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Log-log Convergence for Noisy Optimization

S. Astete-Morales, J.-L. Liu, O. Teytaud

TAO (Inria), LRI, UMR 8623 (CNRS - Univ. Paris-Sud), France + AI Lab, National
Dong Hwa University, Hualien, Taiwan

Abstract. We consider noisy optimization problems, without the as-
sumption of variance vanishing in the neighborhood of the optimum. We
show mathematically that simple rules with exponential number of re-
samplings lead to a log-log convergence rate. In particular, in this case
the log of the distance to the optimum is linear on the log of the num-
ber of resamplings. As well as with number of resamplings polynomial
in the inverse step-size. We show empirically that this convergence rate
is obtained also with polynomial number of resamplings. In this polyno-
mial resampling setting, using classical evolution strategies and an ad hoc
choice of the number of resamplings, we seemingly get the same rate as
those obtained with specific Estimation of Distribution Algorithms de-
signed for noisy setting. We also experiment non-adaptive polynomial re-
samplings. Compared to the state of the art, our results provide (i) proofs
of log-log convergence for evolution strategies (which were not covered by
existing results) in the case of objective functions with quadratic expec-
tations and constant noise, (ii) log-log rates also for objective functions
with expectation E[f(x)] = ||x−x∗||p, where x∗ represents the optimum
(iii) experiments with different parametrizations than those considered
in the proof. These results propose some simple revaluation schemes.
This paper extends [1].

1 Introduction

In this introduction, we first present the noisy optimization setting and the local
case of it. We then classify existing optimization algorithms for such settings.
Afterwards we discuss log-linear and log-log scales for convergence and give an
overview of the paper. In all the paper, log represents the natural logarithm and
N is a standard Gaussian random variable (possibly multidimensional, depend-
ing on the context), except when it is specified explicitly that N may be any
random variable with bounded density.
Noisy optimization. This term will denote the optimization of an objective
function which has internal stochastic effects. When the algorithm requests
fitness(·) of a point x, it gets in fact fitness(x, θ) for a realization of a random
variable θ. All calls to fitness(·) are based on independent realizations of the
same random variable θ. The goal of a noisy optimization algorithm is to find x
such that E(fitness(x, θ)) is minimized (or nearly minimized).
Local noisy optimization. Local noisy optimization refers to the optimiza-
tion of an objective function in which the main problem is noise, and not local



minima. Hence, diversity mechanisms as in [2] or [3], in spite of their qualities,
are not relevant here. We also restrict our work to noisy settings in which noise
does not decrease to 0 around the optimum. This constrain makes our work dif-
ferent from [4]. In [5, 6] we can find noise models related to ours but the results
presented here are not covered by their analysis. On the other hand, in [7–9],
different noise models (with Bernoulli fitness values) are considered, inclusing
a noise with variance which does not decrease to 0 (as in the present paper).
They provide general lower bounds, or convergence rates for specific algorithms,
whereas we consider convergence rates for classical evolution strategies equipped
with resamplings.
Classification of local noisy optimization algorithms. We classify noisy
local convergence algorithms in the following 3 families:

– Algorithms based on sampling, as far as they can, close to the optimum ((I
don’t understand the “approximation to the optimum” part)) Maybe this
part was useless, I have removed it, is it ok without this part ?. In this cate-
gory, we include evolution strategies[10, 6, 5] and EDA[11] as well as pattern
search methods designed for noisy cases[12–14]. Typically, these algorithms
are based on noise-free algorithms, and evaluate individuals multiple times
in order to cancel (reduce) the effect of noise. Authors studying such algo-
rithms focus on the number of resamplings; it can be chosen by estimating
the noise level[15], or using the step-size, or, as in parts of the present work,
in a non-adaptive manner.

– Algorithms which learn (model) the objective function, sample at locations in
which the model is not precise enough, and then assume that the optimum
is nearly the optimum of the learnt model. Surrogate models and Gaussian
processes[?,16] belong to this family. However, Gaussian processes are usually
supposed to achieve global convergence (i.e. good properties on multimodal
functions) rather than local convergence (i.e. good properties on unimodal
functions) - in this paper, we focus on local convergence. ((Which can be a
problem when we have multimodal function? ))I rephrased, is it better now
?.

