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Separation bounds for polynomial systems

Ioannis Z. Emiris∗ Bernard Mourrain† Elias P. Tsigaridas‡

February 5, 2017

Abstract

We rely on aggregate separation bounds for univariate polynomials to introduce novel
bounds for the isolated roots of zero-dimensional, as well as positive-dimensional and
overdetermined, polynomial systems. We exploit the structure of the given system, as well
as bounds on the height of the sparse (or toric) resultant, by means of mixed volume, thus
establishing adaptive bounds. Our bounds improve Canny’s gap theorem [9]. Moreover,
they exploit sparseness. Our lower bounds are in general comparable to the lower bounds
on the absolute value of the root coordinates by Brownawell and Yap [6] which, however,
require the strong hypothesis of the existence of a zero-dimensional projection. In an effort
to evaluate the quality of our bounds, we present polynomial systems whose root separation
is asymptotically not far from our bounds.

We apply our bounds to three important problems. First, we use them to estimate the
bitsize of the eigenvalues and eigenvectors of an integer matrix; thus we provide yet another
proof that the problem has polynomial bit complexity. Second, we bound the value of a
positive polynomial over the simplex; we improve by at least one order of magnitude upon
all existing bounds. Finally, we asymptotically bound the number of steps of any purely
subdivision-based algorithm that isolates all real roots of a polynomial system.
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mial, subdivision algorithm
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1 Introduction

A fundamental question in exact as well as numeric algebraic computing is to find all common
roots, in some representation, of a system of multivariate polynomials. A major issue is to
derive tight bounds on the theoretical and the practical complexity of various solvers. These
typically depend on separation bounds, i.e. the minimum distance between any two, possibly
complex, roots of the system. This is particularly true for algorithms based on subdivision
techniques and, more generally, for any numerical solver seeking to certify its output.

Davenport [14] was first to introduce aggregate separation bounds for the real roots of a
univariate polynomial, which depend on Mahler’s measure, e.g. [27]. Johnson [23] and Mignotte
[28] loosened the hypothesis on the bounds and extended them to complex roots.

For algebraic systems, a fundamental result is Canny’s Gap theorem [9] on the separa-
tion bound for square zero-dimensional systems, see Theorem 12. Yap [37] relaxed the zero-
dimensional requirement by requiring it holds only on the affine part of the variety. A more
recent lower bound on the absolute value of the root coordinates [6] applies to those coordinates
for which the variety’s projection has dimension 0, and does not require the system to be square.
For arithmetic bounds applied to the Nullstellensatz, we refer to [25].

There has been vivid recent interest for a closely related problem, encountered in real
optimization. Basu, Leroy, and Roy [2] and, more recently, Jeronimo and Perrucci [22] obtained
lower bounds on the minimum value of a positive polynomial over the standard simplex. For
this, they compute lower bounds on the roots of a polynomial system formed by the polynomial
and all its partial derivatives. This problem is also treated in [6].

Separation bounds are important for estimating the complexity of subdivision-based algo-
rithms for solving polynomial systems, that depend on exclusion/inclusion predicates or root
counting techniques, e.g. [7, 21, 26, 30, 36].

Our contribution. We improve the state of the art by new worst-case (aggregate) separation
bounds for the isolated roots of polynomial systems which, moreover, are not necessarily
zero-dimensional. The bounds are computed as a function of the number of variables, the
norm of the polynomials, and a bound on the number of roots of well-constrained systems.
For completeness, we offer precise statements at the risk of being technical. For bounding the
number of complex roots of a well-constrained polynomial system, we employ mixed volume
(Theorem 4) which is the sharpest general bound available today, and allows us to exploit the
structure implicit in many applications. Any future better bound on the number of roots can be
used to improve our results. The main ingredients of our proof are resultants, including bounds
on their height [34]. For other recent bound for the height of the resultant based on arithmetic
Nullstellensatz we refer the reader to [13].

Our approach extends the known separation bound for single polynomial equations to
zero-dimensional systems; we call our bound DMMn, after Davenport-Mahler-Mignotte. This
improves upon Canny’s Gap theorem by a factor O(dn−1), where n is the number of variables
and d bounds the polynomial degrees. Our bounds are within a factor of O(2n) from optimal
for certain systems constructed in the sequel. Hence, they are tight for n small (or constant)
compared to the other parameters. Our bounds are comparable to those in [6] on the absolute
value of root coordinates, but they constitute an improvement when expressed using mixed
volumes. It seems nontrivial to apply sparse elimination theory with the approach of [6]. More
importantly, our result is extended to positive-dimensional systems, and obtain results compa-
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rable to those by Brownawell and Yap [6] which, however, require a very strong hypothesis,
namely the existence of a zero-dimensional projection.

We illustrate our bounds on computing the eigenvalues and eigenvectors of an integer
matrix, and improve upon Canny’s bound by a factor exponential in matrix dimension. Thanks
to mixed volume, we derive a bound polynomial in the logarithm of the input size, hence
offering a new proof to Bareiss’ result [1] that the problem is of polynomial bit complexity.

We examine a key question in optimization, namely to bound the minimum of a positive
polynomial over the standard simplex. Our approach significantly improves upon the three
best known bounds [2, 6, 22], by at least one order of magnitude in almost all cases.

Finally, we upper bound the number of steps for any pure subdivision-based algorithm
having linear convergence and using a real-root counter in a box to isolate the real roots of a
system in a given domain.

The polynomial systems in practice have a small number of real roots and all roots, real
and complex, are well separated on the average; it is challenging to derive an average-case
DMMn. Another open question is to express the positive-dimensional bound with respect to the
dimension of the excess component.

This paper extends the work in [17] by providing: a new version of the DMM bound in
dimension 1, complete detailed proofs of all statements, including a new approach for the proof
of Theorem 18, and a new Section 4.1, including an example which yields a single exponential
lower bound for the separation between roots of a polynomial system, thus quantifying the
tightness of our upper bound in the worst case. In addition, this paper introduces separation
bounds for, possibly positive-dimensional, overdetermined polynomial systems.

A preliminary version of a large part of this paper’s results appeared as [17].

Paper structure. We next introduce notation. In Section 2 we survey bounds for univariate
polynomials. Section 3 derives and proves the multivariate version of our separation bound
as Main Theorem 5. An evaluation of its quality and comparisons to existing bounds are in
Section 4, whereas the generalization to positive-dimensional systems is given in Section 5. In
Section 6, we present the bounds for the overdetermined polynomial systems. The applications
of our bounds are in Section 7.

Notation. O, resp. OB, means bit, resp. arithmetic, complexity and ÕB, resp. Õ, means we are
ignoring logarithmic factors. For a polynomial f ∈ Z[x1, . . . , xn], where n ≥ 1, dg( f ) denotes
its total degree, while dgxi

( f ) denotes its degree with respect to xi. By L ( f ) we denote the
maximum bitsize of the coefficients of f (including a bit for the sign), i.e., the number of bits to
write them as binary integers. For a ∈ (Q, L (a) ≥ 1 is the maximum bitsize of the numerator
and denominator.

For a polynomial f (x) = ad ∏d
i=1(x − zi) ∈ C[x], with ad 6= 0, its Mahler measure is

M ( f ) := |ad|∏d
i=1 max{1, |zi|}. If we further assume that f ∈ Z[x] and L ( f ) = τ, then

M ( f ) ≤ ‖ f ‖2 ≤
√

d + 1‖ f ‖∞ ≤ 2τ
√

d + 1, e.g. [27, 37]. Let us denote by lc( f ) and tc( f ) the
leading and the trailing nonzero coefficients of f , respectively.

Let ∆γi( f ), or ∆i, denote the minimum distance between a root γi of f and any other
root. Specifically, this is the Euclidean distance of γi to its closest root, denoted by γci . Hence
∆i = |γi − γci | and γi 6= γci . We call this quantity the local separation. We also use the notation
∆(γi, f ) to indicate that we consider the local separation of γi as a root of f . If the polynomial is
clear from the context, then may also use ∆(γi).
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Let ∆( f ) = mini ∆i( f ), or sep( f ), denote the separation bound, that is the minimum distance
between all roots of f . Let sep(Σ) denote the separation bound for a well-constrained polynomial
system (Σ).

In the sequel we make use of srr( f , f ′), which denotes the r-th subresultant coefficient of the
subresultant sequence of f and its derivative f

′
. Additional notation, needed in the multivariate

case, is presented in Section 3.1.

2 Univariate separation bounds

This section considers a real univariate polynomial f , not necessarily square-free, of degree d,
and its complex roots αj in ascending magnitude.

There are various variants of aggregate separation bounds for the univariate case. We refer
the reader to [35, 27, 14, 15, 23] and references therein. The next theorem gathers several useful
versions of upper and separation bounds that exploit the product of differences of the form
∆i = |γi − γci |.

The bound in Eq. (1) is the well known Cauchy bound on the roots. The second bound,
Eq. (2), is from [18, Thm. 11]. A bound that exploits the multiplicities of the roots first appeared
in [24]. We modify the proof to derive a version valid for polynomials with real coefficients;
it appears in Eq. (3). The bound of Eq. (4) is derived from [33] after we modified the proof to
make it valid for polynomials with real coefficients. Separation bounds valid for polynomials
with real coefficients are useful to perform computations with polynomials having algebraic
numbers as coefficients, or even transcendental numbers.

