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FAST INTEGER MULTIPLICATION USING GENERALIZED FERMAT

PRIMES

SVYATOSLAV COVANOV AND EMMANUEL THOMÉ

Abstract. For almost 35 years, Schönhage-Strassen’s algorithm has been the fastest algo-
rithm known for multiplying integers, with a time complexity O(n·logn·log logn) for multiply-
ing n-bit inputs. In 2007, Fürer proved that there exists K > 1 and an algorithm performing
this operation in O(n · logn · K log∗ n). Recent work by Harvey, van der Hoeven, and Lecerf
showed that this complexity estimate can be improved in order to get K = 8, and conjecturally
K = 4. We obtain here the same result K = 4 using simple modular arithmetic as a building
block, and a careful complexity analysis. We obtain a similar result K = 4 using an alternative
somewhat simpler algorithm, which relies on arithmetic modulo generalized Fermat primes.

1. Introduction

Beyond the schoolbook algorithm, the first nontrivial algorithm improving the complexity
for multiplying n-bit integers is Karatsuba’s algorithm in the 1960’s [17], which reaches the
complexity O(nlog2 3), using a divide-and-conquer method. The Karatsuba algorithm can be
viewed as a simple case of a more general evaluation-interpolation paradigm. Indeed, it consists
in the evaluation of two polynomials in 0, 1 and∞, followed by a component-wise multiplication,
and an interpolation phase involving a multiplication by a 3 × 3 matrix. By generalizing this
evaluation-interpolation approach, it is possible to improve the complexity to O(n1+ǫ) for any
ǫ > 0. This result is known as the Toom-Cook algorithm [23]. In [21], Schönhage and Strassen
reached the O(n · logn · log logn) complexity using the fast Fourier transform (FFT), which is a
divide-and-conquer algorithm allowing one to quickly evaluate a polynomial at the powers of a
primitive root of unity [25]. The key to achieve this complexity result is the appropriate choice
of a base ring R in which evaluation is to be carried out, and in which recursive calls to the
multiplication algorithms are also done. The most popular variant of the Schönhage-Strassen
algorithm uses R = Z/(2t + 1)Z, where 2 is a primitive 2t-th root of unity, t being chosen close

to
√
n.

For almost 35 years, this complexity estimate remained unbeaten, until Fürer proposed in [10]
a new algorithm also relying on the FFT, but using a different ring, namely R = C[x]/(xP +1) for
P a suitably chosen power of 2. This combines the benefits of the Schönhage-Strassen algorithm
with the possibility to use larger transform length, thereby allowing recursive calls on shorter
data. This eventually yields complexity O(n · logn ·K log⋆ n) for some constant K.

A variant was subsequently proposed by De, Kurur, Saha and Saptharishi in [6], using,
roughly speaking, R = Qp[x]/(x

P + 1) with finite precision (which means working in the ring
Z/pλZ[x]/(x

P + 1)), and with similar complexity. Be it either in Fürer’s original context with
complex coefficients, or in this p-adic case, some work is needed to properly estimate the required
complexity. However the p-adic case makes the analysis easier.
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In [16], Harvey, van der Hoeven and Lecerf proposed a new algorithm and a sharper complexity
analysis that allows one to make the complexity more explicit, namely O(n · logn · 8log∗ n) and

even O(n · logn · 4log∗ n) using a conjecture on Mersenne primes.

We will show in this article a different strategy to reach the O(n · logn · 4log∗ n) by a few
variations to the original algorithm proposed by Fürer. Our approach adapts an idea from [9]
relying on the (unfortunately unlikely) assumption that there exists an infinite sequence of Fermat
primes. Indeed, it appears that we can use the same idea for generalized Fermat primes, which are

primes of the form r2
λ

+1. Moreover, the assumption that we use is heuristically valid. This idea,
combined with a sharp complexity analysis, permits to reach the complexity O(n · logn · 4log∗ n).
Although we obtain a conditional and identical complexity to the one proposed in [16], the
algorithms involved are quite distinct. Thus, we present a new algorithm and some theoretical
and numerical results about generalized Fermat primes.