– Algorithms which combine both ideas, assuming that learning the objective
function is a good idea for handling noise issues but considering that points
too far from the optimum cannot be that useful for an optimization. This
assumption makes sense at least in a scenario in which the objective function
cannot be that easy to learn on the whole search domain ((This last sentence
seems confuse to me. “This” refers to what? the algorithms that mix both
ideas?))I rephrased, is it better ?. CLOP[7, 8] is such an approach.

Log-linear scale and log-log scale: uniform and non-uniform rates. To
ensure the convergence of an algorithm and analyze the rate at which it converges
are part of the main goals when it comes to the study of optimization algorithms.

In the noise-free case, evolution strategies typically converge linearly in log-
linear scale, this is, the logarithm of the distance to the optimum typically scales
linearly with the number of evaluations (see Section 2.1 for more details on this).
The case of noisy fitness values leads to a log-log convergence[9]. We investigate



conditions under which such a log-log convergence is possible. In particular, we
focus on uniform rates. Uniform means that all points are under a linear curve
in the log-log scale. Formally, the rate is the infimum of C such that with proba-
bility 1− δ, for m sufficiently large, all iterates after m fitness evaluations verify
log ||xm|| ≤ −C logm, where xm is the mth evaluated individual. This is, all
points are supposed to be “good” (i.e. satisfy the inequality); not only the best
point of a given iteration. In contrast, a non-uniform rate would be the infimum
of C such that log ||xkm || ≤ −C log km for some increasing sequence km.
The state of the art in this matter exhibits various results. For an objective func-
tion with expectation E[f(x)] = ||x−x∗||2, when the variance is not supposed to
decrease in the neighborhood of the optimum, it is known that the best possible
slope in this log-log graph is − 1

2 (see [17]), but without uniform rate. When
optimizing f(x) = ||x||p +N , this slope is provably limited to − 1

p under locality

assumption (i.e. when sampling far from the optimum does not help, see [9] for
a formalization of this assumption), and it is known that some ad hoc EDA can
reach − 1

2p (see [18]).
For evolution strategies, the slope is not known. Also, the optimal rate for
E[f(x)] = ||x−x∗||p for p 6= 2 is unknown; we show that our evolution strategies
with simple revaluation schemes have linear convergence in log-log representa-
tion in such a case.
Algorithms considered in this paper. We here focus on simple revaluation
rules in evolution strategies, based on choosing the number of resamplings. We
start with rules which decide the number of revaluations only depending on the
iteration number n. This is, independently of the step-size σn, the parents xn
and fitness values. To the best of our knowledge, these simple rules have not
been analyzed so far. Nonetheless, they have strong advantages: we get a linear
slope in log-log curve simple rules only depending on n whereas rules based on
numbers of resamplings defined as a function of σn have a strong sensitivity to
parameters. Also evolution strategies, contrarily to algorithms with good non-
uniform rates, have a nice empirical behavior from the point of view of uniform
rates, as shown mathematically by [18].
Overview of the paper. In this paper we show mathematical proofs and ex-
perimental results on the convergence of the evolutionary algorithms that will be
described in the following sections, which include some resampling rules aiming
to cancel the effect of noise. The theoretical analysis presents an exponential
number of resamplings together with an assumption of scale invariance. This
result is extended to an adaptive rule of resamplings (Section 2.3), in which the
number of evaluations depend on the step size only; we also get rid of the scale
invariant assumption. Essentially, the algorithms for which we get a proof have
the same dynamics as in the noise-free case, they just use enough resamplings
for cancelling the noise. This is consistent with the existing literature, in par-
ticular [18] which shows a log-log convergence for an Estimation of Distribution
Algorithm with exponentially decreasing step-size and exponentially increasing
number of resamplings.
In the experimental part, we see that another solution is a polynomially increas-



ing number of resamplings (independently of σn; the number of resamplings just
smoothly increases with the number of iterations, in a non-adaptive manner),
leading to a slower convergence when considering the progress rate per itera-
tion, but the same log-log convergence when considering the progress rate per
evaluation. We could get positive experimental results even with the non-proved
polynomial number of revaluations (non-adaptive); maybe those results are the
most satisfactory (stable) results. We could also get convergence with adaptive
rules (number of resamplings depending on the step-size), however results are
seemingly less stable than with non-adaptive methods.