Theorem 1 (DMM1). Let f ∈ C[x] be such that lc( f ) = ad and dg( f ) = d, not necessarily square-
free; let fr be its square-free part, where dg( fr) = r ≤ d and lc( fr) = br. Assume r ≥ 2 to
avoid trivial cases. Let the distinct roots of f be α1, . . . , αr and let s1, . . . , sr be the corresponding
multiplicities.

For any nonzero root αk, it holds

|tc( f )|
2 ‖ f ‖∞

≤ |αk| ≤ 2
‖ f ‖∞

|lc( f )| . (1)

Let K be any subset of {1, . . . , r} of cardinality |K|. It holds

∏
k∈K

∆k ≥ 2−2d(lg d+1)|ad|−1M ( f )−2(r−1) |srd−r( f , f ′)| , (2)

where srd−r( f , f ′) is the (d− r)-th subresultant coefficient of the subresultant sequence of f
and its derivative f

′
. If we take the multiplicities of the roots into account, then we have the

following bound

∏
k∈K

∆mk
k ≥ 2−(r+2) d |ad|d ‖ f ‖−d

∞ ‖ fr‖−d
∞ M ( f )1−r |Res( f , f

′
r)|

≥ 2−6d2 lg d ‖ f ‖1−2d−r
∞ |ad|2d |br|−d |Res( f , f

′
r)| ,

(3)

where mk ≤ sk, f
′
r is the derivative of fr, and Res stands for the resultant wrt x. Finally, if we are

only interested in the separation bound, then the following, slightly tighter, inequality holds

∆( f ) ≥ 2−4d−4d lg d ‖ f ‖−d+ v
2+

1
2

∞

√
|t| , (4)
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where t is the trailing (non-zero) coefficient of the polynomial Res( f ′(x), y− f (x)) ∈ IR[y] and
v is its order.

Corollary 2 (DMM1 in Z). With the above notation, if f has integer coefficients, recall thatL ( f ) =
τ. In this case Eq. (1) simplifies to

2−τ−1 ≤ 1
2 ‖ f ‖∞

≤ |αk| ≤ 2 ‖ f ‖∞ ≤ 2τ , (5)

following Eq. (2) we get

∏
k∈K

∆k ≥ 2−4d lg d ‖ f ‖−2d+2
2 ⇒ − lg ∏

k∈K
∆k ≤ 8 d lg d + 4 dτ ,

while following Eq. (3) we obtain the bound

∏
k∈K

∆mk
k ≥ (2)−6d2 ‖ f ‖1−3d

∞ ⇒ − ∑
k∈K

mk lg ∆k ≤ 6 d2 + 3 dτ .

Proof (of Thm 1): We use the notation lc( f ) = ad and lc( fr) = br.
The upper and lower bound on the roots that appears in (1) is (a slightly modified version

of) the well known Cauchy bound and its proof could be found in many textbooks. e.g., [37, 29].
The bound of Eq. (2) is deduced from [18, Thm. 11]:

∏
k∈K

∆k ≥ (r/
√

3)−|K| r−r 3−min{d,2d−2r}/3M ( f )−2(r−1) |ad|−1|srd−r( f , f ′)|

≥ d−2d 3−|K|/2−min{d,2d−2r}/3 |ad|−1M ( f )−2(r−1) |srd−r( f , f ′)|

≥ 2−2dd−2d|ad|−1M ( f )−2(r−1) |srd−r( f , f ′)|

since |K| ≤ r ≤ d and 3−1/2 > 2−2.
For the bound of Eq. (3), first we consider the case where K = {1, . . . , r}. The square-free

factorization of f is f = ∏m
i=1 qi

i, where dg(qi) = di, ∑m
i=1 di = r, ∑m

i=1 i di = d, qi is the product
of the irreducible factors of multiplicity i of f and fr = ∏m

i=1 qi is the square-free part of f . The
leading coefficient of qi is qi. It holds lc( f ) = ad = ∏i q

i
i, and lc( fr) = br = ∏i qi.

Let α
(i)
j be the roots of the qi, where 1 ≤ j ≤ di and 1 ≤ i ≤ m. Fix a root α

(i)
j and let β be

the root of fr that is closest. We use ∆(α(i)
j ) to denote the local separation of α

(i)
j as a root f or

fr, that is ∆(α(i)
j ) = ∆(α(i)

j , fr) = ∆(α(i)
j , f ). We also use w := β− α

(i)
j and by f [k]r we denote the

k-th derivative of fr.
We consider the Taylor expansion of fr and we have

0 = fr(β) = fr(α
(i)
j ) +

r

∑
k=1

wk

k!
f [k]r (α

(i)
j ) = w

(
f [1]r (α

(i)
j ) + w

r

∑
k=2

wk−2

k!
f [k]r (α

(i)
j )

)
.

It holds ∆(α(i)
j ) = |α(i)

j − β| = |w|. As α
(i)
j 6= β we have w 6= 0 and so

| f [1]r (α
(i)
j )| ≤ ∆(α(i)

j )
r

∑
k=2

|w|k−2

k!
| f [k]r (α

(i)
j )| . (6)

We have

| f [k]r (α
(i)
j )| ≤

r

∑
l=k

l!
(l − k)!

‖ fr‖∞ max{1, |α(i)
j |}

r−k. (7)
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Under the assumption |w| = ∆(α(i)
j ) ≤ 1 and using the previous bound the summation at the

right-hand side of Eq. (6) becomes

r

∑
k=2

|w|k−2

k!
| f [k]r (α

(i)
j )| ≤

r

∑
k=2

r

∑
l=k

(
l
k

)
‖ fr‖∞ max{1, |α(i)

j |}
r−2 ≤ 2r+1 ‖ fr‖∞ max{1, |α(i)

j |}
r−1.

Using this bound and Eq. (6) we get

∆(α(i)
j ) ≥

| f [1]r (α
(i)
j )|

2r+1 ‖ fr‖∞ max{1, |α(i)
j |}r−1

≥ 2−r−1 ‖ fr‖−1
∞ max{1, |α(i)

j |}
1−r | f [1]r (α

(i)
j )| . (8)

If |w| = ∆(α(i)
j ) > 1 then the previous inequality also holds as the right-hand side is less

than one. This is a consequence of Eq. (7), which yields

| f [1]r (α
(i)
j )| ≤

r

∑
l=1

l‖ fr‖∞ max{1, |α(i)
j |}

r−1

≤ 1
2

r(r + 1) ‖ fr‖∞ max{1, |α(i)
j |}

r−1 ≤ 2r+1 ‖ fr‖∞ max{1, |α(i)
j |}

r−1

since r(r + 1) ≤ 2r+2 for r ≥ 0.
Recall thatM (qi) = lc(qi) ∏di

j=1 max{1, |α(i)
j |}. We take into account the multiplicity of the

root, i, and we consider the product over all the roots of qi; then using Eq. (8) we get

di

∏
j=1

∆(α(i)
j )i ≥ 2−i di(r+1) ‖ fr‖−i di

∞

(
M
(
qi

i
)

|lc(qi)i|

)1−r di

∏
j=1
| f [1]r (α

(i)
j )|i .

Next we consider the product over all the roots of f ,

m

∏
i=1

di

∏
j=1

∆(α(i)
j )i ≥ 2−(r+1) ∑i i di ‖ fr‖−∑i i di

∞

(
m

∏
i=1

M
(
qi

i
)

|lc(qi)i|

)1−r m

∏
i=1

di

∏
j=1
| f [1]r (α

(i)
j )|i

m

∏
i=1

di

∏
j=1

∆(α(i)
j )i ≥ 2−(r+1) d ‖ fr‖−d

∞ M ( f )1−r |ad|r−1
m

∏
i=1

di

∏
j=1
| f [1]r (α

(i)
j )|i ,

where we used lc( f ) = ad = ∏m
i=1 q

i
i and the multiplicative property of the Mahler measure, ie

M ( f ) = ∏m
i=1M (qi)

i.
To bound ∏i ∏j| f

[1]
r (α

(i)
j )|i we exploit basic properties of the resultant, that is

Res( f , f [1]r ) = (lc( f ))r−1 ∏
α: f (α)=0

f [1]r (α) = ar−1
d

m

∏
i=1

di

∏
j=1

( f [1]r (α
(i)
j ))i .

Putting the various inequalities together we obtain the bound

r

∏
i=1

∆si
i =

m

∏
i=1

di

∏
j=1

∆(α(i)
j )i ≥ 2−(r+1) d ‖ fr‖−d

∞ M ( f )1−r |Res( f , f [1]r )| . (9)

To cover the case where the product of the local separations does not involve all roots, we
bound the missing factors and we modify the bound of Eq. (9) accordingly.
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Using Cauchy’s upper bound for the roots, Eq. (1), for any root α
(i)
j , we get

∆(α(i)
j ) = |α(i)

j − β| ≤ |α(i)
j |+ |β| ≤ 4

‖ f ‖∞

|ad|
, (10)

where β is the root of f closest to α
(i)
j . Notice that the upper bound of the previous inequality is

greater than 1, since ‖ f ‖∞ = maxk|ak|. Let K be any subset of {1, . . . , r}, and 0 ≤ mk ≤ sk. Then,
using repeatedly Eq. (10), we get

∏
k∈K

∆(αk)
mk ≤ ∏

k∈K

(
4
‖ f ‖∞

|ad|

)mk

≤
(

4
‖ f ‖∞

|ad|

)∑k mk

≤
(

4
‖ f ‖∞

|ad|

)d

,

which leads to

r

∏
i=1

∆si
i = ∏

k∈K
∆mk

k ∏
k 6∈K

∆mk
k ≤ ∏

k∈K
∆mk

k

(
4
‖ f ‖∞

|ad|

)d

⇒ ∏
k∈K

∆mk
k ≥ 4−d |ad|d ‖ f ‖−d

∞

r

∏
i=1

∆si
i . (11)

By combining Eq. (11) and Eq. (9) we derive

∏
k∈K

∆mk
k ≥ 4−d 2−(r+1) d |ad|d ‖ f ‖−d

∞ ‖ fr‖−d
∞ M ( f )1−r |Res( f , f [1]r )| .

