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ABSTRACT

Deep neural networks (DNN) are typically optimized with stochas-
tic gradient descent (SGD) using a fixed learning rate or an adaptive
learning rate approach (ADAGRAD). In this paper, we introduce a
new learning rule for neural networks that is based on an auxiliary
function technique without parameter tuning. Instead of minimizing
the objective function, a quadratic auxiliary function is recursively
introduced layer by layer which has a closed-form optimum. We
prove the monotonic decrease of the new learning rule. Our exper-
iments show that the proposed algorithm converges faster and to a
better local minimum than SGD. In addition, we propose a combi-
nation of the proposed learning rule and ADAGRAD which further
accelerates convergence. Experimental evaluation on the MNIST
database shows the benefit of the proposed approach in terms of digit
recognition accuracy.

Index Terms— DNN, back-propagation, auxiliary function
technique, gradient descent, adaptive learning rate.

1. INTRODUCTION

Deep neural networks have been become a hot topic and have been
successfully applied for many classification problems such as speech
recognition [1–3], speech separation [4–6], robust speech recogni-
tion [7–9], language modeling [10,11], and image classification [12].
DNN training is a highly non-linear optimization problem. The most
widely used optimization algorithm for DNN training is stochastic
gradient descent (SGD) [13]. Using SGD requires tuning of param-
eters such as the learning rate. When the rate is too small, it leads
to slow convergence. In contrast, a too large learning rate causes
instability or divergence. There are many approaches to overcome
the sensitivity to learning rate tuning. Many such approaches are
semi-Newton approaches based on an approximation of the Hessian
matrix [14–16]. An adaptive learning rate method was proposed
by Duchi et al [17] where the learning rate is computed by divid-
ing the global learning rate by the square of the accumulated gra-
dients of all past iterations. Mean-normalized stochastic gradient
descent [18] was proposed recently and shows significantly faster
convergence than conventional SGD. In this paper we introduce a
new learning rule for neural networks based on an auxiliary function
technique without parameter tuning and we analyze its effectiveness
by comparing it with existing methods such as gradient-based back-
propagation.

2. BACKGROUND

2.1. NN training

Let us consider an N -layer neural network (NN). Let kn be the num-
ber of elements (neurons) in the n-th layer, p the data index, and z

(n)
j,p

the output from the j-th element at the n-th layer for the p-th data.
P is number of data samples. Here we define x

(n)
i,p as the input to

the i-th element. Let w(n)
ij be the weight from the j-th element to the

i-th element and u
(n)
i be the i-th element of the bias term between

the n-th and the (n+1)-th layer. The neural network can be defined
as

x
(n+1)
i,p =

kn∑
j=1

w
(n)
ij z

(n)
j,p + u

(n)
i (1)

z
(n+1)
i,p = f(x

(n+1)
i,p ) (2)

where f represents a nonlinear function. Possible activation func-
tions include sigmoid, tangent hyperbolic, rectified linear unit [19]
and maxout [20] functions. The network is trained by minimizing a
certain loss function, such as the squared Euclidean distance or the
cross-entropy [21].

In the following, we consider the tangent hyperbolic function
and the squared Euclidean loss. The objective function can be ex-
pressed as

E =
1

2

P∑
p=1

kN∑
i=1

(z
(N)
i,p − yi,p)

2 +
λ

2

N∑
n=1

∑
i

∑
j

(w
(n)
i,j )

2 (3)

where the first term is the squared Euclidean distance between the
NN output and the target and the second term is a regularization
term that avoids over-fitting. The problem here is to find a set of
w

(n)
ij and u

(n)
i that minimize (3). The most widely used optimization

algorithm used for NN training is SGD:

w
(n)
ij,t+1 = w

(n)
ij,t + α∂Et/∂w

(n)
ij,t. (4)

The adaptive learning rate method ADAGRAD [17] is another pop-
ular algorithm whose learning rule is given by

w
(n)
ij,t+1 = w

(n)
ij,t + α

∂Et/∂w
(n)
ij,t√∑

t(∂Et/∂w
(n)
ij,t)

2

(5)

where α is a fixed learning rate which is set manually and t is the
iteration index. Note that these gradient based learning rules can
also be applied for u(n)

i .