2 Theoretical analysis: exponential non-adaptive rules
can lead to log/log convergence.

Section 2.1 is devoted to some preliminaries. Section 2.2 presents results in the
scale invariant case, for an exponential number of resamplings and non-adaptive
rules. Section 2.3 will focus on adaptive rules, with numbers of resamplings
depending on the step-size.

2.1 Preliminary: noise-free case

In the noise-free case, for some evolution strategies, we know the following
results, almost surely (see e.g. Theorem 4 in [19], where, however, the neg-
ativity of the constant is not proved and only checked by Monte-Carlo sim-
ulations (((I would delete this comment, I think it is a bit too specific and
it is not explored later. But maybe it is more important than what I can
see, so I am not sure)))OT:Ok for me): log(σn)/n converges to some con-
stant (−A) < 0 and log(||xn||)/n converges to some constant (−A′) < 0.
This implies that for any ρ < A, log(σn) ≤ −ρn for n sufficiently large. So,
supn≥1 log(σn) + ρn is finite. With these almost sure results, now consider V

the quantile 1 − δ/4 of exp
(
supn≥1 log(σn) + ρn

)
. Then, with probability at

least 1− δ/4, ∀n ≥ 1, σn ≤ V exp(−ρn). We can apply the same trick for lower
bounding σn, and upper and lower bounding ||xn||, all of them with probability
1 − δ/4, so that all bounds hold true simultaneously with probability at least
1− δ.
Hence, for any α < A′, α′ > A′, ρ < A, ρ′ > A, there exist C > 0, C ′ > 0,
V > 0, V ′ > 0, such that with probability at least 1− δ

∀n ≥ 1, C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn); (1)

∀n ≥ 1, V ′ exp(−ρ′n) ≤ σn ≤ V exp(−ρn). (2)

We will first show, in Section 2.2, our noisy optimization result (Theorem 1):
(i) in the scale invariant case
(ii) using Eq. 1 (supposed to hold in the noise-free case)

We will then show similar results in Section 2.3:
(i) without scale-invariance
(ii) using Eq. 2 (supposed to hold in the noise-free case)

(iii) with other resamplings schemes



2.2 Scale invariant case, with exponential number of resamplings

We consider Alg. 1, a version of multi-membered Evolution Strategies, the (µ,λ)-
ES. µ denotes the number of parents and λ the number of offspring (µ ≤ λ). In
every generation, the selection takes place among the λ offspring, produced from
a population of µ parents. Selection is based on the ranking of the individuals
according their fitness(·) taking the µ best individuals among the population.
Here xn denotes the parent at iteration n.

Algorithm 1 An evolution strategy, with exponential number of resamplings.
If we consider K = 1 and ζ = 1 we obtain the case without resampling. N is
an arbitrary random variable with bounded density (each use is independent of
others). (((In this case N is a standard Gaussian, right? )))OT: seemingly the
bounded density is enough (for the N used in the mutations).

Parameters: K > 0,ζ ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (3)

Evaluate each of them rn = dKζne times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1. (((the
computation is not determined? it doesnt matter? it is a general EA? it should
appear, i can’t find it. Maybe we could put it in the remarks below?)))OT: I
believe it does not matter, provided that the assumption of the theorem are valid.
n← n+ 1

end while

We now state our first theorem, under log-linear convergence assumption (the
assumption in Eq. 5 is just Eq. 1).