Using basic properties of the norms and Mahler’s measure we have

‖ fr‖∞ ≤ ‖ fr‖1 ≤ 2rM ( fr) ≤ 2r
∣∣∣∣ br

ad

∣∣∣∣M ( f ) ≤ 2r
∣∣∣∣ br

ad

∣∣∣∣ ‖ f ‖2 ≤ 2r
∣∣∣∣ br

ad

∣∣∣∣ (2d)1/2‖ f ‖∞ ,

and so

∏
k∈K

∆mk
k ≥ 2−7d/2d−2rd− d

2 lg d |ad|2d

|br|d
‖ f ‖1−2d−r

∞ |Res( f , f
′
r)| ≥ 2−6d2 |ad|2d

|br|d
‖ f ‖1−2d−r

∞ |Res( f , f
′
r)| .

Separation bound. If we are only interested in the separation bound, that is the minimum of
all local separations, for our setting, we modify the proof of [33, Thm 4] to make it valid for
polynomials with real coefficients. For this we need to compute a lower bound on | f (γ)| where
γ is a root of f ′ such that f (γ) 6= 0. We use the resultant Res( f ′(x), y− f (x)) ∈ IR[y].

In the proof of [33, Thm 4] for deriving the lower bound on the separation bound, Eq. (19) is
the following inequality

d2 ‖ f ‖1 ∆( f )2 ≥ | f (γ)| ⇒ ∆( f ) ≥ d−1 (‖ f ‖−1
1 | f (γ)|)

1
2 ≥ (d−1‖ f ‖−1

∞ | f (γ)|)
1
2 ,

where γ is a root of the derivative of f such that f (γ) 6= 0. To lower bound this evaluation we
consider the resultant R = Res( f ′(x), y− f (x)) ∈ IR[y]. The roots of this univariate polynomial
are the evaluations of f at the roots of f ′.

Let f = ∑d
i=0 aixi and f ′ = ∑d−1

j=0 (j + 1)ajxj = ∑d−1
j=0 bjxj. It holds |bj| ≤ d|aj| ≤ d‖ f ‖∞, for

all j.
If we consider R as a multivariate polynomial, that is R ∈ Z[ai, bj][y], then its coefficients

are integers with magnitude ρ ≤ 22d+4d lg d, see (1) and [34].
Seeing R as a univariate polynomial in y, its coefficients, say ck for 0 ≤ k ≤ d− 1, are homo-

geneous polynomials in ai and bj of degree 2d− k− 1. More specifically, they are homogeneous
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polynomials in the coefficients ai of degree d− k− 1, and homogeneous in the coefficients bj of
degree d.

Let us take f̃ = f
‖ f ‖∞

and use R̃(y) = Res( f̃ ′, y − f̃ ). The coefficient c̃k of yk in R̃(y) is

‖ f ‖2d−k−1
∞ times the coefficient ck of yk in R(y).
Each term of c̃k is a product of an integer, of magnitude at most ρ, of coefficients of f̃ of total

degree d− k− 1, and of coefficients of f̃ of total degree d. Since ‖ f ‖∞ = 1, each term of c̃k has
magnitude ρ. There are less than (4d)2d terms, and so

|c̃k| ≤ (4d)2dρdd ≤ 26d+7d lg d

Hence,
‖R̃‖∞ ≤ 26d+7d lg d .

So the magnitude of the nonzero roots of R̃, f̃ (γ) is bounded from below as follows

| f̃ (γ)| ≥ |t̃|
2 ‖R̃‖∞

≥ 2−1 2−6d−7d lg d |t̃| ,

where t̃ is the trailing (non-zero) coefficient of R̃ of order v. By homogeneity, we have t̃ =

‖ f ‖−2d+v+1
∞ t and | f̃ (γ)| = ‖ f ‖−1

∞ | f (γ)| Putting all the inequalities together we obtain

∆( f ) ≥ (2−(6d+1)−(7d+1) lg d‖ f ‖−2d+v+1
∞ |t|) 1

2 ≥ 2−4d−4d lg d ‖ f ‖−d+ v
2+

1
2

∞

√
|t|.

�

Proof (of Cor. 2): (Integer polynomials.) If the polynomials have integer coefficients, then we
notice that the magnitude of the coefficients of the polynomials is at least 1 and we use the
inequalities |Res( f , f [1]r )| ≥ 1, M ( fr) ≤ M ( f ) ≤ ‖ f ‖2 and ‖ fr‖ ≤ 2d+τ to derive the three
bounds of the corollary. �

Remark 3. The constants in the bounds of Thm 1, and especially in Cor. 2 where the polynomials
have integer coefficients, are not the best possible. This is not important for the asymptotic
behavior of the bounds. However, this has some importance for some applications, e.g., for the
implementation of subdivision algorithms. We present such an application in Section 7.2.

We should also mention that if we know that the polynomial is square-free several simplifi-
cations are also possible.

Roughly, DMM1 provides a bound on all distances between consecutive roots of a polynomial.
This quantity is, asymptotically, almost equal to the separation. The interpretation is that not all
roots of a polynomial can be very close together or, quoting J.H. Davenport, “not all [distances
between the roots] could be bad”.

3 Multivariate separation bounds

This section generalizes DMM1 to zero-dimensional polynomial systems. For details on well-
constrained systems, see [11]. First, we present additional notation and some preliminary
observations to be used in deriving the bounds.
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3.1 Additional notation and preliminaries

We present some fundamental notions needed throughout the paper. The notation introduced
here complements notation introduced at the end of Introduction.

Let n > 1 be the number of variables. Let xe denote the monomial xe1
1 · · · x

en
n , with

e = (e1, . . . , en) ∈ Zn. In the multivariate case, the input is a system of Laurent polynomi-
als f1, . . . , fn ∈ K[x±1 , . . . , x±n ] = K[x, x−1], where K ⊂ C is the coefficient field. Since it is
possible to multiply Laurent polynomials by monomials without affecting their nonzero roots,
in the sequel we assume there are no negative exponents. Let the polynomials be

fi =
mi

∑
j=1

ci,jxai,j , 1 ≤ i ≤ n. (12)

Let {ai,1, . . . , ai,mi} ⊂ Zn be the support of fi; its Newton polytope Qi is the convex hull of the
support. Let MV(Q1, . . . , Qn) > 0 be the mixed volume of convex polytopes Q1, . . . , Qn ⊂ IRn.

We consider the well-constrained polynomial system

(Σ) : f1(x) = f2(x) = · · · = fn(x) = 0, (13)

where fi ∈ IR[x±1]. Initially we assume that the corresponding variety is zero-dimensional and
does not have any positive-dimensional component even at infinity. We consider the more
general case in Section 5. We are interested in the system’s toric roots, which lie in (C∗)n.

Let Q0 be the unit standard simplex. Let Mi = MV(Q0, . . . , Qi−1, Qi+1, . . . , Qn) and #Qi

denotes the number of lattice points in the closed polytope Qi. Wlog, assume dim ∑n
i=0 Qi = n

and dim ∑i∈I Qi ≥ j for any I ⊂ {0, . . . , n} with |I| = j, in other words the system is essential;
otherwise, its roots would be defined by a smaller system.

We consider the sparse (or toric) resultant of a system of n + 1 polynomial equations in n
variables, assuming we have fixed the n + 1 supports. It provides a condition on the coefficients
for the solvability of the system, and generalizes the classical resultant of n homogeneous
polynomials, by taking into account the supports of the polynomials. A standard way to
study a well-constrained system (Σ) through resultants is to add a linear polynomial f0 and
consider the u−resultant [16] of the overconstrained system; the latter is denoted by (Σ0).
The overconstrained system has Newton polytopes Q0, Q1, . . . , Qn. The following well-known
Theorem 4 relates the number of isolated toric solutions of a polynomial system with the mixed
volume. We commonly refer to it as the Bernstein’s bound, or as the BKK bound (Bernstein,
Khovanskii, and Kushnirenko).

Theorem 4. [4, 11, 19] For f1, . . . fn ∈ C[x, x−1] with Newton polytopes Q1, . . . , Qn, the number
of common isolated solutions in (C∗)n, multiplicities counted, does not exceed MV(Q1, . . ., Qn),
independently of the corresponding variety’s dimension.

Let D be the number of roots ∈ (C∗)n of (Σ), multiplicities counted, so D ≤ M0. Let
B = (n− 1) (D

2 ), and let dg( fi) = di ≤ d. For fi ∈ Z[x±1], let L ( fi) = τi ≤ τ, 1 ≤ i ≤ n. Let
vol(·) stand for Euclidean volume, and #Qi for the number of lattice points in Qi; the inequality
connecting #Qi and polytope volume in Table 1 is in [5]. Table 1 summarizes some important
notation and states certain immediate properties. We provide straightforward upper bounds
for the various quantities using the total degrees of the input polynomials.
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D ≤ M0 ≤
n

∏
i=1

di ≤ dn, B ≤ nD2 ≤ n
n

∏
i=1

d2
i ≤ nd2n,

Mi ≤ ∏
1≤j≤n

j 6=i

dj = Di,
n

∑
i=1

Mi ≤
n

∑
i=1

Di ≤ ndn−1,

#Qi ≤ n! vol(Qi) + n ≤ dn
i + n ≤ 2dn

i ,

A =
n

∏
i=1

√
Mi 2Mi ≤ 2ndn−1+ n2−n

2 lg d,

C =
n

∏
i=1
‖ fi‖Mi

∞ ≤ 2τ ∑n
i=1 Mi ≤ 2nτdn−1

,

h ≤ (n + 1)D$ ≤ (n + 1)dn
2ndn−1

dn2dn−1
,

$ =
n

∏
i=1

(#Qi)
Mi ≤ 2∑n

i=1 Di
n

∏
i=1

dnDi
i ≤ 2ndn−1

dn2dn−1
.

