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Abstract. The octagon abstract domain, devoted to discovering octagonal con-

straints (also called Unit Two Variable Per Inequality or UTVPI constraints) of a

program, is one of the most commonly used numerical abstractions in practice,

due to its quadratic memory complexity and cubic time complexity. However, the

octagon domain itself is restricted to express convex sets and has limitations in

handling non-convex properties which are sometimes required for proving some

numerical properties in a program. In this paper, we intend to extend the octagon

abstract domain with absolute value, to infer certain non-convex properties by

exploiting the absolute value function. More precisely, the new domain can infer

relations of the form {±X ± Y ≤ c,±X ± |Y | ≤ d,±|X| ± |Y | ≤ e}. We provide

algorithms for domain operations such that the new domain still enjoys the same

asymptotic complexity as the octagon domain. Moreover, we present an approach

to support strict inequalities over rational or real-valued variables in this domain,

which also fits for the octagon domain. Experimental results of our prototype are

encouraging; The new domain is scalable and able to find non-convex invariants

of interest in practice but without too much overhead (compared with that using

octagons).

1 Introduction

The precision and efficiency of program analysis based on abstract interpretation [9,

10] rely a lot on the chosen abstract domains. Most existing numerical abstract domains

(such as intervals [8], octagons [24], polyhedra [11], etc.) can only express convex sets,

due to the fact that they usually utilize a conjunction of convex constraints to represent

abstract elements. At control-flow joins in programs, an abstract domain often exploits

a join operation to abstract the disjunction (union) of the convex constraint sets from the

incoming edges into a conjunction of new convex constraints. The convexity limitations
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of abstract domains may lead to imprecision in the analysis and thus may cause many

false alarms. E.g., to remove a division-by-zero false alarm, the analysis needs to find

a range excluding 0 for the divisor, which is in general a non-convex property and may

be out of the reasoning power of convex abstract domains.

The Absolute Value (AV) function is one of the most used functions in mathematics

and widely used in numerical computations. The AV function is supported by many

modern program languages. E.g., the C99 standard for the C programming language

provides the abs() and fabs() functions to compute the absolute value of an integer

number and a floating-point number respectively. However, due to non-convexity, the

AV function in the program code is rarely well handled during program analysis. More-

over, the AV function has natural ability to encode disjunctions of linear constraints

in a program that account for a large class of non-convex constraints in practice. E.g.,

x ≤ −1 ∨ x ≥ 1 can be encoded as |x| ≥ 1, while (x , 1 ∨ y , 2) can be encoded as

|x − 1| + |y − 2| > 0. Hence, we could exploit the non-convex expressiveness of the AV

function to design non-convex abstract domains. Based on this insight, in [7], Chen et

al. proposed an abstract domain of linear AV inequalities but which is exponential in

complexity and thus has scalability limitations in practice.

In this paper, we propose a new abstract domain, namely the abstract domain of oc-

tagonal constraints with absolute value (AVO), to infer relations of the form {±X ± Y ≤

c,±X±|Y | ≤ d,±|X|±|Y | ≤ e} over each pair of variables X,Y in the program where con-

stants c, d, e ∈ R are automatically inferred by the analysis. AVO is more expressive than

the classic octagon abstract domain and allows expressing certain non-convex (even

unconnected) sets, thanks to the non-convex expressiveness of the AV function. We

propose several closure algorithms over AV octagons to offer different time-precision

tradeoffs. On this basis, we provide algorithms for domain operations such that the new

domain still enjoys the same asymptotic complexity as the octagon domain. In addition,

we show how to extend AVO to support strict inequalities over rational or real-valued

variables. In other words, after the extension, AVO can additionally infer relations that

are of the form {±X±Y < c,±X±|Y | < d,±|X|±|Y | < e}. Experimental results of our pro-

totype are encouraging on benchmark programs and large embedded C programs; AVO

is scalable to large-scale programs and able to find non-convex invariants of interest in

practice.

Motivating Example. In Fig. 1, we show a small instructive example adapted from

[14] (by replacing the double type by real type), which is originally extracted from the

XTide1 package that provides tide and current predictions in various formats. It shows

a frequently used pattern in implementing a Digital Differential Analyzer algorithm in

computer graphics. This example is challenging to analyze as it involves complicated

non-convex constraints (due to disjunctions, the usage of the AV function) as well as

strict inequalities, and precise reasoning over these constraints is required to prove the

absence of the potential risk of division-by-zero errors.

At location ① in Fig. 1, it holds that (dx , 0∨dy , 0) which describes a non-convex

set of points that includes all points in R2 except the origin (0, 0). Using octagonal

constraints with absolute value, it can be encoded as −|dx| − |dy| < 0. At location ②, it

holds that −|dx| − |dy| < 0 ∧ |dx| − |dy| < 0 which implies that −|dy| < 0 and thus the

1 http://www.flaterco.com/xtide/
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division by dy in the then branch will not cause division-by zero error. At location ③,

it holds that −|dx| − |dy| < 0 ∧ −|dx| + |dy| ≤ 0 which implies that −|dx| < 0 and thus

the division by dx in the else branch will not cause division-by zero error. However, if

using convex abstract domains such as octagons and polyhedra, ⊤ (no information) will

be obtained at ① and thus the division-by-zero false alarms will be issued in both the

then and else branches. Moreover, since the program involves strict inequality tests,

we need an abstract domain supporting strict inequalities to do precise reasoning.

static void p line16 primary (...) {

real dx, dy, x, y, slope;

...

if (dx == 0.0 && dy == 0.0)

return;

① if (fabs(dy) > fabs(dx)) {

② slope = dx / dy;

...

