies on the so-called Muckenhoupt condition A2, which is satis�ed by
the boundary values of the conformal mapping. The extension from Dini-smooth
to Lipschitz domains is detailed in [2].
The extension of Theorems 2.2 and 2.3 from the Laplace equation to the conduc-
tivity equation with conductivity inW 1,r, for r > 2, is also addressed in [2]. In this
case it is proved that the complex derivative of the solution to the conductivity
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equation can be factorized, the trace on the boundary of one of the two factors
being a non vanishing function, the other one being a Hardy function on which re-
sult of Theorem 3.1 can be applied. We provide in [2] a quite complete description
of the corresponding Hardy-Smirnov classes of generalized holomorphic functions
and of their links with the solutions to the conductivity equation.
Lastly, a natural question is whether Theorems 2.2 and 2.3 remain true or not in
Rn for higher dimension n ≥ 3. Counterexamples to unique continuation on the
unit ball are derived in [2] from the famous one in [3]. They are to the e�ect that
these theorems do not hold anymore when n ≥ 3.
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