2.2. Auxiliary function technique

Auxiliary function based optimization [22–26] has recently become
popular in other fields as exemplified by, e.g., the audio source sep-
aration techniques HPSS [27] and AuxIVA [28]. Following that, to
avoid learning rate tuning and derive an effective learning rule, we
introduce an auxiliary function technique for NN training. Instead
of minimizing the objective function, an auxiliary function is intro-
duced and the minimization procedure is applied to that auxiliary
function. Let us express the general optimization problem as:

w(n) = argmin
w(n)

E(w(n)). (6)

In the auxiliary function technique, an auxiliary function Q is de-
signed that satisfies

E(w(n)) ≤ Q(w(n), w
(n)
0 ) (7)

for all w(n) and all values of the auxiliary variable w
(n)
0 . The equal-

ity is satisfied if and only if w(n) = w
(n)
0 . Now, starting from an

initial parameter value w
(n)
0 , we can find the optimal value of w(n)

that minimizes Q(w(n), w
(n)
0 ):

w
(n)
1 = argmin

w(n)
Q(w(n), w

(n)
0 ). (8)

As a result

E(w(n)
1 ) ≤ Q(w

(n)
1 , w

(n)
0 ) ≤ Q(w

(n)
0 , w

(n)
0 ) = E(w(n)

0 ). (9)

The procedure can be applied iteratively. The inequality in (9) guar-
antees the monotonic decrease of the objective function. When the
auxiliary function is quadratic, this algorithm converges linearly but
at a typically faster rate than SGD [29]. Also, it does not require any
parameter tuning provided that (8) can be written in closed form.

3. QUADRATIC AUXILIARY FUNCTION FOR NEURAL
NETWORK

We derive two auxiliary functions at each layer: one relating to the
nonlinear activation function (2) and one relating to the linear com-
bination (1). We then combine these two auxiliary functions into a
single minimization scheme.

3.1. First quadratic auxiliary function

For simplicity, let us first omit the indices i, p, and n, and derive an
auxiliary function for

E = (z − y)2

= tanh2(x)− 2y tanh(x) + y2. (10)

The regularization term in (3) will be discussed later on. We derive
a quadratic auxiliary function using the following lemma.

Lemma 3.1 For any positive real numbers x and x0 and any real
number y, the following inequality is satisfied:

(tanh(x)− y)2 ≤ ax2 − 2bx+ c = Q (11)

where

a =A1(x0) + |y|A2(−σx0) (12)

b =y[σx0A2(−σx0) + sech2(x0)] (13)

c =−A1(x0)x
2
0 + tanh2(x0) + |y|A2(−σx0)x

2
0

+ 2y sech2(x0)x0 − 2y tanh(x0) + y2 (14)
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Fig. 1. a) The shape of A2; b) Illustration of generation of auxiliary
function from x0 = −1, y = 0.1.

and

σ = sign(y) (15)

A1(x0) =
sech2(x0) tanh(x0)

x0
(16)

A2(x0) = sup
x

tanh(x)− tanh(x0)− sech2(x0)(x− x0)

(1/2)(x− x0)2
(17)

The equality sign is satisfied if and only if x = x0.

Proof The objective function (10) includes two x terms: tanh2(x)
and 2y tanh(x). According to [30, Theorem 4.5], when f(x) is
an even, differentiable function on R such that the ratio f ′(x)/x is
decreasing on (0,∞), the inequality

f(x) ≤ g(x) =
f ′(x0)

2x0
(x2 − x2

0) + f(x0) (18)

is satisfied.
Also, according to [30], if a function f(x) is differentiable in x,

and

A(x0) = sup
z

f(x)− f(x0)− f ′(x0)(x− x0)
1
2
(x− x0)2

(19)

has a finite positive value, then

f(x) ≤ f(x0) + f ′(x0)(x− x0) +
1

2
A(x0)(x− x0)

2 (20)

is satisfied for all x and x0. By substituting f(x) = tanh2(x) into
(18), and f(x) = y tanh(x) where y can be positive or negative into
(20), we have (11).

Note that A2(x0) can not computed in closed form. But we can
prepare a table of A2(x0) in advance. Fig. 1 shows the shape of
A2(x0) and an example of the auxiliary function.

3.2. Second auxiliary function for separating variables

Now that we have derived an auxiliary function as a function of the
inputs x(n)

i,p in one layer, we need to propagate it down to the outputs

z
(n−1)
j,p of the previous layer. Once again, let us omit the indices i, p,

and n, and consider

x =
∑
j

wjzj + u. (21)

We wish the auxiliary function to decompose as a sum of terms, each
relating to one neuron zj , such that Lemma 3.1 can be applied again
at the lower layer. Note that plugging (21) into (11) induces some
cross-terms of the form zjzj′ . In order to separate the contribution
of each zj additively, we apply the following lemma.



Lemma 3.2 For x =
∑

j wjzj + u, the inequality

ax2 + bx+ c ≤
J∑

j=1

[aJw2
j (zj − yj)

2 + aJ(β2
j − y2

j )]

+ au2 + bu+ c = R (22)

is satisfied for any βj such that
∑J

j=1 βj = 0 where

yj =
(2aJβj − 2au− b)wj

2aJw2
j

. (23)

The equality is satisfied if and only if

βj = wjzj −
1

J

J∑
j=1

wjzj . (24)

Proof Generally for any sj and βj , minimizing
∑J

j=1(sj − βj)
2

under the constraint that
∑J

j=1 βj = 0, we have the inequality(
J∑

j=1

sj

)2

≤ J

J∑
j=1

(sj − βj)
2. (25)

Applying this inequality to the case where sj = wjzj , we obtain
inequality (22).