} else {

③ slope = dy / dx;

...

} }

Loc AV octagons

① −|dx| − |dy| < 0

−|dx| − |dy| < 0∧

② |dx| − |dy| < 0∧

−|dy| < 0

−|dx| − |dy| < 0∧

③ −|dx| + |dy| ≤ 0∧

−|dx| < 0

Fig. 1. Motivating example from [14] which is originally extracted from the XTide package.

The rest of the paper is organized as follows. Section 2 reviews the octagon abstract

domain. Section 3 presents a new abstract domain of octagonal constraints with abso-

lute value. Section 4 presents our prototype implementation together with experimental

results. Section 5 discusses some related work before Section 6 concludes.

2 The octagon abstract domain

In this section, we give a brief review of the background of the octagon abstract domain

and we refer the reader to [24] for details.

2.1 Octagon representation

Let V = {V1, . . . ,Vn} be a finite set of program variables in a numerical set I (which

can be Q, or R). The octagon abstract domain manipulates a set of so-called octagonal

constraints (also called Unit Two Variable Per Inequality or UTVPI constraints) that

are of the form ±Vi ± V j ≤ c where ± ∈ {−1, 0,+1} and c ∈ I. From the geometric

point of view, the set of points satisfying a conjunction of octagonal constraints forms

an octagon (the projection of which on a 2D plane parallel to the axes is a 8-sided

polygon).

Potential Constraints. An octagonal constraint over V = {V1, . . . ,Vn} can be re-

formulated as a so-called potential constraint that is of the form V ′
i
− V ′

j
≤ c over
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V′ = {V ′
1
, . . . ,V ′

2n
} where V ′

2k−1
represents +Vk and V ′

2k
represents −Vk. E.g., the octag-

onal constraint Vi + V j ≤ c can be encoded as either V ′
2i−1
− V ′

2 j
≤ c or V ′

2 j−1
− V ′

2i
≤ c.

Moreover, a unary octagonal constraint such as Vi ≤ c (and −Vi ≤ c) can be encoded

as V ′
2i−1
− V ′

2i
≤ 2c (and V ′

2i
− V ′

2i−1
≤ 2c). A conjunction of potential constraints can

be represented as a directed weighted graph G with nodes V′ and edges labeled with

weights in I. For each constraint V ′
j
−V ′

i
≤ c in the constraint conjunction, there will be

an edge from V ′
i

to V ′
j

labelled with weight c in G.

Difference Bound Matrices. An equivalent but more practical representation for the

conjunction of potential constraints C over n variables is to use a Difference Bound

Matrix (DBM) [12]. A DBM representing C is a n × n matrix M defined by

Mi j
def
= inf{ c | (V j − Vi ≤ c) ∈ C}

where inf(∅) = +∞ and n is the number of variables involved in C. For a set of potential

constraints described by a DBM M of dimension n, we define the following concretiza-

tion function γPot : DBM→ P(V → I):

γPot(M)
def
= { (V1, . . . ,Vn) ∈ In | ∀i, j,V j − Vi ≤ Mi j }.

Similarly, for a set of octagonal constraints described by a DBM M of dimension 2n,

we define the following concretization function γOct : DBM→ P(V → I):

γOct(M)
def
= { (V1, . . . ,Vn) ∈ In | (V1,−V1, . . . ,Vn,−Vn) ∈ γPot(M) }.

Some octagonal constraints over V have two different encodings as potential con-

straints over V′, and thus can be represented by two elements in the DBM. E.g.,

Vi + V j ≤ c can be described by either V ′
2i−1
− V ′

2 j
≤ c (i.e., M(2 j)(2i−1) = c) or

V ′
2 j−1
− V ′

2i
≤ c (i.e., M(2i)(2 j−1) = c). To ensure that elements of such pairs encode

equivalent constraints, we define the coherence of a DBM as

M is coherent ⇐⇒ ∀i, j, Mi j = M ̄ ı̄

where the ·̄ operator on indices is defined as:

ı̄
def
=

{

i + 1 if i is odd

i − 1 if i is even

Let DBM denote the set of all DBMs. We enrich DBM with a new smallest element,

denoted by ⊥DBM. Then we get a lattice (DBM,⊑DBM,⊔DBM,⊓DBM,⊥DBM,⊤DBM) where

M ⊑DBM N
def
⇐⇒ ∀i, j,Mi j ≤ Ni j (M ⊔DBM N)i j

def
= max(Mi j,Ni j)

(⊤DBM)i j
def
= +∞ (M ⊓DBM N)i j

def
= min(Mi j,Ni j)

2.2 Closure

An octagon can still have several distinct representations using coherent DBMs. To

compare octagons, we thus construct a normal form on DBMs to represent octagons.
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The octagon abstract domain utilizes a so-called strong closure of the DBM, as the

normal form for a non-empty DBM representing octagons. The strong closure (denoted

as M•) of a DBM M encoding octagonal constraints is defined as:

M•
def
= inf
⊑DBM
{X♯ ∈ DBM | γOct(M) = γOct(X♯)}

The octagon domain uses a modified version of the Floyd-Warshall algorithm to

compute M• (which is firstly proposed by Miné [23] and later improved by Bagnara

et al. [3]), which is of cubic-time complexity. Strong closure is a basic operator in the

octagon domain. Most abstract operators over octagons can be obtained based on the

strong closure of DBMs. We refer the reader to [24] for details.

