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Abstract

This paper presents two new constructions related to singular solutions of polynomial
systems. The first is a new deflation method for an isolated singular root. This construction
uses a single linear differential form defined from the Jacobian matrix of the input, and defines
the deflated system by applying this differential form to the original system. The advantages
of this new deflation is that it does not introduce new variables and the increase in the
number of equations is linear instead of the quadratic increase of previous methods. The
second construction gives the coefficients of the so-called inverse system or dual basis, which
defines the multiplicity structure at the singular root. We present a system of equations in the
original variables plus a relatively small number of new variables. We show that the roots of
this new system include the original singular root but now with multiplicity one, and the new
variables uniquely determine the multiplicity structure. Both constructions are “exact” in that
they permit one to treat all conjugate roots simultaneously and can be used in certification
procedures for singular roots and their multiplicity structure with respect to an exact rational
polynomial system.

1 Introduction

Our motivation for this work is twofold. On one hand, in a recent paper [1], two of the co-authors
of the present paper studied a certification method for approximate roots of exact overdetermined
and singular polynomial systems, and wanted to extend the method to certify the multiplicity
structure at the root as well. Since all these problems are ill-posed, in [1] a hybrid symbolic-
numeric approach was proposed, that included the exact computation of a square polynomial
system that had the original root with multiplicity one. In certifying singular roots, this exact
square system was obtain from a deflation technique that added subdeterminants of the Jacobian
matrix to the system iteratively. However, the multiplicity structure is destroyed by this deflation
technique, that is why it remained an open question how to certify the multiplicity structure of
singular roots of exact polynomial systems.
Our second motivation was to find a method that simultaneously refines the accuracy of a singular
root and the parameters describing the multiplicity structure at the root. In all previous numerical
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approaches that approximate these parameters, they apply numerical linear algebra to solve a linear
system with coefficients depending on the approximation of the coordinates of the singular root.
Thus the local convergence rate of the parameters was slowed from the quadratic convergence of
Newton’s iteration applied to the singular roots. We were interested if the parameters describing
the multiplicity structure can be simultaniously approximated with the coordinates of the singular
root using Newton’s iteration.
In the present paper we first give a new improved version of the deflation method that can be
used in the certification algorithm of [1], reducing the number of added equations at each deflation
iteration from quadratic to linear. We prove that applying a single linear differential form to the
input system, corresponding to a generic kernel element of the Jacobian matrix, already reduced
both the multiplicity and the depth of the singular root. Secondly, we give a description of the
multiplicity structure using a polynomial number of parameters, and express these parameters
together with the coordinates of the singular point as the roots of a multivariate polynomial system.
We prove that this new polynomial system has a root corresponding to the singular root but now
with multiplicity one, and the new added coordinates describe the multiplicity structure. Thus this
second approach completely deflates the system in one step. The number of equations and variables
in the second construction depends polynomially on the number of variables and equations of the
input system and the multiplicity of the singular root. Both constructions are exact in the sense
that approximations of the coordinates of the singular point are only used to detect numerically
non-singular submatrices, and not in the coefficients of the constructed polynomial systems.
Related work.

The treatment of singular roots is a critical issue for numerical analysis and there is a huge literature
on methods which transform the problem into a new one for which Newton-type methods converge
quadratically to the root.
Deflation techniques which add new equations in order to reduce the multiplicity have already
been considered in [26], [25]: By triangulating the Jacobian matrix at the (approximate) root, new
minors of the polynomial Jacobian matrix are added to the initial system in order to reduce the
multiplicity of the singular solution.
A similar approach is used in [10] and [8], where a maximal invertible block of the Jacobian matrix
at the (approximate) root is computed and minors of the polynomial Jacobian matrix are added
to the initial system. In [8], an additional step is considered where the first derivatives of the input
polynomials are added when the Jacobian matrix at the root vanishes.
These constructions are repeated until a system with a simple root is obtained.
In these methods, at each step, the number of added equations is (n − r) × (m − r), where n is
number of variables, m is the number of equations and r is the rank of the Jacobian at the root.
In [12], a triangular presentation of the ideal in a good position and derivations with respect to the
leading variables are used to iteratively reduce the multiplicity. This process is applied for p-adic
lifting with exact computation.
In other approaches, new variables and new equations are introduced simultaneously. In [31],
new variables are introduced to describe some perturbations of the initial equations and some
differentials which vanish at the singular points. This approach is also used in [18], where it is
shown that this iterated deflation process yields a system with a simple root.
In [20], perturbation variables are also introduced in relation with the inverse system of the singular
point to obtain directly a deflated system with a simple root. The perturbation is constructed from
a monomial basis of the local algebra at the multiple root.
In [13, 14], only variables for the differentials of the initial system are introduced. The analysis
of this deflation is improved in [5], where it is shown that the number of steps is bounded by the
order of the inverse system. This type of deflation is also used in [17], for the special case where
the Jacobian matrix at the multiple root has rank n− 1 (case of breath one).
In these methods, at each step, the number of variables is at least doubled and new equations are
introduced, which are linear in these new variables.
The mentioned deflation techniques usually breaks the structure of the local ring at the singular
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point. The first method to compute the inverse system describing this structure is due to F.S.
Macaulay [19] and known as the dialytic method. More recent algorithms for the construction of
inverse systems are described e.g. in [21], reducing the size of the intermediate linear systems (and
exploited in [28]). In [32], the dialytic method is used, and they analyze the relationship of deflation
some methods to the inverse system. It had been further improved in [23] and more recently in
[20], using an integration method. This technique reduces significantly the cost of computing
the inverse system, since it relies on the solution of linear system related to the inverse system
truncated in some degree and not on the number of monomials in this degree. Multiplication
matrices corresponding to systems with singular roots were studied in [22, 4].
The computation of inverse systems has been used to approximate a multiple root. In [27], a
minimization approach is used to reduce the value of the equations and their derivatives at the
approximate root, assuming a basis of the inverse system is known. In [30], the inverse system
is constructed via Macaulay’s method; tables of multiplications are deduced and their eigenvalues
are used to improve the approximated root. They show that the convergence is quadratic at the
multiple root. In [16] they show that in the breadth one case the parameters needed to describe
the inverse system is small, and use it to compute the singular roots in [15]. In [20], the inverse
system is used to transform the singular root into a simple root of an augmented system.
Contributions.