Table 1. Notation and inequalities needed for DMMn.

Following the technique of u-resultant, we add an equation to (Σ) to obtain the system:

(Σ0) : f0(x) = f1(x) = · · · = fn(x) = 0, (14)

where
f0 = u + r1x1 + r2x2 + · · ·+ rnxn, (15)

r1, . . . , rn ∈ Z to be defined in the sequel, and u is a new parameter. We consider the u-
resultant U of (Σ0) that eliminates x. It is a univariate polynomial in u, with coefficients that are
homogeneous polynomials in the coefficients of (Σ0):

U(u) = · · ·+ $k uk rD−k
k cM1

1,k cM2
2,k · · · c

Mn
n,k + . . . , (16)

where $k ∈ Z, c
Mj
j,k denotes a monomial in the coefficients of f j with total degree Mj, and rD−k

k
denotes a monomial in the coefficients of f0 of total degree D− k. The degree of U, with respect
to u, is D and corresponds to the number of solutions of the system. It is nonzero because we
have assumed that the system has only isolated solutions, even at infinity. It holds that∣∣∣cM1

1,k cM2
2,k . . . cMn

n,k

∣∣∣ ≤ C =
n

∏
i=1
‖ fi‖Mi

∞ .

The notation | · | denotes the absolute value. We use Ur to denote the square-free part of U.
Finally, U1 denotes the specialized u-resultant where r1 = −1 and ri = 0 for i 6= 1.

3.2 The DMMn bound

In the sequel we present aggregate bounds that consider all the distinct roots of (Σ) by exploiting
the system (Σ0). As in the univariate case, Theorem 1, we could consider any subset of the roots.
However, we choose to omit this case to simplify the presentation. For a root γj, γcj is the root
closest to it, under the Euclidean metric. Similarly to the univariate case we use the notation
∆j = ‖γj − γcj‖2.
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Main Theorem 5 (DMMn). Consider the zero-dimensional polynomial system (Σ) in (13). We
assume that the corresponding variety does not contain any positive-dimensional component,
even at infinity. Let D be the number of solutions in (C∗)n, multiplicity counted, and let the
distinct roots be γ1, γ2, . . . , γ`. Then(

2D+3 n$ C
lc(U1)

)D

≥ ∏
1≤j≤`

∆j ≥ 22−2`−4D lg D(hC)−2(`−1)B−2(n−1)(`−1)D |srk(U)| , (17)

When we take into account the multiplicities of the roots, mi, then we have the following bound(
2D+3 n$ C
lc(U1)

)D

≥ ∏
1≤j≤`

∆
mj
j ≥ B(1−n)D 2−7 D2 |lc(U)|2D |lc(Ur)|−D ‖U‖1−2D−`

∞ |Res(U, U
′
r)| .

(18)
When we consider only the separation bound we have the following inequality

sep(Σ) ≥ (2D)−4D (2D $ C)−D−v/2−1/2
√
|tc(U1)| , (19)

where and its precise definition1 of the specialized u-resultant U1 is given in the paragraph
before Eq. (24). The nonzero coordinates of the roots are bounded as follows:

|tc(U1)|
2D+1 $ C

≤ |tc(U1)|
2‖U1‖∞

≤ |γj,i| ≤ 2
‖U1‖∞

|lc(U1)|
≤ 2D+1 $ C
|lc(U1)|

. (20)

Proof of main theorem 5. First, we establish the lower bound in (17). Let γj = (γj,1, . . . , γj,n) ∈
(C∗)n, 1 ≤ j ≤ D, be the solutions of (Σ), where fi are defined in (12). We denote the set of
solutions by V ⊂ (C∗)n.

We consider the system (Σ0), Eq. (14), where the additional polynomial f0 = u + r1x1 +

r2x2 + · · ·+ rnxn has the new parameter u. It holds that u = −∑i ri γj,i, for a solution γj. We
choose properly the integer coefficients of f0, r1, . . . , rn, to ensure that the function

V → C∗ : γ 7→ f0(γ)

is injective. In this case f0 is called a separating element. The existence of a separating element
is ensured by the following proposition [3, 9, 16] .

Proposition 6. Let V ⊂ Cn with cardinality D. The set of linear forms

F = {ui = x1 + i x2 + · · ·+ in−1 xn | 0 ≤ i ≤ B = (n− 1)
(

D
2

)
}

contains at least one separating element, and takes distinct values on V.

Corollary 7. For any f0 ∈ F it holds that ‖ f0‖∞ ≤ Bn−1, and

‖ f0‖∞ ≤ ‖ f0‖2 ≤ 2Bn−1 = 2(n− 1)n−1
(

D
2

)n−1

.

1U1 denotes the specialized u-resultant where r1 = −1 and ri = 0 for i 6= 1.
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Proof: The first inequality is well known. For the second let B = (n− 1) (D
2 ) and

‖ f0‖∞ ≤ ‖ f0‖2 ≤
√

1 + B2 + B4 + · · ·+ (B2)n−1

≤

√
B2n − 1
B2 − 1

≤

√
B2n−2

1− 1/B2 ≤
√

4B2n−2 .

�

Let us return to the proof of the Main Theorem. From Eq. (16), it follows:

U(u) = · · ·+ $k uk rD−k
k cM1

1,k cM2
2,k · · · c

Mn
n,k + · · · .

From Corollary 7, we have that |rk|D−k ≤ ‖ f0‖D−k
∞ ≤ (Bn−1)D−k, for all k. Let |$k| ≤ h, for all k.

Then using [34], see also Table 1, we obtain:

h ≤
n

∏
i=0

(#Qi)
Mi = (#Q0)

D
n

∏
i=1

(#Qi)
Mi = (n + 1)D$.

We bound the norm of U as follows:

‖U‖2
2 ≤

D
∑

k=0

∣∣∣$k rD−k
k cM1

1,k cM2
2,k . . . cMn

n,k

∣∣∣2
≤

D
∑

k=0

∣∣h (Bn−1)D−k C
∣∣2 ≤ h2 C2

D
∑

k=0
(B2n−2)D−k

≤ h2 C2
D
∑

k=0
(B2n−2)k

≤ h2 C2 4 (B2n−2)D

⇒ ‖U‖∞ ≤ ‖U‖2 ≤ 2 h C B(n−1)D ≤ 2 (n + 1)D $ C B(n−1)D.

If uj are the distinct roots of U then, by the injectivity of f0, it follows that uj = −∑n
i=1 ri γj,i.

The u-resultant has a stronger notion for 0-dimensional systems, since the multiplicities of its
roots correspond to the multiplicities of the solutions of the system; we do not exploit this
property further.

Proposition 8 (Cauchy-Bunyakovsky-Schwartz). Let a1, a2, . . . , an ∈ C, and b1, b2, . . . , bn ∈ C.
Then,

|ā1 b1 + · · ·+ ān bn|2 ≤
(
|a1|2 + · · ·+ |an|2

) (
|b1|2 + · · ·+ |bn|2

)
,

where āi denotes the complex conjugate of ai, and 1 ≤ i ≤ n. Equality holds if, for all i, ai = 0
or if there is a scalar λ such that bi = λ ai.

Consider γi, γj and let ui, uj be the corresponding roots of U. Using Proposition 8,∣∣r1(γi,1 − γj,1) + · · ·+ rn(γi,n − γj,n)
∣∣2 ≤ (r2

1 + · · ·+ r2
n
) (
|γi,1 − γj,1|2 + · · ·+ |γi,n − γj,n|2

)
⇔∣∣∣∣∣ n

∑
k=1

rk γi,k −
n

∑
k=1

rk γj,k

∣∣∣∣∣
2

≤
n

∑
k=1

r2
k ·

n

∑
k=1

∣∣γi,k − γj,k
∣∣2 ⇔ ∣∣ui − uj

∣∣2 ≤ ( n

∑
k=1

r2
k

)
· ‖γi − γj‖2

2 ,

and thus

∆i = ‖γi − γj‖2 ≥
(

n

∑
k=1

r2
k

)−1/2 ∣∣ui − uj
∣∣ .
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We denote by γcj the root that is closest to γj. Since the previous bound holds for any pair of
indices i and j, it also holds for j and cj.