3 An abstract domain of octagonal constraints with absolute value

In this section, we show how to extend the octagon abstract domain with absolute value.

3.1 Octagonal constraints with absolute value

A constraint is said to be an AV octagonal constraint if it is of the following forms:

• octagonal constraints: ±Vi ± V j ≤ a

• constraints with absolute value of one variable per inequality: ±Vi ± |V j| ≤ b

• constraints with absolute value of two variables per inequality: ±|Vi| ± |V j| ≤ c

where ± ∈ {−1, 0,+1} and a, b, c ∈ I ∪ {+∞}. From the geometric point of view, we

call AV octagon the geometric shape of the set of points satisfying a conjunction of

AV octagonal constraints. Now, we will design a new abstract domain, namely AVO, to

infer AV octagonal constraints among program variablesV = {V1, . . . ,Vn}.

According to Theorem 1 in [7], it is easy to derive the following theorem.

Theorem 1. Let e be an arbitrary expression that does not involve variable X. Then

|X| + e ≤ c ⇐⇒

{

X + e ≤ c

−X + e ≤ c

A direct consequence of Theorem 1 is that those constraints with positive coeffi-

cients on the AV term are redundant with other AV octagonal constraints and do not

bring additional expressiveness. Hence, in the domain representation of AVO, we only

need to encode AV octagonal constraints of the following forms:

• ±Vi ± V j ≤ a

• ±Vi − |V j| ≤ b

• −|Vi| − |V j| ≤ c

For example, to describe a planar AV octagon over program variables x, y, we only need

to consider at most 15 AV octagonal constraints, which are listed in Fig. 4(a).

Due to the non-convexity expressiveness of the AV function, an AV octagon is non-

convex in general, but its intersection with each orthant in Rn gives a (possibly empty)
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x
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(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

y

x

(f)

Fig. 2. The geometric shape of AV octagonal constraints. (a) depicts an octagon with constraint

set C = {x ≤ 4,−x ≤ 4, y ≤ 4,−y ≤ 4, x + y ≤ 7, x − y ≤ 7,−x + y ≤ 7,−x − y ≤ 7}; (b)

depicts −|x| ≤ −1; (c) depicts −|x| + y ≤ 2; (d) depicts −|x| − y ≤ 2; (e) depicts −|x| − |y| ≤ −4; (f)

depicts an AV octagon with constraint set C′ = C ∪ {−|x| ≤ −1,−|y| ≤ −1,−|x| + y ≤ 2,−|x| − y ≤

2, x − |y| ≤ 2,−x − |y| ≤ 2,−|x| − |y| ≤ −4}.

octagon. Fig. 2 shows typical geometric shape of AV octagonal constraints. In particu-

lar, Fig. 2(a) shows a typical shape of octagons, while Fig. 2(f) shows an example of an

AV octagon that is non-convex and even unconnected.

Expressiveness lifting. Note that in the AVO domain representation, the AV function

| · | applies to only (single) variables rather than expressions. E.g., consider the relation

y = ||x| − 1| + 1 which encodes a piecewise linear function with more than two pieces,

whose plot is shown in Fig. 3. The AVO domain cannot express directly this piecewise

linear function (in the space of x, y), since | · | applies to an expression |x| − 1. Indeed, in

Fig. 3 the region in the orthant where both x and y are positive is not an octagon.

y = ||x| − 1| + 1

−1

1

0 1

y

x

Fig. 3. A piecewise linear function with nested AV functions.

In order to express such complicated relations, we follow the same strategy as in

[7]. We introduce new auxiliary variables to denote those expressions that appear inside

the AV function. E.g., we could introduce an auxiliary variable ν to denote the value

of the expression |x| − 1. Then using AVO domain elements in the space with higher

dimension (involving 3 variables: x, y, ν), such as {y = |ν| + 1, ν = |x| − 1}, we could

express complicated relations in the space over lower dimension (involving 2 variables:

x, y), such as y = ||x| −1|+1. Note that due to the octagonal shape, the expression inside

the AV function can only be

e ::= ±X ± c | ±|e| ± c

where c is a constant and X is a variable.
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3.2 Extending difference-bound matrices

Now, we show how to encode AV octagonal constraints using DBMs. Similarly to oc-

tagonal constraints, an AV octagonal constraint over {V1, . . . ,Vn} can be reformulated

as a potential constraint of the form V ′′
i
− V ′′

j
≤ c over {V ′′

1
, . . . ,V ′′

4n
} where

• V ′′
4k−3

represents +Vk,

• V ′′
4k−2

represents −Vk,

• V ′′
4k−1

represents |Vk |,

• V ′′
4k

represents −|Vk |.