We propose a new deflation method for polynomial systems with isolated singular points, which
does introduce new parameters. At each step, a single differential of the system is considered based
on the analysis of the Jacobian at the singular point. A linear number of new equations is added
instead of the quadratic increases of the previous deflations. The deflated system does not involved
any approximate coefficients and can therefore be used in certification methods as in [1].
To approximate efficiently both the singular point and its inverse system, we propose a new defla-
tion, which involves a small number of new variables compared to other approaches which rely on
Macaulay matrices. It is based on a new characterization of the isolated singular point together
with its multiplicity structure. The deflated polynomial system exploits the nilpotent and commu-
tation properties of the multiplication matrices in the local algebra of the singular point. We prove
that it has a simple root which yields the root and the coefficients of the inverse system at this
singular point. Due to the upper triangular form of the multiplication matrices in a convenient
basis of the local algebra, the number of new parameters introduced in this deflation is less than
1
2n(δ − 1)δ where n is the number of variables and δ the multiplicity of the singular point. The
parameters involved in the deflated system are determined from the analysis of an approximation of
the singular point. Nevertheless, the deflated system does not involve any approximate coefficients
and thus it can also be used in certification techniques as [1].
In this paper we present two new constructions. The first one is a new deflation method for a
system of polynomials with an isolated singular root. The new construction uses a single linear
differential form defined from the Jacobian matrix of the input, and defines the deflated system
by applying this differential form to the original system. We prove that the resulting deflated
system has strictly lower multiplicity and depth at the singular point than the original one. The
advantage of this new deflation is that it does not introduce new variables, and the increase in
the number of equations is linear, instead of the quadratic increase of previous deflation methods.
The second construction gives the coefficients of the so called inverse system or dual basis, which
defines the multiplicity structure at the singular root. The novelty of our construction is that
we show that the nilpotent and commutation properties of the multiplication matrices define
smoothly the singular points and its inverse system. We give a system of equations in the original
variables plus a relatively small number of new variables, and prove that the roots of this new
system correspond to the original multiple roots but now with multiplicity one, and they uniquely
determine the multiplicity structure. The number of unknowns used to describe the multiplicity
structure is significantly smaller, compared to the direct computation of the dual bases from the
so called Macaulay matrices. Both constructions are “exact” in the sense that approximations of
the coordinates of the singular point are only used to detect numerically non-singular submatrices,
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and not in the rest of the construction. Thus these constructions would allow to treat all conjugate
roots simultaneously, as well as to apply these constructions in the certification of the singular
roots and the multiplicity structure of an exact rational polynomial system.

2 Preliminaries

Let f := (f1, . . . , fN) ∈ K[x]N with x = (x1, . . . , xn) for some K ⊂ C field. Let ξ = (ξ1, . . . , ξn) ∈
Cn be an isolated multiple root of f . Let I = 〈f1, . . . , fN 〉, mξ be the maximal ideal at ξ and Q be
the primary component of I at ξ so that

√
Q = mξ.

Consider the ring of power series C[[∂ξ]] := C[[∂1,ξ, . . . , ∂n,ξ]] and we use the notation for β =
(β1, . . . , βn) ∈ Nn

∂
β
ξ := ∂β1

1,ξ · · · ∂
βn

n,ξ.

We identify C[[∂ξ]] with the dual space C[x]∗ by considering ∂
β
ξ as derivations and evaluations at

ξ, defined by

∂
β
ξ (p) := ∂

β(p)|ξ :=
d|β|p

dxβ1

1 · · · dxβn
n

(ξ) for p ∈ C[x]. (1)

Hereafter, the derivations “at x” will be denoted ∂
β instead of ∂β

x. The derivation with respect to
the variable ∂i is denoted d∂i

(i = 1, . . . , n). Note that

1

β!
∂
β
ξ ((x− ξ)α) =

{

1 it α = β

0 otherwise
,

where we use the notation 1
β! =

1
β1!···βn!

.

For p ∈ C[x] and Λ ∈ C[[∂ξ]] = C[x]∗, let

p · Λ : q 7→ Λ(p q).

We check that p = (xi − ξi) acts as a derivation on C[[∂ξ]]:

(xi − ξi) · ∂β
ξ = d∂i,ξ

(∂β
ξ )

For an ideal I ⊂ C[x], let I⊥ = {Λ ∈ C[[∂ξ]] | ∀p ∈ I,Λ(p) = 0}. The vector space I⊥ is naturally
identified with the dual space of C[x]/I. We check that I⊥ is a vector subspace of C[[∂ξ]], which
is stable by the derivations d∂i,ξ

.

Lemma 2.1. If Q is a mξ-primary component of I, then Q⊥ = I⊥ ∩ C[∂ξ].

This lemma shows that to compute Q⊥, it suffices to compute all polynomials of C[∂ξ] which are
in I⊥. Let us denote this set D = I⊥ ∩ C[∂ξ]. It is a vector space stable under the derivations
d∂i,ξ

. Its dimension is the dimension of Q⊥ or C[x]/Q, that is the multiplicity of ξ, denote it by
δξ(I), or simply by δ if ξ and I is clear from the context.