This article is organized as follows. Section 2 describes the essential building blocks we use
for our algorithm. We describe in Section 3 Fürer’s algorithms and give a sketch of Harvey,
van der Hoeven and Lecerf contribution. The Section 4 gives a lower bound on the density of
generalized Fermat primes defined by the Bateman-Horn conjecture [2] and numerical evidences
for a hypothesis on which the main result of this paper relies. Section 5 describes the general
course of our algorithm and, in particular, how to use the generalized Fermat primes in order
to speed-up the multiplication of two n-bit integers. In Section 6 a sharp complexity analysis
is given, leading to the announced conjectural and deterministic binary complexity. Section 7
develops some practical aspects of the algorithm described in this work.

Throughout the article, log2 x denotes the logarithm in base 2, and log x denotes the classical

logarithm. We use the notation log
(m)
2 to denote the m-th iterate of the log2 function, so that

log
(m+1)
2 = log2 ◦ log

(m)
2 .

2. FFT-based multiplication

2.1. Integers to polynomials. Let a and b be n-bit integers. We intend to compute the integer
product c = ab. The Kronecker substitution technique associates to a and b two univariate
polynomials A and B such that a = A(η) and b = B(η), for η a suitable power of 2. The
coefficients of A and B can be read off from the base η expansion of the integers a and b, and are
therefore bounded by η. These polynomials are then interpreted in some ring R, and multiplied
modulo a polynomial, so that the result can be recovered as c = C(η), where the coefficients
of C are interpreted as integers. This expression is valid when η is suitably chosen, so that no
overflow happens in the computation of the polynomial product.

The core of this procedure is the modular multiplication in R, which is done with Algorithm 1
which multiplies modulo the minimal polynomial of the set of evaluation points S.

Algorithm 1 Polynomial Multiplication

Input: A,B two polynomials in R[x] whose product has degree less than N , and S a set of N
evaluation points

Output: C = A ·B
function PolynomialMultiply(A,B)

A← MultiEvaluation(A,S)
B ← MultiEvaluation(B,S)
C ← PointwiseProduct(A,B)
C ← Interpolation(C,S)
return C

end function
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Besides the cost of the MultiEvaluation and Interpolation routines, which will be discussed
further, the cost of the PointwiseProduct step in Algorithm 1 is easily seen to be exactly N
products in the ring R.

Throughout the article, we use the notations above. Namely, the integer n denotes the bit size
of the integers whose product we intend to compute. Integers are represented by polynomials
evaluated at some η as above. We use an evaluation-interpolation approach, using evaluation at
N = 2k points, which are successive powers of an appropriately chosen N -th root of unity in a
ring R. The bit size used for representing elements in R is denoted by t.

2.2. Cooley-Tukey FFT. Let N be a power of 2 and R be a ring containing an N -th principal
root of unity ω, whose definition is given in definition 2.

Definition 1. Let R be a ring containing an N -th root of unity ω. ω is said to be an N -th
primitive root of unity if

∀i ∈ [[1, N − 1]], ωi 6= 1.

Definition 2. Let R be a ring containing an N -th root of unity ω. ω is said to be an N -th
principal root of unity if

∀i ∈ [[1, N − 1]],

N−1∑

j=0

ωij = 0.

One can notice that a principal root of unity is necessarily a primitive root of unity, but the
opposite is wrong.

Example 3. In C×C, the element (1, i) is a 4-th primitive root of unity but not a 4-th principal
root of unity.

Definition 4 (Discrete Fourier Transform (DFT)). Let R be a ring with ω an N -th principal
root of unity.

The N -point DFT over R is the isomorphism mapping an element of R[x]/(xN − 1) to

R[x]/(x− 1)×R[x]/(x− ω)× . . .×R[x]/(x− ωN−1).