To prove the lower bound of Main Theorem 5, we apply the previous inequality for all pairs
j and cj; there are ` such pairs. Then

∏
1≤j≤`

∆j ≥ ∏
1≤j≤`

‖γj − γcj‖2 ≥
(

n

∑
k=1

r2
k

)− 1
2 `

∏
1≤j≤`

|uj − ucj |. (21)

It remains to bound the two factors of the RHS in the previous inequality. To bound the first,
we use Corollary 7. It holds that ∑n

k=1 r2
k ≤ 1 + ∑n

k=1 r2
k ≤ ‖ f0‖2

2 ≤ 4 B2n−2, so

(
n

∑
k=1

r2
k)
− 1

2 ` ≥ 2−` B(1−n)`. (22)

For the second factor of (21), we apply the univariate bound to U, Eq. (2) in Theorem 1 and
the bound that we have computed for ‖U‖2; thus:

∏
1≤j≤`

∣∣∣uj − ucj

∣∣∣ ≥−4D lg D M (U)−2(`−1) |srk(U, U′)| ≥ 2−4D lg D ‖U‖−2(`−1)
2 |srk(U, U′)|

≥ 2−4D lg D (2hCB(n−1)D)−2(`−1)|srk(U, U′)| ,
(23)

where srk(U, U′) is the first non-vanishing subresultant coefficient in the subresultant sequence
of U and its derivative, U′. Combining (21) with (22) and (23), we have the lower bound

∏
1≤j≤`

∆j ≥ 2−` B(1−n)` 2−4D lg D (2hCB(n−1)D)−2(`−1)|srk(U, U′)| .

Regarding the bound that involves the multiplicities of the roots, we combine (21) and (23)
with (3) to get

∏
1≤j≤`

∆
mj
j ≥ (

n

∑
k=1

r2
k)
− 1

2 ∑j mj ∏
1≤j≤`

|uj − ucj |mj .

∏
1≤j≤`

∆
mj
j ≥ 2−D B(1−n)D 2−6 D2 |lc(U)|2D |lc(Ur)|−D ‖U‖1−2d−`

∞ |Res(U, U
′
r)| ,

where mj is a number less than or equal to the multiplicity of ui as a root of U and hence it
bounds the multiplicity of γj as a root of the system.

When the polynomials are in Z[x], then |srk(U, U′)| ≥ 1, |ad| ≥ 1, |Res(U, U
′
r)| ≥ 1. Thus

we can omit these quantities from the bounds. To see this, recall that we can compute the
univariate resultant as the determinant of the Sylvester matrix. Finally, we can bound br using
Mignotte’s bound. If the polynomials are in (Q[x] we can obtain similar bounds.

Upper and lower bounds on the roots. Now we establish the upper bound of Eq. (20). We
specialize f0 in (15) by setting ri = −1, for some i ∈ {1, . . . , n}, and rj = 0, where 1 ≤ j ≤ n and
j 6= i. Wlog assume r1 = −1. We compute the u-resultant of the system, denoted by U1 ∈ Z[u].
Its roots are the first coordinates of the isolated zeros of the system, namely γ1,i, 1 ≤ i ≤ D.
Thus dg(U1) ≤ D.
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The coefficients of U1 are of the form, $k cM1
1 cM2

2 . . . cMn
n , where $k ∈ Z and the interpretation

of the rest of the formula is the same as before. Using [34], see also Table 1, we obtain:

|$k| ≤
n

∏
i=0

(#Qi)
Mi = (#Q0)

D
n

∏
i=1

(#Qi)
Mi = 2D$,

since now the Newton polytope of f0 is a simplex in dimension 1. It also holds that |cM1
1 cM2

2 . . . cMn
n | ≤

C. Combining the two inequalities we deduce that

‖U1‖∞ ≤ 2D $ C , (24)

and also ‖U1‖2 ≤
√

D + 1‖U1‖∞ ≤
√

D + 1 2D $ C.
From Cauchy’s bound for the roots of univariate polynomials, e.g. [27], see also Eq. (1) in

Theorem 1, we know that for all the roots of U1, γi,j, it holds that

|tc(U1)|
2‖U1‖∞

≤ |γi,j| ≤ 2
‖U1‖∞

|lc(U1)|
.

The inequality holds for all indices i, j. Hence, all roots of the system in (C∗)n are contained
in a high-dimensional annulus in Cn, defined as the difference of the volumes of two spheres
centered at the origin, with radii 2D+1 $ C and (2D+1 $ C)−1, resp. This proves Eq. (20).

Upper DMM bound. To prove the upper bound of Eq. (17) in Main Theorem 5 we use the
triangular inequality ‖a− b‖2 ≤ ‖a‖2 + ‖b‖2. Then

∏
1≤i≤`

‖γi − γci‖
mi
2 ≤ ∏

1≤i≤`
(‖γi‖2 + ‖γci‖2)

mi ≤ ∏
1≤i≤`

(n‖γi‖∞ + n‖γci‖∞)
mi ≤

(
4n
‖U1‖∞

lc(U1)

)D

,

where the last inequality is due to Eq. (20).

Separation bound. To prove Eq. (19), let (i, j) be the pair of indices where the separation
bound of (Σ) is attained. Then,

sep(Σ) = ‖γi − γj‖2 =

√
n

∑
t=1
|γi,t − γj,t|2 ≥ |γi,k − γj,k| ≥ sep(Uk),

where k is any index such that γi,k 6= γj,k and sep(Uk) is the separation bound of Uk. To compute
this, we rely on Eq. (4), and deduce

sep(U1) ≥ (2D)−4D ‖U1‖−D−v/2−1/2
∞

√
|tc(U1)| ,

which completes the proof of (19) and, hence, the proof of Main Theorem 5.
For the rest of the section, since we refer to the degree of Laurent polynomials, we may

assume that their Newton polytope has been translated to lie at the positive quadrant with
minimal total degree. The toric elimination parameters of the system, such as mixed volume,
are invariant under this operation. In short, our polynomials could be Taylor polynomials
throughout this section, examined in terms of their Newton polytopes.
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Corollary 9. Under the hypothesis of Main Theorem 5, for fi ∈ Z[x], dg( fi) ≤ d and L ( fi) ≤ τ,
we have

`

∏
i=1

∆i ≥ 2−η1 (25)

sep(Σ) ≥ 2−η1 where η1 = Õ(d2n−1(d + τ)) , (26)

2−η2 ≤ |γj,k| ≤ 2η2 where η2 = Õ(dn−1(d + τ)) . (27)

An important aspect of our approach is to capture sparseness via mixed volumes:

Corollary 10. Under the hypothesis of Main Theorem 5, for fi ∈ Z[x], i = 1, . . . , n, we have

`

∏
i=1

∆mi
i ≥ 2−η1 where η1 = 7M2

0 + 6nM2
0 lg(nM2

0) + 3M0

n

∑
i=1

Mi (τ + lg(#Qi)) (28)

2−η2 ≤ |γj,k| ≤ 2η2 where η2 = 1 +M0 +
n

∑
i=1

Mi (τ + lg(#Qi)), (29)

sep(Σ) ≥ 2−η3 where η3 = M0(5 lg(2M0) +
n

∑
i=1

Mi (τ + lg(#Qi))) . (30)

In the bounds of Corollary 10, when the polynomial fi is of degree di and we do not know
the mixed volume of the system we can set M0 = ∏n

i=1 di and Mi = ∏k 6=i dk.
The bounds on u-resultant are of independent interest, since the latter is used in many

algorithms for solving polynomial systems, e.g. [3, 16].

Corollary 11. For the u-resultant, U ∈ IR[u], of the zero dimensional polynomial system it
holds that dg(U) ≤ D and ‖U‖∞ ≤ ‖U‖2 ≤ 2 h C B(n−1)D ≤ 2 (n + 1)D $ C B(n−1)D.

4 Comparisons and lower bounds

This section compares our results to the best existing bounds as well as to instances of systems
illustrating that our bounds are not very far from the worst-case optimum.

One of the first multivariate separation bounds was due to Canny, later generalized to the
case when only the affine part of the variety is zero-dimensional [37].

Theorem 12 (Gap theorem). [9] Let f1(x), . . . , fn(x) be polynomials of degree d and coefficient
magnitude c, with finitely-many common solutions when homogenized. If γj ∈ Cn is such a
solution, then for any k, either γj,k = 0 or |γj,k| > (3dc)−n dn

.

Let L ( fi) = τ, then Canny’s bound becomes 2−(lg 3+lg d+τ)ndn
, which is worse than the

bound in Eq. (27), by a factor of O(d) in the exponent. In [6], they require that the system has a
zero-dimensional projection; m is the number of polynomials and b < n the dimension of the
prime component where the zero-dimensional projection is considered. This bound is:

|γij| ≥ ((n + 1)2 en+2)−n(n+1)dn
(bn−b−1 m 2τ)−(n−b)dn−b−1

,

It is similar to ours in Eq. (20), and we make a comparison in the sequel. Nevertheless, Corol-
lary 10 does not depend on the (total) degree of the equations, but rather on mixed volume,
which is advantageous for sparse systems.
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A natural question is how close are the bounds to optimum. The following system was
introduced in [9]:

2τx2
1 = x1, xj = xd

j−1, 2 ≤ j ≤ n.

The roots are xj = (2−τ)
dj−1

, for 2τ � 1. Our Main Theorem 5, and its specialization with integer
coefficients using mixed volume, Corollary 10, implies xj ≥ 2−1−(3+τ)dn−1−2(1+τ)(n−2)dn−2

, which,
if τ � d, is off only by a factor of 2n asymptotically. The negative exponent of our bound is
O(τ(d + n)dn−2), Canny’s bound gives a negative exponent of O(nτdn−1), whereas the bound
in [6] has negative exponent O(n3dn + nτdn−1).

We present polynomial systems with bad separation bounds in the sequel.

4.1 Recursive Mignotte polynomials

We present a polynomial system that attains an exponential separation bound. We consider the
following triangular system

(Mn)



A1(x) = xd
1 − 2 (a x1 − 1)2

A2(x) = xd/2
1 xd/2

2 − 2
(

x2 − xd/4
1

)2

...