For an element Λ(∂ξ) ∈ C[∂ξ] we define the order ord(Λ) to be the maximal |β| such that ∂
β
ξ

appears in Λ(∂ξ) with non-zero coefficient.
For t ∈ N, let Dt be the elements of D of order ≤ t. As D is of dimension d, there exists a smallest
t ≥ 0 such that Dt+1 = Dt. Let us call this smallest t, the nil-index of D and denote it by oξ(I),
or simply by o. As D is stable by the derivations d∂i,ξ

, we easily check that for t ≥ oξ(I), Dt = D

and that oξ(I) is the maximal degree of the elements in D .
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3 Deflation using first differentials

To improve the numerical approximation of a root, one usually applies a Newton-type method to
converge quadratically from a nearby solution to the root of the system, provided it is simple. In
the case of multiple roots, deflation techniques are employed to transform the system into another
one which has an equivalent root with a smaller multiplicity or even with multiplicity one.
We describe here a construction, using differentials of order one, which leads to a system with a
simple root. This construction improves the constructions in [13, 5] since no new variables are
added. It also improves the constructions presented in [10] and the “kerneling” method of [8] by
adding a smaller number of equations at each deflation step. Note that, in [8], there are smart
preprocessing and postprocessing steps which could be utilized in combination with our method.
In the preprocessor, one adds directly partial derivatives of polynomials which are zero at the root.
The postprocessor extracts a square subsystem of the completely deflated system for which the
Jacobian has full rank at the root.
Consider the Jacobian matrix Jf (x) = [∂jfi(x)] of the initial system f . By reordering properly the
rows and columns (i.e., polynomials and variables), it can be put in the form

Jf (x) :=

[

A(x) B(x)
C(x) D(x)

]

(2)

where A(x) is an r × r matrix with r = rankJf (ξ) = rankA(ξ).
Suppose that B(x) is an r × c matrix. The c columns

det(A(x))

[

−A−1(x)B(x)
Id

]

(for r = 0 this is the identity matrix) yield the c elements

Λx

1 =

n
∑

i=1

λ1,j(x)∂j , . . . , Λx

c =

n
∑

i=1

λc,j(x)∂j .

Their coefficients λi,j(x) ∈ K[x] are polynomial in the variables x. Evaluated at x = ξ, they
generate the kernel of Jf (ξ) and form a basis of D1.

Definition 3.1. The family Dx
1 = {Λx

1 , . . . ,Λ
x
c } is the formal inverse system of order 1 at ξ. For

i = {i1, . . . , ik} ⊂ {1, . . . , c} with |i| 6= 0, the i-deflated system of order 1 of f is

{f ,Λx

i1
(f), . . . ,Λx

ik
(f)}.

By construction, for i = 1, . . . , c,

Λx

i (f) =

n
∑

j=1

∂j(f)λi,j(x) = det(A(x))Jf (x)[λi,j(x)]

has n − c zero entries. Thus, the number of non-trivial new equations added in the i-deflated
system is |i| · (N − n+ c). The construction depends on the choice of the invertible block A(ξ) in
Jf (ξ). By a linear invertible transformation of the initial system and by computing a i-deflated
system, one obtains a deflated system constructed from any |i| linearly independent elements of
the kernel of Jf (ξ).

Example 3.2. Consider the multiplicity 2 root ξ = (0, 0) for the system f1(x) = x1 + x2
2 and

f2(x) = x2
1 + x2

2. Then,

Jf (x) =

[

A(x) B(x)
C(x) D(x)

]

=

[

1 2x2

2x1 2x2

]

.
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The corresponding vector [−2x2 1]T yields the element

Λx

1 = −2x2∂1 + ∂2.

Since Λx
1 (f1) = 0, the {1}-deflated system of order 1 of f is

{

x1 + x2
2, x2

1 + x2
2, − 4x1x2 + 2x2

}

which has a multiplicity 1 root at ξ.

We use the following to analyze this deflation procedure.

Lemma 3.3 (Leibniz rule). For a, b ∈ K[x],

∂
α(a b) =

∑

β∈Nn

1

β!
∂
β(a)dβ∂ (∂

α)(b).

Proposition 3.4. Let r be the rank of Jf (ξ). Assume that r < n. Let i ⊂ {1, . . . , n} with
0 < |i| ≤ n − r and f (1) be the i-deflated system of order 1 of f . Then, δξ(f

(1)) ≥ 1 and
oξ(f

(1)) < oξ(f), which also implies that δξ(f
(1)) < δξ(f).

Proof. By construction, for i ∈ i, the polynomials Λx

i (f) vanish at ξ, so that δξ(f
(1)) ≥ 1. By

hypothesis, the Jacobian of f is not injective yielding oξ(f) > 0. Let D(1) be the inverse system
of f (1) at ξ. Since (f (1)) ⊃ (f), we have D(1) ⊂ D . In particular, for any non-zero element
Λ ∈ D(1) ⊂ K[∂ξ] and i ∈ i, Λ(f) = 0 and Λ(Λx

i (f)) = 0.
Using Leibniz rule, for any p ∈ K[x], we have

Λ(Λx

i (p)) = Λ





n
∑

j=1

λi,j(x)∂j(p)





=
∑

β∈Nn

n
∑

j=1

1

β!
∂

β

ξ (λi,j(x))d
β

∂ξ
(Λ)∂j,ξ(p)

=
∑

β∈Nn

n
∑

j=1

1

β!
∂

β

ξ (λi,j(x))∂j,ξd
β

∂ξ
(Λ)(p)

=
∑

β∈Nn

∆i,βd
β

∂ξ
(Λ)(p)

where

∆i,β =

n
∑

j=1

λi,j,β∂j,ξ ∈ K[∂ξ ] and λi,j,β =
1

β!
∂
β

ξ (λi,j(x)) ∈ K.

The term ∆i,0 is
∑n

j=1 λi,j(ξ)∂j,ξ which has degree 1 in ∂ξ since [λi,j(ξ)] is a non-zero element of

kerJf (ξ). For simplicity, let φi(Λ) :=
∑

β∈Nn ∆i,βd
β
∂ (Λ).

For any Λ ∈ C[∂ξ], we have

d∂j,ξ
(φi(Λ)) =

∑

β∈Nn

λi,j,βd
β

∂ (Λ) + ∆i,βd
β

∂ (d∂j,ξ
(Λ))

=
∑

β∈Nn

λi,j,βd
β

∂ (Λ) + φi(d∂j,ξ
(Λ)).

Moreover, if Λ ∈ D(1), then by definition φi(Λ)(f) = 0. Since D and D(1) are both stable by
derivation, it follows that ∀Λ ∈ D(1), d∂j,ξ

(φi(Λ)) ∈ D(1) + φi(D
(1)). Since D(1) ⊂ D , we know

D + φi(D
(1)) is stable by derivation. For any element Λ of D + φi(D

(1)), Λ(f) = 0. We deduce
that D + φi(D

(1)) = D . Consequently, the order of the elements in φi(D
(1)) is at most oξ(f). The

statement follows since φi increases the order by 1, therefore oξ(f
(1)) < oξ(f).
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We consider now a sequence of deflations of the system f . Let f (1) be the i1-deflated system of f . We
construct inductively f (k+1) as the ik+1-deflated system of f (k) for some choices of ij ⊂ {1, . . . , n}.