As an example, in Fig. 4, we show a general set of constraints for a planar AV octagon

(left) and its DBM representation (right).

x ≤ a1

−x ≤ a2

y ≤ a3

−y ≤ a4

x +y ≤ a5

x −y ≤ a6

−x +y ≤ a7

−x −y ≤ a8

−|x| ≤ b1

−|y| ≤ b2

−|x| +y ≤ b3

−|x| −y ≤ b4

x −|y| ≤ b5

−x −|y| ≤ b6

−|x| −|y| ≤ c1

(a)

x −x |x| −|x| y −y |y| −|y|

x 0 2a2

−x 2a1 0

|x| 0 2b1

−|x| 0

y a6 a8 b4 0 2a4

−y a5 a7 b3 2a3 0

|y| b5 b6 c1 0 2b2

−|y| 0

(b)

Fig. 4. DBMs for AV octagons. (a) shows a constraint set for a planar AV octagon; (b) shows a

DBM to encode the constraints.

For a set of AV octagonal constraints described by a DBM M of dimension 4n, we

define the following concretization function γAVO : DBM→ P(V → I):

γAVO(M)
def
=
{

(V1, . . . ,Vn) ∈ In | (V1,−V1, |V1|,−|V1|, . . . ,Vn,−Vn, |Vn|,−|Vn|) ∈ γ
Pot(M)

}

.

Some AV octagonal constraints have two different encodings as potential constraints

in V′′, and can be represented by two elements in the DBM. E.g., −|Vi| − |V j| ≤ c can

be described by either V ′′
4 j
− V ′′

4i−1
≤ c (i.e., M(4i−1)(4 j) = c) or V ′′

4i
− V ′′

4 j−1
≤ c (i.e.,

M(4 j−1)(4i) = c). In addition, according to the specific property over AV constraints

shown in Theorem 1, DBMs encoding AV octagons have another restriction, i.e.,

e + Vi ≤ c1 ∧ e − Vi ≤ c2 =⇒ e + |Vi| ≤ max(c1, c2) (1)

where e ∈ {±V j,±|V j|}. To this end, we define the AV coherence of a DBM as

M is AV coherent ⇐⇒


















∀i, j, Mi j = M ̄ ı̄

∀ j, k, M(4k) j = max(M(4k−3) j,M(4k−2) j) if j , 4k

∀i, k, Mi(4k−1) = max(Mi(4k−2),Mi(4k−3)) if i , 4k − 1

The first condition is similar to the coherence condition for DBMs that encode octagons.

The second condition is due to the restriction (1) over the −|Vk | row, while the third

condition is due to the restriction (1) over the |Vk | column.
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3.3 Conversions between octagons and AV octagons

The intersection of an AV octagon with each orthant gives an octagon. Based on this

insight, we now present operators for conversions between octagons and AV octagons.

Let u = (1, . . . , 1)T be the unit vector, and S n = {s ∈ Rn | |s| = u}. We define an operator

C = S2Cons(s) to derive a conjunction C of sign constraints from s ∈ S n, such that

Ci
def
=

{

xi ≥ 0 if si = 1

xi ≤ 0 if si = −1

First, we define an operator AVO2Oct(M, s) to convert an AV octagon (described by

M that is a DBM of dimension 4n) into an octagon (described by N that is a DBM of

dimension 2n) with respect to a given orthant (described by s ∈ S n), as:

N
def
= AVO2Oct(M, s)

such that γOct(N) equals to the solution set of the conjunction of S2Cons(s) with the

constraint set corresponding to M. From the algorithmic view, N can be easily obtained

from M, by considering the sign of each variable defined in s. E.g.,

N(2k−1)(2k) =

{

M(4k−3)(4k−2) if sk = −1

min(M(4k−3)(4k−2),M(4k−1)(4k)) if sk = 1

where M(4k−3)(4k−2) and M(4k−1)(4k) denote the upper bounds for (−Vk)−Vk and (−|Vk |)−

|Vk | respectively. If Vk ≥ 0, we know the upper bound for (−Vk) − Vk (denoted by

N(2k−1)(2k) in the DBM representation of octagons) will be min(M(4k−3)(4k−2),M(4k−1)(4k)).

Note that an octagon itself is an AV octagon. However, if we know the orthant that

an octagon lies in, we could deduct additionally upper bounds for AV expressions (such

as −|X| − |Y |), to saturate the DBM. To this end, we define an operator Oct2AVO(N, s)

to convert an octagon (N) in a given orthant (s ∈ S n) into an AV octagon (M), as:

M
def
= Oct2AVO(N, s)

such that the solution set of the conjunction of the constraint set corresponding to M

with S2Cons(s) is equivalent to γOct(N).

3.4 Closure algorithms

To obtain a unique representation for a non-empty AV octagon, we define the so-called

AV strong closure M|•| for a DBM encoding a non-empty AV octagon, as

M|•|
def
= inf
⊑DBM
{X♯ ∈ DBM | γAVO(M) = γAVO(X♯)}

Strong closure by enumerating the signs of all n variables. We provide an approach

to compute the AV strong closure M|•| by enumerating the signs of all n variables:

AVOStrClo(M)
def
= ⊔DBM

s∈S n

{

M′ ∈ DBM | M′ = Oct2AVO(N•, s),N = AVO2Oct(M, s)
}

The intuition is as follows. The intersection of an AV octagon M with each orthant s

gives an octagon N. Hence, we could enumerate all orthants and in each orthant we

compute the AV strong closure via the regular strong closure of the octagon domain. It

8



1 DBM4n×4n WeakCloVia3Sign(M : DBM4n×4n){

2 M′,M′′,M′|•| : DBM12×12;

3 N : DBM6×6;

4 for k ← 1 to n

5 for i← 1 to n

6 for j← 1 to n {

7 M′ ← M/{Vk,Vi,V j};

8 M′|•| ← ⊔DBM

s∈S 3 {M
′′ ∈ DBM | M′′ = Oct2AVO(N•, s),N = AVO2Oct(M′, s)};

9 M/{Vk,Vi,V j} ← M′|•|; }

10 for i← 1 to 4n

11 if (Mii < 0) return ⊥DBM; else Mii ← 0;

12 return M; }

Fig. 5. The weak closure algorithm by enumerating the signs of 3 variables in each step.