An−1(x) = xd/2
n−2xd/2

n−1 − 2
(

xn−1 − xd/4
n−2

)2

An(x) = xd/2
n−1xd/2

n − 2
(

xn − xd/4
n−1

)2

,

where a ∈ Z, a ≥ 3 and d ≥ 4. The polynomial A1 is the “classical” Mignotte polynomial [27].
It is not hard to see that other polynomials are also Mignotte since, for 2 ≤ k ≤ n, we have

Ak(x) = xd/2
k−1

(
xd/2

k − 2
(

1
xd/4

k−1
xk − 1

)2
)

, assuming that xk−1 6= 0.

The polynomial A1 is irreducible and has three positive roots, two of which very close to
1/a, and it holds that

1/a− a−(d+2)/2 < γ1,1 < 1/a < γ1,2 < 1/a + a−(d+2)/2,

hence, for its separation bound, it holds

sep(A1) = |γ1,1 − γ1,2| = ∆1 < 2 a−(d+2)/2 .

If we substitute x1 = γ1,1 into A2, then we obtain a Mignotte polynomial A2(γ1,1, x2) with
coefficients that belong to a simple algebraic extension. If 1

γd/4
1,1
≥ 3, then it has three positive

real roots, two of them very close to γd/4
1,1 . We denote them by γ2,1 and γ2,2. For the separation

bound of A2(γ1,1, x2), it holds

∆2 ≤ 2
(

1/γd/4
1,1

)−(d/2+2)/2
≤ 2 γ

d
4 (d/2+2)/2
1,1 ≤ 2 a−

d
4 (d/2+2)/2 .

If we continue similarly, then we get positive roots γk,1 and γk,2, where 1 ≤ k ≤ n. We can
easily prove by induction that 1

γd/4
k,1
≥ 3, for 1 ≤ k ≤ n.
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Theorem 13. For the system (Mn), for 1 ≤ k ≤ n, the following hold, for a positive root
coordinate and for the separation bound:

0 < γk,1 < a−(
d
4 )

k−1

, ∆k ≤ 2 a−(
d
4 )

k−1(d/2+2)/2, and ∆n = sep(Mn) ≤ 2 a−(
d
4 )

n−1(d/2+2)/2.

Proof: We know that γk,1 < γd/4
k−1,1 so, by inductive hypothesis, we obtain

γk,1 <

(
a−(

d
4 )

k−2
)d/4

.

For the second claim, it is enough to apply the bound we just established for γk−1,1 in

∆k ≤ 2 (1/γd/4
k−1,1)

−(d/2+2)/2 .

For the k = n we get the claimed bound for the n-th coordinate.
To prove the separation bound of the system we consider γ1,1 the first positive root of A1(x1),

γ2,1 the first positive root of A(γ1,1, x2), and we continue until γn−1,1, which is the first positive
real root of An−1(γ1,1, γ2,1, . . . , γn−2,1, xn−1). Then the polynomial An(γ1,1, . . . , γn−1,1, xn) has
two roots, γn,1 and γn,2, that are very close. They are ∆n close.

Now, consider the following two roots of (Mn), γ1 = (γ1,1, . . . , γn−1,1, γn,1) and γ2 =

(γ1,1, . . . , γn−1,1, γn,2). For them it holds that ‖γ1 − γ2‖2 ≤ ∆n. �

In the case where a = 2τ, the previous theorem implies that the separation bound for the

system and for the n-th coordinate is 2−(
d
4 )

n
τ = 2−Õ(τdn). The bound of Main Theorem 5,

specialized in Corollary 9, gives 2−Õ(τd2n), which has, like our bounds, a linear second exponent,
although our overall bound is still off by a factor of dn in the exponent.

If we consider the aggregate version of DMM then we get that ∏i=1‖γi − γci‖2 ≤ (∆n)2n
=

2−O(2
n τ dn) which is exponential, but still off by a factor of dn in the exponent.

5 Positive-dimensional polynomial systems

This section examines the case where (Σ) is not zero-dimensional, in other words its variety
contains a positive-dimensional component, possibly at infinity.

Then, the bounds of Main Theorem 5 do not hold because they are based on bounding
the infinite norm of the u−resultant which, in this case, is identically zero. Specifically, the
(sparse) resultant vanishes identically when the specialized coefficients of the polynomials
are not generic enough, i.e. the variety has positive dimension; any component of positive
dimension is known as excess component.

To overcome the existence of excess components in the case of dense systems, Canny
introduced the Generalized Characteristic Polynomial (GCP) [8]. We use its generalization to
sparse resultants, called Toric GCP (TGCP) [12]. Consider (Σ0) in (14) and perturb it:

(Σ̃0)

{
f̃0 = f0 = 0,
f̃i = fi + pi = 0, 1 ≤ i ≤ n,

where pi = ∑a∈Di
sωi(a)xa, ωi(·) are positive-valued linear forms, s a new parameter, and Di is

the subset of vertices in Qi corresponding to the monomials of fi lying on the diagonal of the
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sparse resultant matrix constructed by using the ωi(·) as lifting functions. More precisely, the
ωi(·) define a regular mixed subdivision of the Minkowski sum of the Newton polytopes which,
in turn, yields a sparse resultant matrix [10, 11]. In the worst case, Di contains all vertices of Qi.
Clearly, the perturbation does not alter the support of the polynomials nor the mixed volume of
the system.

The TGCP is the sparse resultant of (Σ̃0), denoted by T ∈ (Z[c, r])[u, s], where c corresponds
to the coefficients of fi and r to the coefficients of f0. The lowest-degree nonzero coefficient of
T, seen as univariate polynomial in s, is a projection operator: it vanishes on the projection
of any zero-dimensional component of the algebraic set defined by (Σ0). We denote it by
TU ∈ Z([c, r])[u], and dg(TU) ≤ M0. The roots of TU are the isolated points of the variety
and some points embedded in its positive-dimensional components. It remains to bound the
coefficients of TU . Repeating the construction of U in Eq. (16), we get

T = · · ·+ $k ukrM0−k
k c̃M1

1,k c̃M2
2,k · · · c̃

Mn
n,k︸ ︷︷ ︸

tk

+ . . . ,

where $k ∈ Z, and c̃Mi
i,k is a monomial in the coefficients cij, s, of total degree Mi. It is an

overestimation with respect to the height of T, if we assume that c̃i,k is obtained by adding sλ to
each coefficient of ci,k, where λ = maxi,a{ωi(a)}. If we expand c̃Mi

i,k , the absolute value of the

coefficients of s is bounded by ( Mi
Mi/2)‖ fi‖Mi

∞ ≤ 2Mi‖ fi‖Mi
∞ /
√
Mi. If we expand the term tk of T,

the degree of s is bounded by λ ·∏n
i=1 Mi, and the coefficients are bounded by

n

∏
i=1

Mi|$k| · |rk|M0−k
n

∏
i=1

2Mi‖ fi‖Mi
∞√

Mi
= |$k| · |rM0−k

k |
n

∏
i=1

√
Mi2Mi‖ fi‖Mi

∞ = |rk|M0−k h A C,

since every factor c̃Mi
i,k , contributes at most Mi coefficients. Quantities A, C as well as h have been

defined in Table 1. The bound holds for (the absolute of) all coefficients of T, seen as a bivariate
polynomial in s, u. Recall that |$k| ≤ h, for all k.

Now, observe that k ≤ M0. If we consider TU as a univariate polynomial in s, then its
coefficients are univariate polynomials in u, with degree ≤ M0. For the 2-norm of TU , we use a
summation as in the zero-dimensional case:

‖TU‖∞ ≤ ‖TU‖2 ≤ 2 h A C B(n−1)M0 .

The previous bound is the one on U multiplied by A (Corollary 11). Thus we extend Main
Theorem 5 to positive-dimensional systems by replacing C by AC in Main Theorem 5, or U
with TU .

Theorem 14 (systems of dimension > 0). Consider the polynomial system (Σ) in (13), which
is not necessarily zero-dimensional. Let ` be the number of its distinct isolated solutions in
(C∗)n, which are γ1, γ2, . . . , γ`. For a root γj, let γcj be the root closest to it, under the Euclidean
metric. Then(

2D+3 n$ A C
lc(TU1)

)D

≥ ∏
1≤j≤`

∆
mj
j ≥ B(1−n)D 2−7 D2 |lc(TU)|2D |lc(TUr)|−D ‖TU‖1−2D−`

∞ |Res(TU , T
′
Ur)| ,

(31)
where TUr denotes the square-free part of the TU , TU1 has a similar definition as U1, | · | denotes
absolute value and mj upper-bounds the multiplicity of γj.
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For the separation bound we have the following inequality

sep(Σ) ≥ 2−M
2
0−4M0 lgM0 ($ A C)−M0

√
|tc(TU1)| . (32)

The nonzero coordinates of the roots are bounded as follows:

|tc(TU1)|
2M0+1 $ A C

≤ |tc(TU1)|
2‖TU1‖∞

≤ |γj,i| ≤ 2
‖TU1‖∞

|lc(TU1)|
≤ 2M0+1 $ A C
|lc(TU1)|

. (33)

Then

(2M0+1 $ A C)` ≥
`

∏
j=1

∆j ≥ 22−2`−4M0 lgM0 ($ A C)−2(`−1) B2(1−n)(`−1)M0 ,

sep(Σ) ≥ 2−M
2
0−4M0 lgM0 ($ A C)−M0

√
tc(|TU1 |) . (34)

We also have the following, less accurate, bounds:

2−η1 ≤ |γj,k| ≤ 2η1 where η1 = (n2 − n) lg
√

d + dn + n(τ + n lg d + 2)dn−1, (35)
`

∏
j=1

∆j ≥ 2−η2 where η2 = 2 η2 dn + (1 + 4 lg n + 4n lg d)d2n, (36)

sep(Σ) ≥ 2−η3 where η3 = 2 η1 dn − (n2 − n)dn lg
√

d. (37)

Remark 15. Using the deformation technique and the TGCP, we have a slightly more general
result. If a point on an irreducible component of positive dimension of the system at s = 0 is the
limit of points of the perturbed system for s 6= 0, the same bounds applies on its coordinates.