Theorem 1. Consider the fitness function
f(z) = ||z||p +N (4)

over Rd and x1 = (1, 1, . . . , 1).
Consider an evolution strategy with population size λ, parent population size µ,
such that without resampling, for any δ > 0, for some α > 0, α′ > 0, with
probability 1− δ/2, with objective function fitness(x) = ||x||,

∃C,C ′; C ′ exp(−α′n) ≤ ||xn|| ≤ C exp(−αn). (5)

Assume, additionally, that there is scale invariance:
σn = C ′′||xn|| (6)

for some C ′′ > 0.
Then, for any δ > 0, there is K0 > 0, ζ0 > 0 such that for K ≥ K0, ζ > ζ0, Eq.
1 also holds with probability at least 1 − δ for fitness function as in Eq. 4 and
resampling rule as in Alg. 1.



Remarks: (i) Informally speaking, our theorem shows that if a scale invari-
ant algorithm converges in the noise-free case, then it also converges in the noisy
case with the exponential resampling rule, at least if parameters are large enough
(a similar effect of constants was pointed out in [4] in a different setting).
(ii) We assume that the optimum is in 0 and the initial x1 at 1. Note that these
assumptions have no influence when we use algorithms invariant by rotation and
translation.
(iii) We show a log-linear convergence rate as in the noise-free case, but at
the cost of more evaluations per iteration. When normalized by the number of
function evaluations, we get log ||xn|| linear in the logarithm of the number of
function evaluations, as detailed in Corollary 1.

Proof of the theorem: In all the proof, N denotes a standard Gaussian
random variable (depending on the context, in dimension 1 or d). Consider an
arbitrary δ > 0, n ≥ 1 and δn = exp(−γn) for some γ > 0.

Define pn the probability that two generated points, e.g. i1 and i2, are such
that | ||i1||p − ||i2||p | ≤ δn.

Step 1: Using Eq. 3 and Eq. 6, we show that
pn ≤ B′ exp(−γ′n) (7)

for some B′ > 0, γ′ > 0 depending on γ, d, p, C ′, C ′′, α′.
Proof of step 1: with N1 and N2 two d-dimensional independent standard

Gaussian random variables,
pn ≤ P (| ||1 + C ′′N1||p − ||1 + C ′′N2||p | ≤ δn/||xn||p). (8)

Define densityMax the supremum of the density of | ||1+C ′′N1||p−||1+C ′′N2||p |
we get pn ≤ densityMaxC ′

−p
exp((pα′ − γ)n),

hence the expected result with γ′ = γ−pα′ and B′ = densityMax(C ′)−p. Notice
that densityMax is upper bounded.

In particular, γ′ is arbitrarily large, provided that γ is sufficiently large.

Step 2: Consider now p
(1)
n the probability that there exists i1 and i2 such

that | ||i1||p − ||i2||p | ≤ δn. Then, p
(1)
n ≤ λ2pn ≤ B′λ2 exp(−γ′n).

Step 3: Consider now p
(2)
n the probability that |N/

√
Kζn| ≥ δn/2. First,

we write p
(2)
n = P (N ≥ δn

2

√
Kζn). So by Chebychev inequality, p

(2)
n ≤

B′′ exp(−γ′′n) for γ′′ = log(ζ) − 2γ arbitrarily large, provided that ζ is large
enough, and B′′ = 4/K.

Step 4: Consider now p
(3)
n the probability that |N/

√
Kζn| ≥ δn/2 at least

once for the λ evaluated individuals of iteration n. Then, p
(3)
n ≤ λp(2)n .

Step 5: In this step we consider the probability that two individuals are

misranked due to noise. Let us now consider p
(4)
n the probability that at least

two points ia and ib at iteration n verify
||ia||p ≤ ||ib||p (9)

and noisyEvaluation(ia) ≥ noisyEvaluation(ib) (10)

where noisyEvaluation(i) is the average of the multiple evaluations of individual
i. Eqs. 9 and 10 occur simultaneously if either two points have very similar



fitness (difference less than δn) or the noise is big (larger than δn/2). Therefore,

p
(4)
n ≤ p(1)n + p

(3)
n ≤ λ2pn + λp

(2)
n so p

(4)
n ≤ (B′ +B′′)λ2 exp(−min(γ′, γ′′)n).