3.3. Recursively deriving auxiliary functions

Based on Lemmas 3.1 and 3.2, we now have two kinds of auxiliary
functions for the first term of E in (3) with the following forms:

Q(N) =
∑
p

∑
i

a
(N)
i,p (x

(N)
i,p )2 + b

(N)
i,p x

(N)
i,p + c

(N)
i,p (26)

R(N) =
∑
p

∑
i

∑
j

a
(N)
i,p J(N−1)(w

(N−1)
ij )2(z

(N−1)
j,p − y

(N−1)
j,p )2

+ a
(N)
i,p (u

(N−1)
i )2 + b

(N)
i,p u

(N−1)
i + c

(N)
i,p + const (27)

where a
(N)
i,p , b(N)

i,p , c(N)
i,p , and y

(N−1)
j,p are defined in (12), (13), (14),

and (23), respectively, J(N−1) is the number of neurons in the (N −
1)-th layer, and const represents a term unrelated to optimization.

The expression of R(N) is similar to that of the original objective
function in that it is a sum of squared error terms of the form (z −
y)2. Therefore, we can recursively apply the above two lemmas in
decreasing layer order n in a similar fashion as conventional back-
propagation and obtain a sequence of auxiliary functions such that

E ≤ Q(N) ≤ R(N) ≤ Q(N−1) ≤ R(N−1) · · · (28)

which guarantee the monotonic decrease of the objective function
overall.

The optimal values of w(n−1)
ij and u

(n−1)
i can be obtained by

minimizing the sum of Q(n) and the quadratic regularization term in
(3). This minimization is costly as it involves some quadratic cross-
terms. Noticing that the role of wj and zj in (21) is symmetric, we
can derive a separable majorizing function for Q(n) which has the
same expression as (22) where the variables wj and zj are switched
in (22) and (23). Each w

(n−1)
ij and u

(n−1)
i can then be separately

computed by minimizing the sum of this majorizing function and
the regularization term instead.

4. ALGORITHMS

4.1. Auxiliary function based NN training

In summary, each iteration of the auxiliary function based NN train-
ing (AuxNNT) algorithm is described in Algorithm 1.

Algorithm 1 Auxiliary function based method (AuxNNT)

Require: Initial parameters w(n)
ij , u(n)

i for all i, j, n

Compute forward pass using (1) and (2).

for n = N to 2

1. Compute auxiliary function coefficients as follows:

σ
(n)
i,p = sign(y

(n)
i,p )

a
(n)
i,p = A1(x

(n)
i,p ) + |y

(n)
i,p |A2(−σ(n)

i,p x
(n)
i,p )

b
(n)
i,p = y

(n)
i,p [σ

(n)
i,p x

(n)
i,p A2(−σ(n)

i,p x
(n)
i,p ) + sech2(x

(n)
i,p )]

β
(n)
i,j,p = w

(n−1)
ij z

(n−1)
j − 1

J(n−1)

J∑
j=1

w
(n−1)
ij z

(n−1)
j

y
(n−1)
j,p =∑

i

(
2a

(n)
i,p J

(n−1)βi,j,p − 2a
(n)
i,p u

(n−1)
i − b

(n)
i,p

)
w

(n−1)
ij∑

i 2a
(n)
i,p J

(n−1)(w
(n−1)
ij )2

2. Update the parameters in (n− 1)-th layer as follows:

w
(n−1)
ij =∑

p

(
2a

(n)
i,p J(n−1)βi,j,p − 2a

(n)
i,p u

(n−1)
i − b

(n)
i,p

)
z
(n−1)
j,p∑

p 2a
(n)
i,p J(n−1)(z

(n−1)
j,p )2 + λ

PI(n)

u
(n−1)
i =∑

p

(
−2a

(n)
i,p J(n−1)

∑
j

(
w

(n−1)
ij z

(n−1)
j,p

)
− b

(n)
i,p

)
∑

p 2a
(n)
i,p J(n−1)

endfor

4.2. Hybrid algorithm

One benefit of the proposed AuxNNT method is that it can be com-
bined with any gradient based method such as ADAGRAD [17]. The
gradient can be computed at any point based on the parameters of the
auxiliary function with lower computational effort. We observed in
preliminary experiments that, when the change in the parameter val-
ues from the previous to the current iteration is small, ADAGRAD
results in a greater decrease of the objective function than AuxNNT
because the learning rate at the current iteration increases.