M/{Vk,Vi,V j} denotes the sub-matrix of M consisting of the rows and columns corresponding

to variables in {Vk,Vi,V j}.

is not hard to see that AVOStrClo(M) = M|•|. However, the time complexity of this ap-

proach isO(2n×n3). At the moment, we do not know whether the problem of computing

the AV strong closure for AV octagons is NP-hard or not.

To offer different time-precision tradeoffs, we now propose two approaches that

are of cubic time complexity to compute weak closures M◦ (such that M|•| ⊑DBM M◦)

for AV octagons. Note that the key behind the closure algorithm is to combine the

constraints over (Vi,Vk) and those over (Vk,V j) to tighten the constraints over (Vi,V j),

by constraint propagation through the intermediate variable Vk. Based on this insight,

we first propose a weak closure algorithm WeakCloVia3Sign() by enumerating the

signs of 3 variables {Vi,Vk,V j} each time to perform constraint propagation. Then we

propose a cheaper weak closure algorithm WeakCloVia1Sign() by enumerating only

the sign of the intermediate variable Vk each time to perform constraint propagation.

Weak closure by enumerating the signs of 3 variables each time. In Fig. 5, we

show the WeakCloVia3Sign() algorithm. In the loop body, we compute the AV strong

closure among three variables Vi,Vk,V j (by enumerating 8 orthants due to the signs of 3

variables), and then update the tightened constraints over Vi,Vk,V j in the original DBM.

Note that WeakCloVia3Sign() gives AV strong closure for AV octagons involving only

3 variables. However, in general, WeakCloVia3Sign() does not guarantee to result in

the AV strong closure for more than 3 variables.

Weak closure by enumerating the sign of one variable each time. In Fig. 7, we show

the WeakCloVia1Sign() algorithm. Rather than enumerating the signs of 3 variables,

in the loop body of WeakCloVia1Sign() we enumerate only the sign of the interme-

diate variable Vk. For each case of the sign of Vk, we call TightenIJviaK() which is

shown in Fig. 6 to tighten the constraints over {±Vi,±|Vi|,±V j,±|V j|} by combining

the constraints over {±Vi,±|Vi|,±Vk} and those over {±Vk,±|V j|,±V j}. We now explain

how TightenIJviaK() works by considering the case where Vk ≥ 0. When Vk ≥ 0,

we have |Vk | = Vk. Hence, it holds that V ′′ − |Vk | ≤ c =⇒ V ′′ − Vk ≤ c where

V ′′ ∈ {0,±Vi,±|Vi|,±V j,±|V j|}. Then, we use V ′′ − |Vk | ≤ c to tighten the upper bound

9



1 DBM12×12 TightenIJviaK(M : DBM12×12, K positive : bool){

2 M′,M′|•| : DBM12×12;

3 M′ ← M; k ← 1; i← 2; j← 3; // Let V′′ = {0,±Vi,±|Vi|,±V j,±|V j|}

4 if (K positive == true){ // V ′′ − |Vk | ≤ c =⇒ V ′′ − Vk ≤ c where V ′′ ∈ V′′

5 M′
(4k−3)(4k−2)

← min(0,M′
(4k−3)(4k−2)

,M′
(4k−1)(4k)

);

6 for n← 0 to 3 {

7 M′
(4k−3)(4i−n)

← min(M′
(4k−3)(4i−n)

,M′
(4k−1)(4i−n)

);

8 M′
(4 j−n)(4k−2)

← min(M′
(4 j−n)(4k−2)

,M′
(4 j−n)(4k)

); } }

9 else{ // V ′′ − |Vk | ≤ c =⇒ V ′′ + Vk ≤ c where V ′′ ∈ V′′

10 M′
(4k−2)(4k−3)

← min(0,M′
(4k−2)(4k−3)

,M′
(4k−1)(4k)

);

11 for n← 0 to 3 {

12 M′
(4k−2)(4i−n)

← min(M′
(4k−2)(4i−n)

,M′
(4k−1)(4i−n)

);

13 M′
(4 j−n)(4k−3)

← min(M′
(4 j−n)(4k−3)

,M′
(4 j−n)(4k)

); } }

14 for n← (4 ∗ i − 3) to 4 ∗ j

15 for m← (4 ∗ i − 3) to 4 ∗ j

16 M′
nm ← min(M′

nm,M
′
n(4k−3)

+ M′
(4k−3)m

,M′
n(4k−2)

+ M′
(4k−2)m

);

17 // Vk − V ′′n ≤ c ∧ V ′′m − Vk ≤ d =⇒ V ′′m − V ′′n ≤ c + d where V ′′n ,V
′′
m ∈ V

′′ \ {0}

18 return M′; }

Fig. 6. A algorithm to tighten AV constraints between Vi and V j through Vk.

for V ′′ − Vk. E.g., if we have −Vk ≤ c1 and −|Vk | ≤ c2 in the input DBM, we can

derive a upper bound for −Vk as −Vk ≤ min(0, c1, c2), which corresponds to line 5 in

TightenIJviaK(). After line 14, the information over the rows and columns correspond-

ing to ±|Vk | in the DBM becomes redundant. Hence, from line 14 to line 16, we only

need to consider the propagation through ±Vk (without need through ±|Vk |). Overall,

WeakCloVia1Sign() is less precise but cheaper than WeakCloVia3Sign().