Proposition 3.5. There exists k ≤ oξ(f) such that ξ is a simple root of f (k).

Proof. By Proposition 3.4, δξ(f
(k)) ≥ 1 and oξ(f

(k)) is strictly decreasing with k until it reaches
the value 0. Therefore, there exists k ≤ oξ(I) such that oξ(f

(k)) = 0 and δξ(f
(k)) ≥ 1. This implies

that ξ is a simple root of f (k).

To minimize the number of equations added at each deflation step, we take |i| = 1. Then, the
number of non-trivial new equations added at each step is at most N − n+ c.
We described this approach using first order differentials arising from the Jacobian, but this can
be easily extended to use higher order differentials.

4 The multiplicity structure

Before describing our results, we start this section by recalling the definition of orthogonal primal-
dual pairs of bases for the space C[x]/Q and its dual. The following is a definition/lemma:

Lemma 4.1 (Orthogonal primal-dual basis pair). Let f , ξ, Q, D , δ = δξ(f) and o = oξ(f) be
as above. Then there exists a primal-dual basis pair of the local ring C[x]/Q with the following
properties:

• The primal basis of the local ring C[x]/Q has the form

B := {(x− ξ)α1 , (x− ξ)α2 , . . . , (x− ξ)αδ} . (3)

We can assume that α1 = 0 and that the monomials in B are connected to 1 (c.f. [24]).
Define the set of exponents in B

E := {α1, . . . , αδ}.

• There is a unique dual basis Λ ⊂ D orthogonal to B, i.e. the elements of Λ are given in the
following form:

Λ0 = ∂
α1

ξ = 1ξ

Λ1 =
1

α1!
∂
α1

ξ +
∑

|β|≤o
β 6∈E

να1,β ∂
β
ξ

... (4)

Λδ−1 =
1

αδ!
∂
αδ

ξ +
∑

|β|≤o
β 6∈E

ναδ,β ∂
β
ξ ,

• We have 0 = ord(Λ0) ≤ · · · ≤ ord(Λδ−1), and for all 0 ≤ t ≤ o we have

Dt = span {Λj : ord(Λj) ≤ t} ,

where Dt denotes the elements of D of order ≤ t, as above.

Proof. Let ≻ be the graded reverse lexicographic ordering in C[∂] such that ∂1 ≺ ∂2 ≺ · · · ≺ ∂n. We
consider the initial In(D) = {In(Λ) | Λ ∈ D} of D for the monomial ordering ≻. It is a finite set of
increasing monomialsD := {∂α0 ,∂α1 , . . . ,∂αδ−1} , which are the leading monomials of the elements
of Λ = {Λ0,Λ1, . . ., Λδ−1} ⊂ D . As 1 ∈ D and is the lowest monomial ≻, we have Λ0 = 1. As ≻
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is refining the total degree in C[∂], we have ord(Λi) = |αi| and 0 = ord(Λ0) ≤ · · · ≤ ord(Λδ−1).
Moreover, every element in Dt reduces to 0 by the elements in Λ. As only the elements Λi of
order ≤ t are involved in this reduction, we deduce that Dt is spanned by the elements Λi with
ord(Λi) ≤ t.
Let E = {α0, . . . , αδ−1}. The elements Λi are of the form

Λi =
1

αi!
∂
αi

ξ +
∑

|β|≺|αi|

ναi,β ∂
β
ξ .

By auto-reduction of the elements Λi, we can even suppose that β 6∈ E in the summation above,
so that they are of the form (4).
Let B(ξ) = {(x− ξ)α0 , . . . , (x− ξ)αδ−1} ⊂ C[x]. As (Λi((x−ξ)αj ))0≤i,j≤δ−1 is the identity matrix,
we deduce that B is a basis of C[x]/Q, which is dual to Λ.
As D is stable by derivation, the leading term of d

d∂i
(Λj) is in D. If d

d∂i
(∂

αj

ξ ) is not zero, then it

is the leading term of d
d∂i

(Λj), since the monomial ordering is compatible with the multiplication
by a variable. This shows that D is stable by division by the variable ∂i and that B is connected
to 1. This ends the proof of the lemma.

Such a basis of D can be obtained from any other basis of D by transforming first the coefficient
matrix of the given dual basis into row echelon form and then reducing the elements above the
pivot coefficients. The integration method described in [20] computes a primal-dual pair, such that
the coefficient matrix has a block row-echelon form, each block being associated to an order. The
computation of a basis as in Lemma 4.1 can be then performed order by order.

Example 4.2. Let
f1 = x1 − x2 + x2

1, f2 = x1 − x2 + x2
1,

which has a multiplicity 3 root at ξ = (0, 0). The integration method described in [20] computes
a primal-dual pair

B̃ = {1, x1, x2} , Λ̃ =

{

1, ∂1 + ∂2, ∂2 +
1

2
∂2
1 + ∂1∂2 +

1

2
∂2
1

}

.

This primal dual pair does not form an orthogonal pair, since (∂1 + ∂2)(x2) 6= 0. However, using
let say the degree lexicographic ordering such that x1 > x2, we easily deduce the primal-dual pair
of Lemma 4.1:

B =
{

1, x1, x
2
1

}

, Λ = Λ̃.