We propose an hybrid approach called Hybrid auxNNT that
takes advantage of both methods. Specifically, when the change in
the parameter values is small, several iterations of ADAGRAD are
performed. We then select the iteration number for which the gradi-
ent is largest and continue with AuxNNT onwards, until the change
in the parameter values becomes small again. This hybrid method
relies on two tuning parameters: a parameter change threshold ε
and the number teval of ADAGRAD iterations. The details of each



iteration of this hybrid algorithm are described in Algorithm 2. Note
that∇E2 is initialized by 0 at first iteration.

Algorithm 2 Hybrid method (Hybrid AuxNNT)

Require: Initial parameters w(n)
ij , u(n)

i for all i, j, n

Require: global learning rate α, threshold ε, number of gradient
evaluations teval.

1. Compute forward pass.
2. Compute auxiliary function coefficients using Algorithm 1.
3. Update the parameters for all layers using Algorithm 1.
4. Fold wij and ui into a vector θ.
5. Compute gradient ∂E/∂θk.
6. Accumulate square of gradient ∆← ∆+ (∂E/∂θk)2.
7. Compute δθk = θk,previous − θk,current
if
∑

k(δθk)
2 < ε then

for t = 1 to teval do
Compute gradient ∂E/∂θk,t.
θk,t+1 := θk,t + α

∂Et/∂θk,t√
∆+

∑
t(∂Et/∂θk,t)

2

end for
tmax = argmaxt∈{1...teval}

∑
k(∂E/∂θk,t)2

θk = θk,tmax .
end if
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Fig. 2. Training and testing progress on MNIST database.

5. EXPERIMENTAL EVALUATION

To analyze the effectiveness of the proposed methods, we conducted
two experiments on the MNIST handwritten digits database [12]. In
both experiments, all parameters were initialized to random num-
bers drawn uniformly from the interval −

√
6/(nin + nout + 1),√

6/(nin + nout + 1) where nin is the the number of inputs feed-
ing into a neuron and nout is the the number of units that a neuron
feeds into.

In the first experiment, we learned an auto-encoder and analyzed
the value of the objective function, a.k.a the training error, over the
iterations. Note that the objective function for the auto-encoder clas-
sically includes a sparsity term which we did not include here. Two
auto-encoders were built: the first one has one hidden layer with 25
neurons and the second one has two hidden layers with 25 neurons
in each hidden layer. The input and output layers have 64 neurons.
To generate a training set, we sample 10000 8×8 image patches and
concatenate them into a 64× 10000 matrix. Fig. 2 (a) and (b) show
that the AuxNNT method results in monotonic decrease of the train-
ing error and converges faster and to a better solution than SGD. The
computational cost of one iteration of SGD and AuxNNT is equal to
0.02 s and 0.047 s for 100 samples, respectively, for both three-layer
and four-layer networks.

In the second experiment, we analyse the results in terms of clas-
sification accuracy over test data. A simple neural network was de-
signed where the input is a 28× 28 image folded into a 784 dimen-
sional vector and the output is the 10 dimensional posterior proba-
bility vector over the 10 digit classes. For example if the target is the
digit “2”, then the second element of the output vector is equal to 1
and the 9 remaining elements are equal to 0. There are two hidden
layers with 25 neurons for each layer. When decoding, the recog-
nized digit corresponds to the biggest element in the output vector.
The training data contains 10000 image samples. The optimal learn-
ing rate was set for ADAGRAD and SGD. Fig. 2 (c) shows that
AuxNNT outperforms SGD and Hybrid AuxNNT outperforms all
other techniques, including ADAGRAD. Using the Hybrid AuxNNT
method, we achieved 98.4% accuracy while with ADAGRAD the
accuracy was 98.1%.

To reduce the computation cost of the Hybrid AuxNNT method,
we used 1000 samples only to compute the gradient since we found
in preliminary experiments that using all data did not significantly
affect performance. All data were used to compute the gradient for
ADAGRAD, however, since using only 1000 samples was found to
degrade ADAGRAD’s performance. The computation cost of one
iteration of the Hybrid AuxNNT method is equal to 0.052 s for 100
samples.

6. CONCLUSION

A new learning rule was proposed for neural networks based on an
auxiliary function technique without parameter tuning. Instead of
minimizing the objective function, a quadratic auxiliary function is
recursively introduced layer by layer which has a closed form op-
timum. We also proved the monotonic decrease of the new update
rule. Experimental results on the MNIST database showed that the
proposed algorithm converges faster and to a better solution than
SGD. In addition, we found the combination of ADAGRAD and the
proposed method to accelerate convergence and to achieve a better
performance than ADAGRAD alone. In the future, we will seek to
improve the proposed AuxNNT method by using information from
previous iterations as well as applying it to robust speech recognition
and speech separation tasks.
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