1 DBM4n×4n WeakCloVia1Sign(M : DBM4n×4n){

2 M′,M′|•|,N,N′ : DBM12×12;

3 for k ← 1 to n

4 for i← 1 to n

5 for j← 1 to n {

6 M′ ← M/{Vk,Vi,V j};

7 N ← TightenIJviaK(M′, true); // when Vk ≥ 0

8 N′ ← TightenIJviaK(M′, f alse); // when Vk ≤ 0

9 M′|•| ← N ⊔DBM N′;

10 M/{Vi,V j} ← M′|•|/{Vi,V j}; }

11 for i← 1 to 4n

12 for j← 1 to 4n

13 Mi j ← min(Mi j, (Miı̄ + M ̄ j)/2);

14 for i← 1 to 4n

15 if (Mii < 0) then return ⊥DBM; else Mii ← 0;

16 return M; }

Fig. 7. The weak closure algorithm by enumerating the sign of one variable in each step.
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The initial constraint set
y ≤ 24 −|y| + x ≤ 10 −s − |x| ≤ 36

−|s| − z ≤ 8 −z − y ≤ 84 s + y ≤ 80

Common constraints found by 3 closure algorithms

s − z ≤ 164 y + x ≤ 58 y − z ≤ 132

−z ≤ 108 x − |z| ≤ 94

AV strong closure

−|x| − z ≤ 86

x − z ≤ 112

WeakCloVia3Sign

−|x| − z ≤ 86

x − z ≤ 142

WeakCloVia1Sign

−|x| − z ≤ 108

x − z ≤ 142

Fig. 8. An example of applying 3 closure algorithms on the same initial constraint set.

Example 1. In Fig. 8, we apply the above 3 closure algorithms on the same initial set

of constraints. The AV strong closure finds x − z ≤ 112 while WeakCloVia3Sign()

and WeakCloVia1Sign() are less precise and can only find x − z ≤ 142. Moreover,

WeakCloVia1Sign() gives less precise result −|x| − z ≤ 108 than WeakCloVia3Sign()

which can find −|x| − z ≤ 86.

3.5 Other domain operations

Closure is a basic operator in the AVO domain. Most abstract operators over AV oc-

tagons can be obtained following similar ideas as those over octagons by replacing

strong closure with AV strong closure (if necessary). In practice, since our AV strong

closure is of exponential-time complexity, we use weak closure instead. When we use

weak closure, all the AVO domain operations can be O(n3) in the worst case. However,

we do not have a normal form for AV octagons when using weak closure, and most

domain operations are not guaranteed to be the best abstraction. E.g., for the inclusion

test, we have γAVO(M) ⊆ γAVO(N) ⇐⇒ M|•| ⊑DBM N when using AV strong closure.

If we use any of our weak closures, denoted as M|◦|, it holds that M|◦| ⊑DBM N =⇒

γAVO(M) ⊆ γAVO(N) but it may not hold that γAVO(M) ⊆ γAVO(N) =⇒ M|◦| ⊑DBM N.

For test transfer functions, first, constraints in the tests are abstracted into AV oc-

tagonal constraints, following similar ideas as abstracting arbitrary constraints into oc-

tagonal constraints [24]. Moreover, we employ AVO join operation to try to encode

disjunctive constraints in tests as conjunctive AV octagonal constraints. E.g., consider

the condition that holds at ① in Fig. 1, i.e., |dx| , 0 ∨ |dy| , 0. The disequality |dx| , 0

which itself can be rewritten as a disjunction dx < 0 ∨ −dx < 0, can be encoded as

−|dx| < 0 by the AVO join operation. Then, −|dx| < 0 ∨ −|dy| < 0 can be further

encoded as −|dx| − |dy| < 0 by the AVO join operation. Hence, even when the original

condition test does not involve AV, AV may be introduced during constraint abstraction.

After the process of constraint abstraction, the AV octagonal constraints derived from

the tests are then used to tighten the current AVO abstract element.

For assignment transfer functions, we allow the right-hand side expression to in-

volve AV, such as x := ±|y| ± c. However, we can simply transform assignments

with AV into conditional branches with assignments that do not involve AV. E.g., the

assignment x := a ∗ |e| + c where a, e, c are expressions, can be transformed into:

if (e ≥ 0) then x := a ∗ e + c; else x := −a ∗ e + c; fi.

11



3.6 Supporting strict inequalities

In practice, strict inequalities (such as |x| + |y| > 0) may appear in branch conditions of

a program. To this end, we extend the AVO domain to support strict inequalities. In the

domain representation, we maintain a boolean matrix S of the same size as the DBM

M that encodes an AV octagon, such that

S i j
def
=

{

0 if V ′′
j
− V ′′

i
< Mi j

1 if V ′′
j
− V ′′

i
≤ Mi j

We define the order over pairs (m, s)’s where m ∈ I and s ∈ {0, 1}, as

(m, s) ⊑ (m′, s′)
def
⇐⇒ (m < m′) ∨ (m = m′ ∧ s ≤ s′))

Note that ⊑ is a total order on (I, bool), i.e., at least one of (m, s) ⊑ (m′, s′) and (m′, s′) ⊑
(m, s) holds. Let DBMS denote the set of all pairs of DBMs and boolean matrices.