Throughout this section we assume that we are given a fixed primal basis B for C[x]/Q such
that a dual basis Λ of D satisfying the properties of Lemma 4.1 exists. Note that such a primal
basis B can be computed numerically from an approximation of ξ and using a modification of the
integration method of [20].
Given the primal basis B, a dual basis can be computed by Macaulay’s dialytic method which can
be used to deflate the root ξ as in [14]. This method would introduce n+ (δ − 1)

((

n+o
n

)

− δ
)

new
variables, which is not polynomial in o. Below, we give a construction of a polynomial system that
only depends on at most n + nδ(δ − 1)/2 variables. These variables correspond to the entries of
the multiplication matrices that we define next. Let

Mi : C[x]/Q → C[x]/Q

p 7→ (xi − ξi) p

be the multiplication operator by xi − ξi in C[x]/Q. Its transpose operator is

M t
i : D → D

Λ 7→ Λ ◦Mi = (xi − ξi) · Λ =
d

d∂i,ξ
(Λ) = d∂i,ξ

(Λ)
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where D = Q⊥ ⊂ C[∂]. The matrix of Mi in the basis B of C[x]/Q is denoted Mi.
As B is a basis of C[x]/Q, we can identify the elements of C[x]/Q with the elements of the vector
space spanC(B). We define the normal form N(p) of a polynomial p in C[x] as the unique element
b of spanC(B) such that p− b ∈ Q. Hereafter, we are going to identify the elements of C[x]/Q with
their normal form in spanC(B).
For any polynomial p(x1, . . . , xn) ∈ C[x], let p(M) be the operator of C[x]/Q obtained by replacing
xi − ξi by Mi.

Lemma 4.3. For any p ∈ C[x], the normal form of p is N(p) = p(M)(1) and we have

p(M)(1) = Λ0(p) 1 + Λ1(p) (x− ξ)α1 + · · ·+ Λδ−1(p) (x − ξ)αδ−1 .

This shows that the coefficient vector [p] of N(p) in the basis B of is [p] = (Λi(p))0≤i≤δ−1.
The following lemma is also well known, but we include it here with proof:

Lemma 4.4. Let B as in (3) and denote the exponents in B by E := {α1, . . . , αδ} as above. Let

E+ :=

n
⋃

i=1

(E + ei)

with E + ei = {(γ1, . . . , γi + 1, . . . , γn) : γ ∈ E} and we denote ∂(E) = E+ \ E. The values of
the coefficients να,β for (α, β) ∈ E × ∂(E) appearing in the dual basis (4) uniquely determine the
system of pairwise commuting multiplication matrices Mi, namely, for i = 1, . . . , n

Mti =

0 να1,ei
να2,ei

· · · ναd−1,ei

0 0 να2,α1+ei
· · · ναd−1,α1+ei

...
...

...
0 0 0 · · · ναd−1,αd−2+ei

0 0 0 · · · 0

(5)

Moreover,

ναi,αk+ej
=

{

1 if αi = αk + ej

0 if αk + ej ∈ E, αi 6= αk + ej .

Proof. As M t
i acts as a derivation on D and D is closed under derivation, so the third property

in Lemma 4.1 implies that the matrix of M t
i in the basis of Λ of D has an upper triangular form

with zero (blocks) on the diagonal.
For an element Λj of order k, its image by M t

i is

M
t
i (Λj) = (xi − ξi) · Λj

=
∑

|αl|<k

Λj((xi − ξi)(x− ξ)αl)Λl

=
∑

|αl|<k

Λj((x− ξ)αl+ei) Λl =
∑

|αl|<k

ναj ,αl+eiΛl.

This shows that the entries of Mi are the coefficients of the dual basis elements corresponding to
exponents in E × ∂(E). The second claim is clear from the definition of Mi.

The previous lemma shows that the dual basis uniquely defines the system of multiplication ma-
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trices for i = 1, . . . , n

M
t
i =

Λ0(xi − ξi) · · · Λδ−1(xi − ξi)
Λ0

(

(x− ξ)α1+ei
)

· · · Λδ−1

(

(x− ξ)α1+ei
)

...
...

Λ0

(

(x− ξ)αd+ei
)

· · · Λδ−1

(

(x− ξ)αδ+ei
)

=

0 να1,ei να2,ei · · · ναδ−1,ei

0 0 να2,α1+ei · · · ναδ−1,α1+ei

...
...

...
0 0 0 · · · ναδ−1,αδ−2+ei

0 0 0 · · · 0

Note that these matrices are nilpotent by their upper triangular structure, and all 0 eigenvalues.
As o is the maximal order of the elements of D , we have Mγ = 0 if |γ| > o.

Conversely, the system of multiplication matrices M1, . . . , Mn uniquely defines the dual basis as
follows. Consider ναi,γ for some (αi, γ) such that |γ| ≤ o but γ 6∈ E+. We can uniquely determine
ναi,γ from the values of {ναj,β : (αj , β) ∈ E × ∂(E)} from the following identities:

ναi,γ = Λi((x− ξ)γ) = [M(x−ξ)γ ]1,i = [Mγ ]1,i. (6)

The next definition defines the parametric multiplication matrices that we use in our constriction.

Definition 4.5 (Parametric multiplication matrices). Let B as in (3), and E, ∂(E) as in Lemma
4.4. We define array µ of length nδ(δ−1)/2 consisting of 0’s, 1’s and the variables µαi,β as follows:
for all αi, αk ∈ E and j ∈ {1, . . . , n} the corresponding entry is

µαi,αk+ej
=











1 if αi = αk + ej

0 if αk + ej ∈ E, αi 6= αk + ej

µαi,αk+ej
if αk + ej 6∈ E.

(7)

The parametric multiplication matrices are defined for i = 1, . . . , n by

Mti(µ) :=

0 µα1,ei
µα2,ei

· · · µαδ−1,ei

0 0 µα2,α1+ei
· · · µαd−1,α1+ei

...
...

...
0 0 0 · · · µαd−1,αδ−2+ei

0 0 0 · · · 0

, (8)

We denote by
M(µ)γ := M1(µ)

γ1 · · · Mn(µ)γn ,

and note that for general parameters values µ, the matrices Mi(µ) do not commute, so we fix their
order by their indices in the above definition of M(µ)γ .

Remark 4.6. Note that we can reduce the number of free parameters in the parametric multipli-
cation matrices by exploiting the commutation rules of the multiplication matrices corresponding
to a given primal basis B. For example, consider the breadth one case, where we can assume that
E = {0, e1, 2e1, . . . , (δ− 1)e1}. In this case the only free parameters appear in the first columns of
M2(µ), . . . , Mn(µ), the other columns are shifts of these. Thus, it is enough to introduce (n−1)(δ−1)
free parameters, similarly as in [17]. In Section 5 we present a modification of [17, Example 3.1]
which has breadth two, but also uses at most (n− 1)(δ − 1) free parameters.
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Definition 4.7 (Parametric normal form). Let K ⊂ C be a field. We define

Nz,µ : K[x] → K[z, µ]δ

p 7→ Nz,µ(p) :=
∑

γ∈Nn

1

γ!
∂
γ
z
(p) M(µ)γ [1].

where [1] = [1, 0, . . . , 0] is the coefficient vector of 1 in the basis B. This sum is finite since for
|γ| ≥ δ, M(µ)γ = 0, so the entries of Nz,µ(p) are polynomials in µ and z.

