Certifying isolated singular points and their multiplicity structure

Abstract : This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construc-tion uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new vari-ables. We show that the roots of this new system include the original singular root but now with multiplicity one, and the new variables uniquely determine the multiplicity structure. Both constructions are "exact", meaning that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system.
Type de document :
Communication dans un congrès
ISSAC'15, Jul 2015, Bath, United Kingdom. ACM, pp.213-220, 〈10.1145/2755996.2756645〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

Contributeur : Bernard Mourrain <>
Soumis le : lundi 14 septembre 2015 - 10:23:47
Dernière modification le : jeudi 7 février 2019 - 15:07:20
Document(s) archivé(s) le : mardi 29 décembre 2015 - 01:26:14


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License




Jonathan D. Hauenstein, Bernard Mourrain, Agnes Szanto. Certifying isolated singular points and their multiplicity structure. ISSAC'15, Jul 2015, Bath, United Kingdom. ACM, pp.213-220, 〈10.1145/2755996.2756645〉. 〈hal-01107541v2〉



Consultations de la notice


Téléchargements de fichiers