6 Overdetermined polynomial systems

The aforementioned bounds apply to well-constrained systems, namely when the number of
unknowns equals the number of equations. This section discusses the case where the system
contains more equations than unknowns.

Given an overdetermined system, we first perform a reduction to a square system using the
result of [20]. Let f1, . . . , fp ∈ Z [x1, . . . , xn] be polynomials of positive degree, bounded by d.
Denote by V the algebraic variety defined by f1 = · · · = fp = 0. Given η ∈ Z, we denote by f̂η

the linear combination f1 + η1 f2 + · · ·+ ηp−1 fp.

Theorem 16. [20, Sec. 3.4.1] Let K ⊂ Z of cardinality p dn + 1. There exists k = (k1, . . . , kn) ∈ Γn

such that each irreducible component of V̂ defined by f̂k1 = · · · = f̂kn = 0 is either a component
of V or a point.

The previous theorem guarantees that if we consider the linear combinations to make our
input system square, in the worst case, we add some isolated points. Therefore we can still
recover the isolated points of the initial system.

We assume that all the polynomials f̂i have the same Newton polytope Q. If this is not the
case, we can set Q as the convex hull of the union of Qi, i.e. Q = ∪p

i=1Qi. If L ( fi) ≤ τ, then

L
(

f̂i

)
≤ τ + n lg d + lg p, where d is an upper bound on the degrees of fi. Now our system is

well defined and we can apply Theorem 14 to obtain separation bounds for its isolated roots.
Let S denote the standard simplex. Let s > 0 be a real number such that Q ⊂ sS hence

vol(Q) ≤ sn vol(S) = sn/n!. Then M0 = n! vol(Q) ≤ sn. Similarly Mi ≤ sn−1. Now by applying
Corollary 10 we arrive at the following:
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Corollary 17. Under the hypothesis of Main Theorem 5, for fi ∈ Z[x±1], i = 1, . . . , p, that have
degrees bounded by d and the same Newton polytope Q, we have the following bounds:

2−η1 ≤ |γj,k| ≤ 2−η1 where η1 = 1 + sn + n sn−1(τ + n lg d + lg p + lg(#Q)), (38)
`

∏
i=1

∆mi
i ≥ 2−η2 where η2 = 7s2n + 6ns2n lg(ns2n) + 3n s2n−1 (τ + n lg d + lg p + lg(#Q))

(39)

sep(Σ) ≥ 2−η3 where η3 = s2n + sn lg sn + n s2n−1 (τ + n lg d + lg p + lg(#Q)) (40)

In case the polynomials are dense and their degree is bounded by d, in the previous bounds
we should replace s by d.

We can replace dn in Theorem 16 by vol(Q), but since this does not affect the asymptotics of
the bounds, we decided not to do so.

7 Applications

We illustrate the bounds of Main Theorem 5 in three applications. The first concerns matrix
eigenvalues and eigenvectors, and is a standard illustration of the superiority of mixed volumes
against Bézout’s bound. The second is lower bounds of positive multivariate polynomials,
inspired by [2]. Thirdly, our results are used to bound the number of steps that any subdivision
algorithm has to perform in isolating the real roots of a well-defined polynomial system.

7.1 Eigenvalues and eigenvectors

Consider an n × n integer matrix A, with entries of bitsize < τ. We are interested in its
eigenvalues λ, and its eigenvectors v = (v1, . . . , vn)>. This is equivalent to solving f j =

∑n
j=1 ai,jvj − λvi, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and fn+1 = ∑n

i=1 v2
i − 1. We have ‖ f j‖∞ ≤ 2τ,

‖ fn+1‖∞ ≤ 2. The Bézout bound is 2n+1, whereas the actual number of (complex) solutions is
2n, which equals the mixed volume, e.g. [16].

Canny’s Gap theorem [9] implies |z| > (6 · 2τ)−(n+1)2n
for any eigenvalue or eigenvector

element z 6= 0. Thus, in the worst case, we need O(n τ 2n) bits to compute them. We get the
same exponential behavior in n if we apply [37, Thm. 11.45] or [6, Thm. 2] to the corresponding
polynomial system.

It is reasonable to assume that the system is zero-dimensional and apply Eq. (20) of Main
Theorem 5. It holds that Mj = 2n, Mn+1 = n, (#Qn+1) ≤ 2n+2, and (#Qi) ≤ 2n+2 where

1 ≤ j ≤ n, and C = ‖ fn+1‖Mn+1
∞ ∏n

j=1 ‖ f j‖
Mj
∞ ≤ 2τ ∑n

j=1 Mj 2n = 22n2τ+n, $ ≤ ∏n+1
i=1 (#Qi)

Mi ≤
(#Qn+1)

Mn+1 ∏n
i=1 (#Qi)

Mi ; hence $ ≤ (2n+2)n ∏n
i=1(2

n+2)2n ≤ 22n3+5n2+2n.
The solutions lie in Cn+1. The lower bound of Main Theorem 5 yields

|z| > 2−2n3−5n2−5−2n2τ,

where z is an eigenvalue or a nonzero coordinate of an eigenvector. This is exponentially better
than the previous bounds. Eq. (19) from Main Theorem 5 bounds the system’s separation bound:
− lg(sep(Σ)) = O(n4 + n3τ). This is polynomial in the size of the input, and hence we obtain a
new proof of Bareiss’ result [1], namely that computing the eigenvalues and eigenvectors of an
integer matrix has polynomial complexity.
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7.2 Positive multivariate polynomials

We consider the following problem, studied in [2, 22]. Let P ∈ Z[x1, . . . , xn] be a multivariate
polynomial of degree d which, on the n-dimensional unit simplex S = {x ∈ IRn≥ 0 | ∑n

i=1 xi ≤
1}, takes only positive values. We are interested in computing a lower bound on its minimum
value m.

Theorem 18. Let τ bound the bitsize of the coefficients of polynomial P ∈ Z[x1, . . . , xn], and let
m∗ = minx∈S P(x) over the unit simplex S. If m∗ > 0, then

1
m∗
≤ 1

mDMMp
= 2(n

2+n) lg
√

d+(2+3n+d+(n2+3n+1) lg d+(n+1)d lg n)d(d−1)n−1 · 2(n+1)τd(d−1)n−1
, (41)

which simplifies to

− lg m∗ = O(ndn(n lg d + d lg n + τ)) = Õ(dn(d + τ)).

Proof: We first assume that the minimum is attained inside the simplex and not on its boundary.
As the minimum is reached inside the simplex, it satisfies the following system in the

unknowns m, xi: {
∂P
∂x1

(x1, . . . , xn) = · · · = ∂P
∂xn

(x1, . . . , xn) = 0,
P(x1, . . . , xn) = m.

(42)

We use Theorem 14, since there is no guarantee that the system is zero-dimensional. However,
Theorem 14 provides bounds for the isolated points of the variety. Since the minimum could be
attained on a nonzero dimensional component, we should argue that the bounds take care of
this case. We use the TGCP method of Section 5 [8, 12], a property of the minimum of perturbed
polynomials, also exploited in [22], and remark 15.

Let us consider the perturbed polynomial Ps = P + s (xd
1 + · · ·+ xd

n), where s is a nonzero
symbolic perturbation parameter. Now, the equations

fi =
∂Ps

∂xi
(x1, . . . , xn) =

∂P
∂xi

(x1, . . . , xn) + s d xd−1
i , i = 1, . . . , n, fn+1 = Ps −m

define the perturbed system (Σ̃). Together with f0 = u + r1x1 + · · · + rnxn + rn+1m (where
u, r1, . . . , rn+1 are parameters), they define the overconstrained system (Σ̃0), as in (14).

The resultant of (Σ̃0) is nonzero because the resultant, with respect to x1, . . . , xn, of ∂Ps
∂xi

(x1, . . . , xn),
i = 1, . . . , n and u + r1 x1 + · · ·+ rn xn + rn+1, Ps(x1, . . . , xn), is nonzero, as a polynomial in s,
and ri. We deduce that (Σ̃) is zero-dimensional for almost all values of s.

Hereafter we denote by (x∗s , m∗s ) a minimum of Ps on the simplex S, i.e. m∗s = Ps(x∗s ) =

minx∈S Ps(x). For any sequence sn → 0, we have a sequence (x∗sn
, m∗sn

) of minima of Psn in
the compact S, from which we can extract a sub-sequence s′n and minima (x∗s′n , m∗s′n) such that
m∗s′n = P(x∗s′n) and s′n → 0, x∗s′n → x∗ ∈ S, when n→ ∞. Since

m∗s′n = Ps′n(x∗s′n) ≤ Ps′n(x), ∀x ∈ S,

taking the limit we deduce that, ∀x ∈ S, P(x∗) ≤ P(x), and that P reaches its minimum m∗ on
S at x∗.