Notice that this notation is not ambiguous, assuming that the matrices Mi(µ) (i = 1, . . . , n) are
commuting. The specialization at (x, µ) = (ξ, ν) is the vector

Nξ,ν(p) = [Λ0(p), . . . ,Λδ−1(p)]
t ∈ Cδ.

4.1 The multiplicity structure equations of a singular point

We can now characterize the multiplicity structure by polynomial equations.

Theorem 4.8. Let K ⊂ C be any field, f ∈ K[x]N and let ξ ∈ Cn be an isolated solution of f . Let
Mi(µ) for i = 1, . . . n be the parametric multiplication matrices as in (8) and Nξ,µ be the parametric
normal form as in Defn. 4.7 at z = ξ. Then the ideal Jξ of C[µ] generated by the polynomial
system

{

Nξ,µ(fk) for k = 1, . . . , N,

Mi(µ) · Mj(µ) − Mi(µ) · Mi(µ) for i, j = 1, . . . , n
(9)

is the maximal ideal
mν = (µα,β − να,β , (α, β) ∈ E × ∂(E))

where να,β are the coefficients of the dual basis defined in (4).

Proof. As before, the system (9) has a solution µα,β = να,β for (α, β) ∈ E × ∂(E). Thus Jξ ⊂ mν .
Conversely, let C = C[µ]/Jξ and consider the map

Φ : C[x] → Cδ, p 7→ Nξ,µ(p).

Let K be its kernel. Since the matrices Mi(µ) are commuting modulo Jξ, we can see that K is an
ideal. As fk ∈ K, we have I := (fk) ⊂ K.
Next we show that Q ⊂ K. By construction, for any α ∈ Nn we have modulo Jξ

Nξ,µ((x− ξ)α) =
∑

γ∈Nn

1

γ!
∂
γ
ξ ((x− ξ)α) M(µ)γ [1] = M(µ)α[1].

Using the previous relation, we check that ∀p, q ∈ C[x],

Φ(pq) = p(ξ + M(µ))Φ(q) (10)

where p(ξ + M(µ)) is obtained by replacing xi − ξi by Mi(µ). Let q ∈ Q. As Q is the mξ-primary
component of I, there exists p ∈ C[x] such that p(ξ) 6= 0 and p q ∈ I. By (10), we have

Φ(p q) = p(ξ + M(µ))Φ(q) = 0.

Since p(ξ) 6= 0 and p(ξ + M(µ)) = p(ξ)Id +N with N lower triangular and nilpotent, p(ξ + M(µ))
is invertible. We deduce that Φ(q) = p(ξ + M(µ))−1Φ(pq) = 0 and q ∈ K.
Let us show now that Φ is surjective and more precisely, that Φ((x − ξ)αk) = ek (abusing the
notation as here ek has length δ not n). Since B is connected to 1, either αk = 0 or there exists
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αj ∈ E such that αk = αj + ei for some i ∈ {1, . . . , n}. Thus the jth column of Mi(µ) is ek by
(7). As {Mi(µ) : i = 1, . . . , n} are pairwise commuting, we have M(µ)αk = Mj(µ)M(µ)

αj , and if we
assume by induction on |αj | that the first column of M(µ)αj is ej , we obtain M(µ)αk [1] = ek. Thus,
for k = 1, . . . , δ, Φ((x− ξ)αk) = ek.
We can now prove that mν ⊂ Jξ. As Mi(ν) is the multiplication by (xi − ξi) in C[x]/Q, for any
b ∈ B and i = 1, . . . , n, we have (xi − ξi) b = Mi(ν)(b) + q with q ∈ Q ⊂ K. We deduce that for
k = 0, . . . , δ − 1,

Φ((xi − ξi) (x − ξ)αk ) = Mi(µ)Φ((x − ξ)αk ) = Mi(µ)(ek) = Mi(ν)(ek).

This shows that µα,β − να,β ∈ Jξ for (α, β) ∈ E × ∂(E) and that mν = Jξ.

In the proof of the next theorem we need to consider cases when the multiplication matrices do
not commute. We introduce the following definition:

Definition 4.9. Let K ⊂ C be any field. Let C be the ideal of K[z, µ] generated by entries of the
commutation relations: Mi(µ) · Mj(µ)− Mj(µ) · Mi(µ) = 0, i, j = 1, . . . , n. We call C the commutator
ideal.

Lemma 4.10. For any field K ⊂ C, p ∈ K[x], and i = 1, . . . , n, we have

Nz,µ(xip) = xiNz,µ(p) + Mi(µ)Nz,µ(p) +Oi,µ(p). (11)

where Oi,µ : K[x] → K[z, µ]δ is linear with image in the commutator ideal C.
Proof. Nz,µ(xip) =

∑

γ
1
γ! ∂

γ
z (xip) M(µ)

γ [1]

= xi

∑

γ

1

γ!
∂γ
z (p) M(µ)

γ [1] +
∑

γ

1

γ!
γi ∂

γ−ei
z (p) M(µ)γ [1]

= xi

∑

γ

1

γ!
∂γ
z (p) M(µ)

γ [1] +
∑

γ

1

γ!
∂γ
z (p) M(µ)

γ+ei [1]

= xi Nz,µ(p) + Mi(µ)

(

∑

γ

1

γ!
∂γ
z
(p) M(µ)γ [1]

)

+
∑

γ

1

γ!
∂γ
z
(p)Oi,γ(µ)[1]

where Oi,γ = Mi(µ)M(µ)
γ − M(µ)γ+ei is a δ × δ matrix with coefficients in C. Therefore, Oi,µ : p 7→

∑

γ
1
γ!∂

γ
z
(p)Oi,γ(µ)[1] is a linear functional of p with coefficients in C.