A lattice over DBMS can be obtained by “lifting” the operations from DBM and the

boolean matrices element-wise. In addition, we define the addition over DBMS as:

(Mik, S ik) + (Mk j, S k j)
def
= (Mik + Mk j, S ik&S k j)

Then in the abstract domain supporting strict inequalities, all domain operations

can be adapted from the domain that supports only non-strict inequalities by replacing

operations over DBM with operations over DBMS. E.g., in the AVO domain supporting

strict inequalities, the emptiness test is to check whether it holds that ∃i,Mii < 0∨(S ii =

0 ∧ Mii = 0). Whereas, in the regular AVO domain, we only need to check whether it

holds that ∃i,Mii < 0.

4 Implementation and experimental results

We have implemented the AVO domain in the APRON abstract domain library [19].

4.1 Experimental comparison of three closure algorithms

We first compare in precision and efficiency the three closure algorithms proposed in

Sect.3.4 for AV octagons. We conduct our experiments on randomly generated DBMs

(of dimension 4n but partially initialized) over different numbers of variables (n). The

experimental result is shown in Fig .9. “♯cases” gives the number of test cases for

each such number n. “str” denotes the AV strong closure algorithm, “wk3s” denotes

WeakCloVia3Sign(), and “wk1s” denotes WeakCloVia1Sign(). “%same results” shows

the percentage of test cases where the two compared algorithms give the same result-

ing DBMs. The column “%different elements” presents the average percentage of the

number of different elements in the resulting DBMs to the size of the DBMs, when the

two compared algorithms produce different resulting DBMs.

From the result, we can see that WeakCloVia1Sign() is much more efficient than the

other two closure algorithms. For those test cases where the two compared algorithms

produce different resulting DBMs, the percentage of the number of different elements

12



average time %same results %different elements

♯vars ♯cases
str wk3s wk1s

str= str= wk3s= str, str, wk3s ,

wk3s wk1s wk1s wk3s wk1s wk1s

4 10000 2.4ms 7ms 0.19ms 94% 94% 99% 0.94% 0.79% 0.78%

8 1000 380ms 160ms 20ms 36% 28% 74% 0.83% 1.5% 0.26%

10 1000 5.7s 410ms 53ms 10% 5.3% 51% 1.1% 2.1% 0.18%

Fig. 9. An experimental comparison of 3 closure algorithms on randomly generated DBMs.

in the resulting DBMs is very low. In other words, the two different resulting DBMs are

mostly the same except for very few elements. During our experiments, at the moment,

we found no test case for which weak closures give +∞ for an element where the strong

closure gives a finite constant in the resulting DBMs.

4.2 Experiments on NECLA division-by-zero benchmarks

We have conducted experiments using the Interproc [20] static analyzer on the NECLA

Benchmarks: Division-by-zero False Alarms [14]. The benchmark set is extracted from

source code of several open-source projects. These programs illustrate commonly used

techniques that programmers use to protect a division-by-zero (e.g., by using the AV

function), and are challenging for analysis since they involve non-convex constraints

(e.g., disjunctions, constraints involving the AV function) and strict inequalities.

Fig. 10 shows the comparison of invariants inferred by AVO (using the weak closure

algorithm WeakCloVia1Sign) with those by the octagon domain [24] and by the donut

domain [14] (the main idea of which is to represent concrete object by the so-called

hole that is the set minus of two convex sets). The motiv program corresponds to the

motivating example (shown in Fig. 1) with its two branches. The column “WCfS” gives

the weakest condition to prove the absence of the division-by-zero error in the program.

The results given in the column “donut domain” are taken from [14] (using boxes to

encode holes). From Fig. 10, we can see that the octagon domain fails to prove the

absence of division-by-zero error for all programs since it cannot express non-convex

properties nor strict inequalities. Our AVO domain succeeds to prove the absence of the

division-by-zero errors for all programs including xcor on which the donut domain fails

(due to its default heuristic for choosing holes).

program WCfS

donut domain octagons AV octagons

invariants
♯false

invariants
♯false

invariants
♯false

alarms alarms alarms

motiv(if) dy , 0 dy , 0 0 dy ∈ [−∞,+∞] 1 |dy| > 0 0

motiv(else) dx , 0 dx , 0 0 dx ∈ [−∞,+∞] 1 |dx| > 0 0

gpc den , 0 den < [−0.1, 0.1] 0 den ∈ [−∞,+∞] 1 |den| > 0.1 0

goc d , 0 d < [−0.09, 0.09] 0 d ∈ [−∞,+∞] 1 |d| ≥ 0.1 0

x2 Dx , 0 Dx , 0 0 Dx ∈ [−∞,+∞] 1 |Dx| > 0 0

xcor usemax , 0 usemax < [1, 10] 1 usemax ≥ 0 1 usemax > 0 0

Fig. 10. Experimental results on NECLA division-by-zero benchmarks.
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code id
size

octagons AV octagons result comparison

time (s) ♯alarm ♯iter. time (s) ♯alarm ♯iter.
♯ alarm time ♯ iter.