Definition 5 (Half Discrete Fourier Transform (half-DFT)). Let R be a ring with ω an 2N -th
principal root of unity. The N -point half-DFT over R is the isomorphism mapping an element
of R[x]/(xN + 1) to

R[x]/(x− ω)×R[x]/(x− ω3)× . . .×R[x]/(x− ω2N−1).

The DFT evaluates polynomials at all the powers of ω: given P ∈ R[X ], the DFT returns

P (1), P (ω), P (ω2), . . . , P (ωN−1)

(equivalently, we will identify this N -uple with the polynomial having these coefficients). The
set of powers of ω will play the role of the set of evaluation points S mentioned in Algorithm 1.

We can describe an algorithm computing the DFT of N points in R using a divide-and-
conquer strategy. This algorithm is the Cooley-Tukey FFT [5] (Fast Fourier Transform), which
corresponds to Algorithm 2.

One notices that Algorithm 2 takes as a parameter a composition rule ∗ such that:

T : (P ∈ R[X ], α)→ P (α ·X).

This map corresponds by default to a procedure computing the multiplications of the coefficients
Pi of P by αi by using for instance a recursive call or the school-book multiplication. Thus,
the complexity of Algorithm 2 can be expressed recursively. Each call to Radix2FFT involves 2
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Algorithm 2 Radix-2 FFT algorithm

Input: P =
∑N−1

i=0 piX
i a polynomial in R[X ] of degree N − 1 = 2k − 1, ω an N -th root of

unity, T a map computing twiddle factors
Output: P (1) + P (ω)X + · · ·+ P (ωN−1)XN−1

function Radix2FFT(P ,ω,N ,∗)
if N = 1 then

return P
else

Q0 ←
∑N/2−1

j=0 p2jX
i

Q1 ←
∑N/2−1

j=0 p2j+1X
i

Q0 ← Radix2FFT(Q0, ω
2)

Q1 ← Radix2FFT(Q1, ω
2)

P ← Q0(X) + T (Q1, ω) +XN/2(Q0(X)− T (Q1, ω))
return P

end if

end function

recursive calls on half-size inputs as well as O(N) multiplications (the composition of Q1 and ω)
and additions in R. We thus have

C(N) = 2C(N/2) +O(N)

from which it follows that O(Nk) = O(N log2 N) operations in the ring R are required.
Given a polynomial P (x) over a ring R containing a 2N -th principal root of unity ω, we

get Q(x) = P (x) mod (xN − 1) by computing the FFT of P using ω2 as an N -th root of
unity. In order to compute R(x) = P (x) mod (xN + 1), one can compute Q′(x) = P (ω · x)
mod ((ω · x)N − 1) = P (ω · x) mod (xN + 1) and then R(x) = Q′(ω−1 · x), which means that
the FFT can compute the N -point half-DFT with 2N additional multiplications due to the
composition with (ω · x) and (ω−1 · x).

A more general form of the Cooley-Tukey FFT recursion exists. This starts by writing the
transform length N = 2k as N = N1N2 = 2k1+k2 , with Ni = 2ki . We organize the coefficients
of the input polynomial P as the columns of an N1 × N2 matrix, and then perform N1 “row”
transforms of length N2, followed by N2 “column” transforms of length N1. This is Algorithm 3.

One easily sees that Algorithm 3 specializes to Algorithm 2 when k1 = 1. Algorithm 3 leaves
unspecified which algorithm is used for the recursive calls denoted by FFT, or more precisely
nothing is prescribed regarding how transform length are to be factored as N = N1N2 in general.

This “matrix” form of the Cooley-Tukey FFT appeared several times in literature. It is
often observed that effectively doing the transposition of the polynomial coefficients, and use
Algorithm 3 for balanced transform lengths N1, N2 leads to a better performing implementation.
As we observe below, this has a stronger impact in the context of Fürer’s algorithm.