The next theorem proves that the system defined as in (9) for general z has (ξ, ν) as a simple root.

Theorem 4.11. Let f ∈ K[x]N and ξ ∈ Cn be as above. Let Mi(µ) for i = 1, . . . n be the parametric
multiplication matrices defined in (8) and Nx,µ be the parametric normal form as in Defn. 4.7.
Then (z, µ) = (ξ, ν) is an isolated root with multiplicity one of the polynomial system in K[z, µ]:

{

Nz,µ(fk) = 0 for k = 1, . . . , N,

Mi(µ) · Mj(µ)− Mj(µ) · Mi(µ) = 0 for i, j = 1, . . . , n.
(12)

Proof. For simplicity, let us denote the (non-zero) polynomials appearing in (12) by

P1, . . . , PM ∈ K[z, µ],

where M ≤ Nδ + n(n − 1)(δ − 1)(δ − 2)/4. To prove the theorem, it is sufficient to prove that
the columns of the Jacobian matrix of the system [P1, . . . , PM ] at (z, µ) = (ξ, ν) are linearly
independent. The columns of this Jacobian matrix correspond to the elements in C[z, µ]∗

∂1,ξ, . . . , ∂n,ξ, and ∂µα,β
for (α, β) ∈ E × ∂(E),
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where ∂i,ξ defined in (1) for z replacing x, and ∂µα,β
is defined by

∂µα,β
(q) =

dq

dµα,β

∣

∣

(z,µ)=(ξ,ν) for q ∈ C[z, µ].

Suppose there exist a1, . . . , an, and aα,β ∈ C for (α, β) ∈ E × ∂(E) not all zero such that

∆ := a1∂1,ξ + · · ·+ an∂n,ξ +
∑

α,β

aα,β∂µα,β
∈ C[z, µ]∗

vanishes on all polynomials P1, . . . , PM in (12). In particular, for an element Pi(µ) corresponding
to the commutation relations and any polynomial Q ∈ C[x, µ], using the product rule for the linear
differential operator ∆ we get

∆(PiQ) = ∆(Pi)Q(ξ, ν) + Pi(ν)∆(Q) = 0

since ∆(Pi) = 0 and Pi(ν) = 0. By the linearity of ∆, for any polynomial C in the commutator
ideal C, we have ∆(C) = 0.
Furthermore, since ∆(Nz,µ(fk)) = 0 and

Nξ,ν(fk) = [Λ0(fk), . . . ,Λδ−1(fk)]
t,

we get that
(a1∂1,ξ + · · ·+ an∂n,ξ) · Λδ−1(fk) +

∑

|γ|≤|αδ−1|

pγ(ν) ∂
γ
ξ (fk) = 0 (13)

where pγ ∈ C[µ] are some polynomials in the variables µ that do not depend on fk. If a1, . . . , an
are not all zero, we have an element Λ̃ of C[∂ξ] of order strictly greater than ord(Λδ−1) = o that
vanishes on f1, . . . , fN .
Let us prove that this higher order differential also vanishes on all multiples of fk for k = 1, . . . , N .
Let p ∈ C[x] such that Nξ,ν(p) = 0, ∆(Nz,µ(p)) = 0. By (11), we have

Nξ,ν((xi − ξi)p)

= (xi − ξi)Nξ,ν(p) + Mi(ν)Nξ,ν(p) +Oi,ν(p) = 0

and ∆(Nz,µ((xi − ξi)p))

= ∆((xi − ξi)Nz,µ(p)) + ∆(Mi(µ)Nz,µ(p)) + ∆(Oµ(p))

= ∆(xi − ξi)Nξ,ν(p) + (ξi − ξi)∆(Nz,µ(p))

+ ∆(Mi(µ))Nξ,µ(p) + Mi(ν)∆(Nz,µ(p))

+ ∆(Oi,µ(p))

= 0.

As Nξ,ν(fk) = 0, ∆(Nz,µ(fk)) = 0, i = 1, . . . , N , we deduce by induction on the degree of the
multipliers and by linearity that for any element f in the ideal I generated by f1, . . . , fN , we have

Nξ,ν(f) = 0 and ∆(Nz,µ(f)) = 0,

which yields Λ̃ ∈ I⊥. Thus we have Λ̃ ∈ I⊥ ∩C[∂ξ] = Q⊥ (by Lemma 2.1). As there is no element
of degree strictly bigger than o in Q⊥, this implies that

a1 = · · · = an = 0.

Then, by specialization at x = ξ, ∆ yields an element of the kernel of the Jacobian matrix of the
system (9). By Theorem 4.8, this Jacobian has a zero-kernel, since it defines the simple point ν.
We deduce that ∆ = 0 and (ξ, ν) is an isolated and simple root of the system (12).
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The following corollary applies the polynomial system defined in (12) to refine the precision of an
approximate multiple root together with the coefficients of its Macaulay dual basis. The advantage
of using this, as opposed to using the Macaulay multiplicity matrix, is that the number of variables
is much smaller, as was noted above.

Corollary 4.12. Let f ∈ K[x]N and ξ ∈ Cn be as above, and let Λ0(ν), . . . ,Λδ−1(ν) be its dual
basis as in (4). Let E ⊂ Nn be as above. Assume that we are given approximates for the singular
roots and its inverse system as in (4)

ξ̃ ∼= ξ and ν̃αi,β
∼= ναi,β ∀αi ∈ E, β 6∈ E, |β| ≤ o.

Consider the overdetermined system in K[z, µ] from (12). Then a random square subsystem of (12)
will have a simple root at z = ξ, µ = ν with high probability. Thus, we can apply Newton’s method
for this square subsystem to refine ξ̃ and ν̃αi,β for (αi, β) ∈ E × ∂(E). For ν̃αi,γ with γ 6∈ E+ we
can use (6) for the update.

Example 4.13. Reconsider the setup from Ex. 3.2 with primal basis {1, x2} and E = {(0, 0), (0, 1)}.
We obtain

M1(µ) =

[

0 0
µ 0

]

and M2(µ) =

[

0 0
1 0

]

.