Step 6: Step 5 was about the probability that at least two points at iteration

n are misranked due to noise. We now consider
∑
n≥1 p

(4)
n , which is an upper

bound on the probability that in at least one iteration there is a misranking of
two individuals.
If γ′ and γ′′ are large enough,

∑
n≥1 p

(4)
n < δ.

This implies that with probability at least 1 − δ, provided that K and ζ have
been chosen large enough for γ and γ′ to be large enough, we get the same
rankings of points as in the noise free case - this proves the expected result.
The following corollary shows that this is a log-log convergence.

Corollary 1: log-log convergence with exponential resampling. With
en the number of evaluations at the end of iteration n, we have en = Kζ ζ

n−1
ζ−1 .

We then get, from Eq. 1,

log(||xn||)/ log(en)→ − α

log ζ
(11)

with probability at least 1− δ. Eq. 11 is the convergence in log/log scale.
We have shown this property for an exponentially increasing number of resam-
plings, which is indeed similar to R-EDA[18], which converges with a small num-
ber of iterations but with exponentially many resamplings per iteration. In the
experimental section 3, we will check what happens in the polynomial case.

2.3 Extension: adaptive resamplings and removing the scale
invariance assumption

We have assumed above a scale invariance. This is obviously not a nice feature
of our proof, because scale invariance does not correspond to anything real; in
a real setting we do not know the distance to the optimum. We show below an
extension of the result above using the assumption of a log-linear convergence
of σn as in Eq. 2 instead of the scale invariance used before.
In the corollary below, we also get rid of the non-adaptive rule with exponential
number of resamplings, replaced by a number of resamplings depending on the
step-size σn only, as in Eq. 2. In one corollary, we switch to both (i) adaptive



resampling rule and (ii) no scale invariance; each change can indeed be proved
independently of the other.

Algorithm 2 An evolution strategy, with number of resamplings polynomial
in the step-size. The case without resampling means Y = 1 and η = 0. N is
an arbitrary random variable with bounded density (each use is independent of
others).

Parameters: Y > 0,η ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using
ij = xn + σn,jN . (12)

Evaluate each of them rn = dY σn−ηe times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1.
n← n+ 1

end while

Corollary 2: adaptive resampling and no scale-invariance. The proof
of Theorem [1] also holds without scale invariance, under the following assump-
tions:
– For any δ > 0, there are constants ρ > 0, V > 0, ρ′ > 0, V ′ > 0 such that

with probability at least 1− δ, Eq. 2 holds.
– The number of revaluations is

Y

(
1

σn

)η
(13)

with Y and η sufficiently large.
– Individuals are still randomly drawn using xn +σnN for some random vari-

able N with bounded density.

Remark: This setting is useful in cases like self-adaptive algorithms, in
which we do not use directly a Gaussian random variable, but a Gaussian random
variable multiplied e.g. by exp( 1√

d
)Gaussian, with Gaussian a standard Gaus-

sian random variable. For example, SA-ES algorithms as in [19] are included in
this proof because they converge log-linearly as explained in Section 2.1.

Proof of corollary 2: Two steps of the proof are different, namely step 1
and step 2. We here adapt the proofs of these two steps.

Adapting step 1: Eq. 8 becomes Eq. 14:

pn ≤ P (| ||1 + C ′′nN1||p − ||1 + C ′′nN2||p | ≤ δn/||xn||p). (14)

where C ′′n = σn/||xn|| ≥ t′ exp(−tn) for some t > 0, t′ > 0 depending on
ρ, ρ′, V, V ′ only. Eq. 14 leads to

pn ≤ (C ′′n)−ddensityMaxC ′
−p

exp((pα′ − γ)n),

hence the expected result with γ′ = γ− pα′−dt. densityMax is upper bounded
due to the third condition of corollary 2.