As x∗ is in the interior of S, so are the points x∗s′n for n large enough. Thus (x∗s′n , m∗s′n) is a

sequence of points satisfying the perturbed system (Σ̃) for n large enough. By Remark 15,
Theorem 14 also bounds the coordinates of the limit point (x∗, m∗). Let us compute this bound.
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We have fi =
∂P
∂xi

and fn+1 = P−m. It holds that dg( fn+1) = d, dg( fi) ≤ d− 1, ‖ fn+1‖∞ ≤
2τ, ‖ fi‖∞ ≤ d‖ fn+1‖∞ ≤ d 2τ, Mn+1 ≤ (d− 1)n, Mi ≤ d(d− 1)n−1, and D ≤ M0 ≤ d(d− 1)n.
Using (33) we deduce 1/m ≤ 2M0 $ A C. It remains to bound the various quantities involved, as
defined in Table 1:

C ≤
n+1

∏
i=1
‖ fi‖Mi

∞ = ‖ fn+1‖Mn+1
∞

n+1

∏
i=1
‖ fi‖Mi

∞ ≤ 2(n+1)τd(d−1)n−1+nd(d−1)n−1 lg d,

A =
n+1

∏
i=1

√
Mi 2Mi =

√
Mn+1 · 2Mn+1 ·

n

∏
i=1

√
Mi · 2Mi ≤ 2(n+1)d(d−1)n−1+(n2+n) lg

√
d.

Moreover, (#Qn+1) ≤ 2dn+1, (#Qi) ≤ 2(d− 1)n+1, and so

$ =
n+1

∏
i=1

(#Qi)
Mi = (#Qn+1)

Mn+1
n

∏
i=1

(#Qi)
Mi

≤ (2dn+1)(d−1)n ·
n

∏
i=1

(2dn)d(d−1)n−1 ≤ 2(n+1)(1+(n+1) lg d)d(d−1)n−1

We apply (33) using the previous inequalities, and get

1
m∗
≤ 2(n

2+n) lg
√

d+(1+2n+d+(n2+3n+1) lg d)d(d−1)n−1 · 2(n+1)τd(d−1)n−1
.

If the minimum m∗ is not reached inside the simplex, then it is reached at a vertex or in
the (relative) interior of a face of S, which is a simplex in lower dimension. If the minimum is
reached at a vertex ei = (0, . . . , 0, 1, 0, . . . 0) or at the origin (0, . . . , 0) and positive, then m∗ ∈ IN∗

and 1
m∗ ≤ 1 and (41) is clearly satisfied.

If the minimum is reached in the interior of a face of S, the restriction of P on such a
face is obtained by substituting some of the variables xi by 0 and some other variables by
1− xi1 − · · · − xil . By [2][Lemma 2.3], this transforms the polynomial P into a new polynomial
with the degree bounded by d and the bitsize of its coefficients bounded by τ + 1 + d lg n.
Replacing this in the previous inequality, we get 1

m∗ ≤
1

mDMMp
, where

1
mDMMp

= 2(n
2+n) lg

√
d+(2+3n+d+(n2+3n+1) lg d+(n+1)d lg n)d(d−1)n−1 · 2(n+1)τd(d−1)n−1

,

which concludes the proof. �

In general, the system is not zero-dimensional. However, if we know that it is zero-
dimensional, then we can apply Main Theorem 5, and Eq. (20) to derive the following tighter
bound:

1
m∗
≤ 1

mDMM
= 2((n+1)τ+n+d+(n2+3n+1) lg d)d(d−1)n−1

. (43)

Let us compare with other bounds in the bibliography. In [2, Sec. 2, Rem. 2.17], the following
bound was computed:

1
mBLR

= 22n+3nτdn+1+2n+5ndn+1(2nd+d lg n+n lg d), (44)

which also holds with no assumption, but is looser than ours.
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bound (d, τ) = (2, 5) (8, 20) (32, 85)
[2], Eq. (44) | lg(mBLR)| 27 136 6 684 672 1 604 321 280
[6], Eq. (45) | lg(mBY)| 1 192 74 000 4 696 811
[22], Eq. (46) | lg(mJP)| 72 15 360 3 309 568

Eq.(41) | lg(mDMMp)| 87 7 457 442 447

Eq.(43) | lg(mDMM)| 54 5 201 324 506

Table 2. Comparison of (the bitsize of) various bounds on the minimum value of the polynomial f = (x + 2y−
3)d + (x + 2y− 4)d, for d ∈ {2, 8, 32} and τ ∈ {5, 20, 85}, resp. The bounds hold for all polynomials with same

characteristics.

bound (n = 3, d = 10) τ = 10 τ = 20 τ = 30 τ = 40 τ = 50
[2], Eq. (44) | lg(mBLR)| 678262344 697462344 716662344 735862344 755062344
[6], Eq. (45) | lg(mBY)| 2740313 2780313 2820313 2860313 2900313

[22], Eq. (46) | lg(mJP)| 242878 342878 442878 542878 642878
Eq.(41) | lg(mDMMp)| 151908 184308 216708 249108 281508
Eq.(43) | lg(mDMM)| 78367 110767 143167 175567 207967

Table 3. Comparison of (the bitsize of) various bounds on the minimum value of a polynomial with n = 3, d = 10 and

τ ∈ {10, 20, 30, 40, 50}, respectively.

In [6] the authors derive a bound for the minimum of the absolute value of a polynomial,
namely 1

m ≤
1

mBY
, where

1
mBY

= ((n + 2)2en+3)(n+1)(n+2)dn+1
(nn(n + 1) d 2τ)(n+1)dn

. (45)

The authors use the terminology evaluation bound for their bound. It holds when there is a
zero-dimensional projection, and they prove that this is always the case for system (42).

In [22], the following bound was computed:

1
m∗
≤ 1

mJP
= 2(τ+1)dn+1

d(n+1)dn+1
, (46)

which has no restriction on the corresponding polynomial system. It is comparable to our
bound in general, but strictly looser when d > n.

Example 19. Let us compute a lower bound on the value of f = (x + 2y− 3)d + (x + 2y− 4)d,
d ∈ {2, 8, 32}. The polynomial is positive since it is a sum of squares. Consider the ideal
I = ( f − z, fx, fy) ⊂ Z[x, y, z]. If (ζ1, ζ2, ζ3) belongs to the zero-set of I, then |ζ3| ≥ 2−b, b > 0,
or ζ3 = 0. In Table 2, we present the above bounds on lg b, whereas the true minimum value
is 0. When the degree equals the number of variables (d = 2), then our general bound is slightly
weaker than mJP. When d > n, e.g. d = 4 and d = 32, our bound is tighter than mJP by an order
of magnitude. All other bounds are significantly looser in all cases.

Furthermore, Table 3 compares all bounds when the number of variables and the degree are
fixed, namely n = 3 and d = 10, and we vary the bitsize τ ∈ {10, 20, 30, 40, 50}. In Table 4, we fix
the number of variables and the bitsize, n = 3, τ = 10, and we vary the degree d ∈ {2, 4, 6, 8, 10}.
In all cases our bounds are clearly superior.
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bound (n = 3, τ = 10) d = 2 d = 4 d = 6 d = 8 d = 10
[2], Eq. (44) | lg(mBLR)| 253993 7636226 55504131 227057704 678262344
[6], Eq. (45) | lg(mBY)| 4825 72898 361447 1129997 2740313
[22], Eq. (46) | lg(mJP)| 240 4864 27657 94208 242878

Eq.(41) | lg(mDMMp)| 176 4273 21639 65372 151908
Eq.(43) | lg(mDMM)| 117 2641 12457 35480 78367

Table 4. Comparison of (the bitsize of) various bounds on the minimum value of a polynomial with n = 3, τ = 10 and

d ∈ {2, 4, 6, 8, 10}, respectively.

7.3 General subdivision

We employ Main Theorem 5, and Equations (17) and (25), to bound the number of steps of
a general pure subdivision algorithm to solve for the real roots of a well-defined polynomial
system, as in (12). As is typically the case, we may assume the existence of an oracle which counts
the number of real roots of the system inside a box in (Qn. Our aim is to compute the number of
calls to the oracle in order to compute isolating (hyper-)boxes for all real roots. Realizations of
such oracles for general n are found in [30, 32, 31], see also [3]. We should mention though that
the bound on the number of subdivisions holds for subdivision algorithms that achieve linear
convergence. They do not apply to algorithms that achieve quadratic convergence towards
the roots, for example using (modifications of) Newton operators. Nevertheless, even though
such fast convergent algorithms are rather well studied in the univariate case, for polynomial
systems are more rare.

A straightforward derivation establishes the following bound for the number of subdivision
steps of linear convergent algorithms:

Theorem 20. Consider the polynomial system formed by the polynomials in (12). The number
of calls to an oracle that a pure subdivision algorithm performs in order to compute isolating
boxes for all the real roots of the system is Õ(2n (n2 + d + nτ) d2n−1), where d and τ bound the
degree and coefficient bitsize of each polynomial, D bounds the total number of (real) roots,
and L is the side length of the hypercube containing all real roots.

Remark 21. If we specialize n = 1 in the previous theorem, then we deduce that the number
of steps of subdivisions algorithms for real root isolation of univariate integer, not necessarily
square-free, polynomials is O(d2 lg d + dτ). The bound in Davenport [14] for the univariate
case is O(d2 + dτ).

It is now straightforward to derive the first complexity bound of Milne’s algorithm [30] in
IR2. This aggregate separation bound is also useful in the analysis of the subdivision algorithm
based on continued fractions expansion [26] for polynomial system solving.
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