2.3. Complexity of integer multiplication.

Notation 6. Let M(n) denote the binary complexity of the multiplications of two n-bit integers.

By combining the evaluation-interpolation scheme of §2.1 with FFT-based multi-evaluation
(and interpolation, which is essentially identical and not discussed further), we obtain quasi-
linear integer multiplication algorithms. We identify several tasks whose cost contribute to the
bit complexity of such algorithms.

• converting the input integers to the polynomials in R[X ];
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Algorithm 3 General Cooley-Tukey FFT

Input: P =
∑N−1

i=0 piX
i ∈ R[X ] of degree N − 1 = N1N2 − 1 with N = 2k and Ni = 2ki , and

ω an N -th root of unity
Output: P (1) + P (ω)X + · · ·+ P (ωN−1)XN−1

function LargeRadixFFT(P ,ω,N)

Let (Qi(X))i be a sequence in R[X ] such that P (X) =
∑N1−1

i=0 Qi(X
N1)X i

for i ∈ [[0, N1 − 1]] do

Qi ← FFT(Qi, ω
N1)

Qi ← Qi(ω
iX)

end for

Let (Sj(Y ))j be a sequence in R[Y ] such that
∑

iQi(X)Y i =
∑

j Sj(Y )Xj

for j ∈ [[0, N2 − 1]] do

Sj(Y )← FFT(Sj , ω
N2)

end for

return
∑N2

j=0 Sj(X
N1)Xj

end function

• multiplications by roots of unity in the FFT computation;
• linear operations in the FFT computation (additions, etc);
• point-wise products involving elements of R. Recursive calls to the integer multiplication

algorithm are of course possible;
• recovering an integer from the computed polynomial.

The first and last items have linear complexity whenever the basis η from §2.1 is chosen as a
power of 2 and the representation of elements of R is straightforward. Using notations described
in §2.1, we have a bit complexity: M(n) = O(C(N) ·KFFT(R))+O(N ·KPW(R)) where KPW(R)
denotes the binary cost for the point-wise products in R, while KFFT(R) denotes the cost for the
multiplication by elements of R which occur within the FFT computation. The costs KPW(R)
and KFFT(R) may differ slightly.

More precise bit complexity estimates depend of course on the choice of the base ring R. Some
rings have special roots of unity allowing faster operations (multiplication, addition, subtraction
in R) than others. We now discuss several possible choices.

2.4. Choice of the base ring. There are several popular options for choosing the ring R, which
were given in [21]. We describe their important characteristics.

When it comes to roots of unity, choosing R = C might seem natural. This needs careful
analysis of the required precision.

• A precision of t = Θ(log2 n) bits is compatible with a transform length N = O( n
log2 n ).

• The cost KFFT(R) verifies KFFT(R) = KPW(R) = M(log2 n).

Whence we obtain M(n) = O(N log2 N ·M(log2 n)) = O(n ·M(log2 n). This leads to

M(n) = 2O(log∗

2 n) · n · log2 n · log
(2)
2 n · log(3)2 · . . . ,

where O(log∗2 n) is the number of recursive calls.
Schönhage and Strassen proposed an alternative, namely to use the ring R = Z/(2t + 1)Z.

• In this case, t verifies t = Θ(
√
n) and N = Θ(

√
n).

• The cost KFFT(R) corresponds to N log2 N multiplications by powers of two in R, which
has a linear cost in the bitsize of elements of R, so KFFT(R) = O(

√
n).

• The cost KPW(R) is the cost of a recursive call to the Schönhage-Strassen’s algorithm,
so KPW(R) = M(O(

√
n)).
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This leads to the complexity equation M(n) ≤ O(n log2 n) + 2
√
nM(

√
n), which leads to the

complexity O(n log2 n log
(2)
2 n).

Pollard described in [19] how to compute the FFT when R is a field Fp. This method supposes
to know for each bitsize n a good composite number Pn = p1,n...pr,n where the pi,n are primes
and to use the chinese remainder theorem after having computed r FFT in R = Z/pi,nZ. We

may suppose that r is "small" (r = 1 or r = 2). Thus, there should exist an algorithm computing
the function mapping a size n to a prime pn such that pn − 1 is highly composite.