Adapting step 2: It is sufficient to show that the number of resamplings is
larger (for each iteration) than in the Theorem 1, so that step 2 still holds.
Eq. 13 implies that the number of revaluations at step n is at least
Y
(

1
V

)η
exp(ρηn). This is more than Kζn, at least if Y and η are large enough.

This leads to the same conclusion as in the Theorem 1, except that we have
probability 1 − 2δ instead of 1 − δ (which is not a big issue as we can do the
same with δ/2).
The following corollary is here for showing that our result leads to the log-log
convergence.

Corollary 3: log-log convergence for adaptive resampling. With
en the number of evaluations at the end of iteration n, we have en =

Y
(

1
V

)η
exp(ρη) exp(ρηn)−1

exp(ρη)−1 . We then get, from Eq. 1,

log(||xn||)/ log(en)→ − α

ρη
(15)

with probability at least 1− δ. Eq. 15 is the convergence in log/log scale.

3 Polynomial number of resamplings: experiments

We here consider a polynomial number of resamplings, as in Alg. 3.

Algorithm 3 An evolution strategy, with polynomial number of resamplings.
The case without resampling means K = 1 and ζ = 0.

Parameters: K > 0,ζ ≥ 0, λ ≥ µ > 0, a dimension d > 0.
Input: an initial x1 ∈ Rd and an initial σ0 > 0.
n← 1
while (true) do

Generate λ individuals i1, . . . , iλ independently using

σn,j = σn × exp(
1√
d
N )

ij = xn + σn,jN . (16)

Evaluate each of them rn = dKnζe times and average their fitness values.
Select the µ best individuals j1, . . . , jµ.
Update: from x, σn, i1, . . . , iλ and j1, . . . , jµ, compute xn+1 and σn+1.
n← n+ 1

end while

Experiments are performed in a “real” setting, without scale invariance. Im-
portantly, our mathematical results hold only log-log convergence under the
assumption that constants are large enough. We present results with fitness
function f(x) = ||x||p +N with p = 2 in Fig. 1.

(((PLEASE CHECK THE FOLLOWING COMMENTS IN COMPARED
TO THE BIGNOISE AT EA2013)))



In experiments with the following parameters (as recommended in [10, 20]): p = 1
or p = 4, dimension 2, 3, 4, 5, ζ = 1, 2, 3, µ = min(d, dλ/4e), λ = dd

√
de, slopes

are usually better than −1/(2p) for ζ = 2 or ζ = 3 and worse for ζ = 1.
Non-presented experiments show that ζ = 0 performs very poorly. Seemingly
results for ζ large are farther from the asymptotic regime. We conjecture that
the asymptotic regime is −1/(2p) but that it is reached later when ζ is large.
R-EDA[18] reaches −1/(2p); we seemingly get slightly better but this might be
due to a non-asymptotic effect. Fig. 1 provides results with high numbers of
evaluations.

0 5 10 15
−5

−4

−3

−2

−1

0

1

log(Evaluations)

lo
g(
||y
||)

K=2
ζ=2
p=2
d=2

slope=−0.3267

(a) d = 2, ζ = 2.Slope = −0.3267.
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(b) d = 4, ζ = 2.Slope = −0.2829.
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(c) d = 2, ζ = 1.Slope = −0.2126.
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(d) d = 4, ζ = 1.Slope = −0.1404.

Fig. 1: Experiments in dimension 2, 3, 4 with ζ = 1, 2 (number of evaluations
shown by x-axis) for rn = Kdnζe (i.e. polynomial, non-adaptive) with µ = 2,
λ = 4, p = 2 and K = 2. The slope is evaluated on the second half of the
iterations. We get slopes close to −1/(2p). All results are averaged over 20 runs.

4 Experiments with adaptivity: Y σ−η
n revaluations

We here show experiments with Alg. 2. The algorithm should converge linearly in
log-log scale as shown by Corollary 3, at least for large enough values of Y and η.



Notice that we consider values of µ, λ for which log-linear convergence is proved
in the noise-free setting (see Section 2.1).In all this section, µ = min(d, dλ/4e),
λ = dd

√
de.