(KLOC) reduction increase reduction

P1 154 6216 881 110 7687 881 110 0 23.66% 0

P2 186 6460 1114 116 7854 1114 115 0 21.58% 1

P3 103 1112 403 25 2123 403 25 0 90.92% 0

P4 493 17195 4912 158 38180 4912 158 0 122.04% 0

P5 661 18949 7075 105 43660 7070 104 5 130.41% 1

P6 616 34639 8192 118 70541 8180 108 12 103.65% 10

P7 2428 99853 10980 317 217506 10959 317 21 117.83% 0

P8 3 517 0 19 581 0 19 0 12.38% 0

P9 18 534 16 27 670 16 27 0 25.47% 0

P10 26 1065 102 42 1133 102 42 0 6.38% 0

Fig. 11. Experimental results using ASTRÉE on large embedded C codes.

4.3 Experiments on ASTRÉE

We have also evaluated the scalability of AVO when analyzing large realistic programs,

by integrating it into the ASTRÉE analyzer [4] and analyzing its dedicated benchmarks:

a set of large embedded industrial C codes performing much integer and float compu-

tation. ASTRÉE contains many abstract domains, including octagons and disjunctive

domains (such as trace partitioning and decision diagrams) and domains specialized for

the analyzed benchmarks; It is carefully tuned to give few alarms and remain efficient.

Hence, we did not expect the AVO domain to bring a notable increase in precision

(by simply replacing octagons with AVO, a single program featured a reduction of 4

alarms). For a more fair comparison, we evaluated how AVO could replace, by its natu-

ral ability to represent disjunctions, the dedicated disjunctive domains in ASTRÉE. We

disabled these disjunctive domains and ran analyses with the regular octagon domain

and with AVO. Following the experiments from Fig. 9, we chose to use the more scal-

able weak closure WeakCloVia1Sign for these large analyses. The results are shown

in Fig. 11. The last columns give the number of alarms removed by using AVO and

the increase in analysis time. We observe three instances of alarm reductions and an

increase of up to +130% of analysis time at worst. Additionally, the majority of codes

are composed of a single large synchronous loop running 106 iterations, and we provide

for those the number of abstract iterations needed to reach a fixpoint. Our experiments

show that using the more precise AVO domain can slightly increase the convergence

rate and never decrease it. Overall, our results show that, although it cannot compete

with domains specifically tailored to analyze a code family, AVO nevertheless brings

modest improvements in precision, and keeps the analysis time in the same order of

magnitude.

5 Related work

In abstract interpretation, most existing numerical abstract domains can only express

convex sets, such as the classical convex polyhedra domain [11] together with all its
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subdomains (including octagons [24], two variables per inequality (TVPI) [27], tem-

plate polyhedra [26], subpolyhedra [21], etc.)

Until now, only a few numerical abstract domains natively allow representing non-

convex sets, e.g., congruences [15], max-plus polyhedra [2], interval linear abstract

domains [5, 6] and quadratic templates [1]. To enhance numerical abstract domain with

non-convex expressiveness, some work makes use of BDDs [17, 18] while some makes

use of mathematical functions that could express non-convex properties such as max

[16] and the absolute value function [7]. The donut domain [14] utilizes the set differ-

ence of two convex sets to express non-convex properties. Recently, [13] studies the

impact of using non-lattice abstract domains (including non-convex numerical abstract

domains) and proposes general remedies for precision and termination.

The AVO domain that we introduce in this paper is closest to the abstract domain of

linear AV inequalities [7] which can infer general linear AV constraints but is of expo-

nential complexity. The AVO domain enjoys abstract operators in cubic time complexity

and quadratic memory complexity. Moreover, the AVO domain supports strict inequali-

ties. [25] presents an abstract domain extending DBMs (encoding potential constraints)

with disequality constraints of the form “x , y” or “x , 0”, rather than extending the

octagon domain. Moreover, disequalities are different from strict inequalities in that a

disequality is a disjunction of two strict inequalities, while in this paper we consider the

conjunction of strict inequalities. The pentagon domain [22] also chooses on purpose to

perform the closure in an incomplete (but sound) way, to improve the efficiency in prac-

tice at the cost of precision. Our purpose to have weak closure in this paper is similar,

but to low down the complexity due to absolute value.

6 Conclusion

In this paper, we present an analysis to discover octagonal (or UTVPI) relations among

the values and the absolute values of variables of a program (±X ± Y ≤ c,±X ± |Y | ≤

d,±|X| ± |Y | ≤ e) , which generalizes the octagon abstract domain (±X ± Y ≤ c) [24].

The analysis explores the absolute value function as a mean to describe non-convex

behaviors in the program. First, we present a representation to encode AV octagons via

DBMs. Then we propose 3 closure algorithms for AV octagons to offer different time

precision tradeoffs. On this basis, we provide algorithms for domain operations such

that the new domain still enjoys the cubic time complexity, as octagons. In addition, we

present an approach to extend AVO to support strict inequalities over rational or real-

valued variables, which also fits for octagons. Experimental results are encouraging on

benchmark programs and large embedded C programs: AVO is scalable and able to find

useful non-convex invariants, without too much overhead compared with octagons.

It remains for future work to consider the domain of AV integer octagonal con-

straints (i.e., AV octagonal constraints with integers as constant terms), wherein the key

is to have a tight closure algorithm for AV integer octagonal constraints.
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