• The primes pi,n have to be of the order of magnitude of O( log2 n
r ), which means that

N = O( n
logn ).

• In this case, the costs KPW(R) and KFFT(R) verify the same property as in the case
R = C.

We have to suppose that the sum of the costs of computing these primes is negligible compared
to the computation of the FFT. The computation of an N -th principal root of unity in Z/pnZ
for all the pn should be negligible as well. Thus, we get the same complexity as in the complex
field.

3. Fürer-type bounds

The two first choices mentioned in §2.4 have orthogonal advantages and drawbacks. The
complex field allows larger transform length, shorter recursion size, but suffers, when look-
ing at the cost KFFT(C), from expensive roots of unity which leads to the product log2 n ·
log

(2)
2 n · · · log(log

⋆ n)
2 n.

Fürer proposed two distinct algorithms in [9] and [11]. In [9], the proposed scheme relies on
the assumption that there are infinitely many Fermat primes, which seems unlikely. Since the
algorithm brought by the current work builds upon such a strategy, and can be seen as a fix to
the fact that there are not enough Fermat primes, we briefly review here [9] and [11].

In [16], Harvey, van der Hoeven and Lecerf propose new algorithms achieving a bound similar
to the one that Fürer gets. These algorithms rely on Bluestein’s chirp transform [3] and they
will not be detailed. However, a whole framework has been developped in the same paper, and
this framework will be useful to the analysis of the algorithm proposed in the current work.

3.1. The Fermat prime multiplication.

Notation 7. Let Fλ denote the λ-th Fermat number 22
λ

+ 1.

In [9], Fürer suggests an algorithm relying on the following assumption : there exists k > 0
such that for every m, there is a Fermat prime in the sequence Fλ+1, Fλ+2, . . . , F2λ+k . Thus, it
is tempting to compute the product of two integers of n-bit by using the FFT algorithm in a

finite field Z/pZ where p is a Fermat prime Fλ such that 2λ < n < 22
λ−1

2λ−2.

Indeed, since 2 is a 2λ-th root of unity in Z/FλZ, a fraction of the multiplications by a root of
unity during the FFT are equivalent to a negacyclic permutation. The presence of the factor k in
the assumption related to Fermat primes imply that a few calls to Schönhage-Strassen algorithm
might have to be done.

The algorithm 4 follows the same scheme as PolynomialMultiply. In Z/FλZ, 3 is a principal
(Fλ − 1)-th root of unity, which explains how it is possible to obtain an N -th principal root of
unity.

FFTModFermat is a modification of LargeRadixFFT in the particular case where N is a power
of 2. We decompose N as N = 2λ · N

2λ
and we call recursively FFTModFermat for the N

2λ
-points

FFT whereas we call Radix2FFT for the 2λ-points FFT.
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Algorithm 4 Multiplication of integers modulo a Fermat Prime

Input: a and b two n-bit integers, Fλ a Fermat prime such that 2λ < n < 22
λ−1

2λ−2

Output: a · b mod 2n − 1
function IntegerMultiplyModFermat(a,b,n,λ)

Let A ∈ Z/FλZ[X ] be the polynomial such that A(2λ−2) = a
Let B ∈ Z/FλZ[X ] be the polynomial such that B(2λ−2) = b

A′ ← FFTModFermat(A, 3(Fλ−1)/N , λ, 2λ−1)
B′ ← FFTModFermat(B, 3(Fλ−1)/N , λ, 2λ−1)
C ← PointwiseProduct(A′, B′)
return FFTModFermat(C, 3−(Fλ−1)/N mod Fλ, λ)

end function

Algorithm 5 FFT modulo a Fermat Prime

Input: N a power of two, Fλ a Fermat prime, P a polynomial in R[X ] = Z/FλZ of degree
N − 1, ω a N -th principal root of unity

