An open framework for human-like autonomous driving using Inverse Reinforcement Learning

Abstract : —Research on autonomous car driving and advanced driving assistance systems has come to occupy a very significant place in robotics research. On the other hand, there are significant entry barriers (eg cost, legislation, logistics) that make it very difficult for small research groups and individual researchers to have access to a real autonomous vehicle for their experiments. This paper proposes to leverage an existing driving simulator (Torcs) by developing a ROS communication bridge for it. We use is as the basis for an experimental framework for the development and evaluation of Human-like autonomous driving based on Inverse Reinforce Learning (IRL). Based on an extensible and open architecture, this framework provides efficient GPU-based implementations of state-of the art IRL algorithms, as well as two challenging test environments and a set of evaluation metrics as a first step toward a benchmark.
Type de document :
Communication dans un congrès
IEEE Vehicle Power and Propulsion Conference, 2014, Coimbra, Portugal
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01105271
Contributeur : Dizan Vasquez <>
Soumis le : mardi 20 janvier 2015 - 10:06:33
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 07:40:37

Fichier

vppc14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01105271, version 1

Collections

Citation

Dizan Vasquez, Yufeng Yu, Suryansh Kumar, Christian Laugier. An open framework for human-like autonomous driving using Inverse Reinforcement Learning. IEEE Vehicle Power and Propulsion Conference, 2014, Coimbra, Portugal. 〈hal-01105271〉

Partager

Métriques

Consultations de la notice

669

Téléchargements de fichiers

1321