Slopes as estimated on the case η = 2 (usually the most favorable, and an im-
portant case naturally arising in sufficiently differentiable problems) are given in
Table 1 (left) for dimension d = 100. In this case we are far from the asymptotic
regime.

Table 1: Left: Dimension 100. Estimated slope for the adaptive rule with

rn = d
(

1
σn

)2
e resamplings at iteration n. Slopes are estimated on the second

half of the curve. Right: Dimension 10. Estimated slope for the adaptive rule

with rn = dY
(

1
σn

)2
e resamplings at iteration n (Y = 1 as in previous curves,

and Y = 20 for checking the impact of convergence; the negative slope (apparent
convergence) for Y = 20 is stable, as well as the divergence or stagnation for
Y = 1 for p = 4). Slopes are estimated on the second half of the curve.

d = 100

p slope for Y = 1

1 -0.52
2 -0.51
4 -0.45

d = 10

p slope for Y = 1 slope for Y = 20

1 -0.51 -0.50
2 -0.18 -0.17
4 >0 -0.08

We get results close to − 1
2 in all cases This slope of − 1

2 is reachable by
algorithms which learn a model of the fitness function, as e.g. [7]. In this case
of high dimension we are far from the slope 1/(−2p), which might be the case
for the asymptotic results. This is suggested by experiments in dimension 10
summarized in Table 1 (right). We also point out that the known complexity
bounds is − 1

p (from [9]), and maybe the slope can reach − 1
p in some cases.

Results with Y
(
1
σ

)η
are moderately stable (impact of Y , in particular). This

supports our preference for stable rules, such as non-adaptively choosing n2

revaluations per individual at iteration n.

5 Conclusion

We have shown mathematically log-log convergence results and studied experi-
mentally the slope in this convergence. These results were shown for evolution
strategies, which are known for having good uniform rates, rather than good
non-uniform rates(((We have not mention the regret in the paper before, this
comment maybe out of place, or otherwise maybe we could explain more?)))Yes,
citing regret is an overkill, I tried to rephrase. We summarize these two parts
below and give some research directions.
Log-log convergence. We have shown that the log-log convergence (i.e. linear



convergence with x-axis the log of the number of evaluations and y-axis the log
of the distance to the optimum) occurs in various cases:
– Non-adaptive rules, with number of resamplings exponential in the iteration

counter. Here we have a mathematical proof, which includes the assumption
of scale invariance; as shown by Corollary 2, this can be extended to non
scale-invariant algorithms;

– Adaptive rules, with number of resamplings polynomial in 1/σn with σn the
step-size. Here we have a mathematical proof; however, there is a strong sen-
sitivity to constants Y and η which participate in the number of resamplings

per individual, Y
(

1
σn

)η
;

– Non-adaptive rule, with polynomial number of resamplings. This case is a
quite convenient scheme experimentally but we have no proof.

Slope in log-log convergence. Experimentally, the best slope in the log-log
representation is often close to − 1

2p for fitness function f(x) = ||x||p +N . It is

known that under modeling assumptions (i.e. the function is regular enough for
being optimized by learning), it is possible to do better than that (the slope be-
comes −1/2 for parametric cases, see [7] and references therein), but − 1

2p is the
best known exponent under locality assumption. Basically, locality assumption
ensures that most points are reasonably good, whereas some specialized noisy
optimization algorithms sample a few very good points and essentially sample
individuals far from the optimum (see e.g. [7]).
Further work. The main further work is the mathematical analysis of the poly-
nomial number of resamplings in the non-adaptive case. Also, a combination of
adaptive and non-adaptive rules might be interesting; adaptive rules are intu-
itively satisfactory, but non-adaptive polynomial rules provide simple efficient
solutions, with empirically easy (no tuning) (((What is tuning? of the parame-
ters?)))JL:YES results. If our life depended on a scheme, we would for the mo-
ment choose a simple polynomial rule with a number of revaluations quadratic
in the number of evaluations, in spite of (maybe) moderate elegance due to lack
of adaptivity.
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