The resulting deflated system in (12) is

F (z1, z2, µ) =









z1 + z22
µ+ 2z2
z21 + z22

2µz1 + 2z2









which has a nonsingular root at (z1, z2, µ) = (0, 0, 0) corresponding to the origin with multiplicity
structure {1, ∂2}.

5 Examples

Computations for the following examples, as well as several other systems, along with Matlab

code can be found at www.nd.edu/~jhauenst/deflation/.

5.1 A family of examples

We first consider a modification of [17, Example 3.1]. For any n ≥ 2, the following system has n
polynomials, each of degree at most 3, in n variables:

x3
1 + x2

1 − x2
2, x

3
2 + x2

2 − x3, . . . , x
3
n−1 + x2

n−1 − xn, x
2
n.

The origin is a multiplicity δ := 2n root having breadth 2 (i.e., the corank of Jacobian at the origin
is 2).
We apply our parametric normal form method described in § 4. Similarly as in Remark 4.6, we
can reduce the number of free parameters to be at most (n− 1)(δ − 1) using the structure of the
primal basis B = {xa

1x
b
2 : a < 2n−1, b < 2}.

The following table shows the multiplicity, number of variables and polynomials in the deflated
system, and the time (in seconds) it took to compute this system (on a iMac, 3.4 GHz Intel Core i7
processor, 8GB 1600Mhz DDR3 memory). Note that when comparing our method to an approach
using the null spaces of Macaulay multiplicity matrices (see for example [6, 14]), we found that for
n ≥ 4 the deflated system derived from the Macaulay multiplicity matrix was too large to compute.
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This is because the nil-index at the origin is 2n−1, so the size of the Macaulay multiplicity matrix

is n ·
(

2n−1+n−1
n−1

)

×
(

2n−1+n
n

)

.

New approach Null space
n mult vars poly time vars poly time
2 4 5 9 1.476 8 17 2.157
3 8 17 31 5.596 192 241 208
4 16 49 100 19.698 7189 19804 > 76000
5 32 129 296 73.168 N/A N/A N/A
6 64 321 819 659.59 N/A N/A N/A

5.2 Caprasse system

We consider the Caprasse system [3, 29]:

f(x1, x2, x3, x4) =

















x1
3x3 − 4 x1x2

2x3 − 4 x1
2x2x4 − 2 x2

3x4 − 4 x1
2+

10 x2
2 − 4 x1x3 + 10 x2x4 − 2,

x1x3
3 − 4 x2x3

2x4 − 4 x1x3x4
2 − 2 x2x4

3 − 4 x1x3+
10 x2x4 − 4 x3

2 + 10 x4
2 − 2,

x2
2x3 + 2 x1x2x4 − 2 x1 − x3,

x4
2x1 + 2 x2x3x4 − 2 x3 − x1

















at the multiplicity 4 root ξ = (2,−
√
−3, 2,

√
−3).

We first consider simply deflating the root. Using the approaches of [6, 10, 13], one iteration
suffices. For example, using an extrinsic and intrinsic version of [6, 13], the resulting system
consists of 10 and 8 polynomials, respectively, and 8 and 6 variables, respectively. Following [10],
using all minors results in a system of 20 polynomials in 4 variables which can be reduced to a
system of 8 polynomials in 4 variables using the 3×3 minors containing a full rank 2×2 submatrix.
The approach of § 3 using an |i| = 1 step creates a deflated system consisting of 6 polynomials in
4 variables. In fact, since the null space of the Jacobian at the root is 2 dimensional, adding two
polynomials is necessary and sufficient.
Next, we consider the computation of both the point and multiplicity structure. Using an intrinsic
null space approach via a second order Macaulay matrix, the resulting system consists of 64
polynomials in 37 variables. In comparison, using the primal basis {1, x1, x2, x1x2}, the approach
of § 4 constructs a system of 30 polynomials in 19 variables.

5.3 Examples with multiple iterations

In our last set of examples, we consider simply deflating a root of the last three systems from [6,
§ 7] and a system from [12, § 1], each of which required more than one iteration to deflate. These
four systems and corresponding points are:

1: {x4
1 − x2x3x4, x

4
2 − x1x3x4, x

4
3 − x1x2x4, x

4
4 − x1x2x3} at (0, 0, 0, 0) with δ = 131 and o = 10;

2: {x4, x2y + y4, z + z2 − 7x3 − 8x2} at (0, 0,−1) with δ = 16 and o = 7;

3: {14x + 33y − 3
√
5(x2 + 4xy + 4y2 + 2) +

√
7 + x3 + 6x2y + 12xy2 + 8y3, 41x − 18y −

√
5 + 8x3 −

12x2y + 6xy2 − y3 + 3
√
7(4xy − 4x2 − y2 − 2)} at Z3 ≈ (1.5055, 0.36528) with δ = 5 and o = 4;

4: {2x1 + 2x2
1 + 2x2 + 2x2

2 + x2
3 − 1, (x1 + x2 − x3 − 1)3 − x3

1,

(2x3
1 + 5x2

2 + 10x3 + 5x2
3 + 5)3 − 1000x5

1} at (0, 0,−1) with δ = 18 and o = 7.

We compare using the following four methods: (A) intrinsic slicing version of [6, 13]; (B) isosingular
deflation [10] via a maximal rank submatrix; (C) “kerneling” method in [8]; (D) approach of
§ 3 using an |i| = 1 step. We performed these methods without the use of preprocessing and

15



postprocessing as mentioned in § 3 to directly compare the number of nonzero distinct polynomials,
variables, and iterations for each of these four deflation methods.

Method A Method B Method C Method D
Poly Var It Poly Var It Poly Var It Poly Var It

1 16 4 2 22 4 2 22 4 2 16 4 2
2 24 11 3 11 3 2 12 3 2 12 3 3
3 32 17 4 6 2 4 6 2 4 6 2 4
4 96 41 5 54 3 5 54 3 5 22 3 5

For breadth one singular points as in system 3, methods B, C, and D yield the same deflated system.
Except for methods B and C on the second system, all four methods required the same number of
iterations to deflate the root. For the first and third systems, our new approach matched the best
of the other methods and resulted in a significantly smaller deflated system for the last one.
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