Output: P (1) + P (ω)X + · · ·+ P (ωN−1)XN−1

function FFTModFermat(P ,ω,λ,N)
if N ≤ 2λ then

return Radix2FFT(P, ω,N, TFλ
)

end if

N1 ← 2λ

N2 ← N/N1

Let (Qi(X))i be a sequence in R[X ] such that P (X) =
∑N1−1

i=0 Qi(X
N1)X i

for i ∈ [[0, N1 − 1]] do

Qi ← FFTModFermat(Qi, ω
N1, λ,N2)

Qi ← Qi(ω
iX)

end for

Let (Sj(Y ))j be a sequence in R[Y ] such that
∑

iQi(X)Y i =
∑

j Sj(Y )Xj

for j ∈ [[0, N2 − 1]] do

Sj(Y )← Radix2FFT(Sj , ω
N2, N1, TFλ

)
end for

return
∑N2

j=0 Sj(X
N2)Xj

end function

Since the 2λ-th principal roots of Z/FλZ are powers of 2, the multiplications involved in the 2λ-

points FFT are negacyclic shifts of 2λ-bit integers, whose binary complexity can be estimated by
O(2λ). Thus, the algorithm 6 describes how to compute the composition involved in Radix2FFT

negacyclic shifts.
We wish to count how many expensive multiplications by roots of unity are involved in the

FFT computation, taking into account the recursive calls to FFTModFermat. This number is
easily written as

E(N) = 2λ+1E(
N

2λ
) +N,

whence E(N) = N(⌈log2λ N⌉ − 1).
(1)
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Algorithm 6 Twiddle factors obtained with the map TFλ

Input: Fλ a Fermat prime, P a polynomial of Z/FλZ of degree N < 2λ such that N + 1 is a
power of two and the coefficients are represented in radix 2, ω a power of 2 such that ω = 2j

and j = 2λ+1/N
Output: P (ω ·X)

function TFλ
(P ,ω)

if N = 1 then

return P
end if

for i ∈ [[0, N − 1]] do

l← i · j mod 2λ

ǫ← (−1)⌊i·j/2λ⌋
Qi ← ǫ · NegacyclicShift(Pi, 2

λ, l) ⊲ Negacyclic l-bit shift on a 2λ-bit integer
end for

return Q(X) =
∑

i QiX
i

end function

Let us remember that N = n
2λ−2 by hypothesis. The cost of the linear operations (for the

binary complexity) during the computation of FFTModFermat, including the additions, the sub-
tractions and the negacyclic shifts, is equal to O(N logN) operations in Z/FλZ, which means a

binary cost equal to O(N logN · 2λ) = O(n logn).
We get the following recursive formula for the binary complexity M(n) :

M(n) ≤ N(3⌈log2λ+1 N⌉+ 1) ·M(O(2λ)) +O(n logn)

The first product in the previous formula comes from the expensive multiplications involved
in Fürer’s algorithm and the second product describes the linear operations such as additions,
subtractions, cheap multiplications. The integer 3 corresponds to the accumulation of two direct
transforms, and one inverse transform for interpolation.

3.2. An algorithm relying on multiplications modulo a polynomial. Since the conjecture
stating the existence of an infinite sequence of Fermat primes seems unlikely to hold, a new ring
has to be found in order to improve the asymptotical complexity of the integer multiplication.
Fürer proposed in [11] an algorithm FurerComplexMul using a ring with cheap roots of unity, yet
allowing significantly larger transform length. We provide in this paragraph a description of this
algorithm.

The ring used by Fürer is R = C[x]/(x2λ + 1). The polynomial x is a natural 2λ+1-th principal
root of unity in R. However in this ring, we can also find roots of unity of larger order. For
example an N -th principal root of unity may be obtained as the polynomial ω(x) meeting the
conditions

∀j ∈ [[0, N [[, ω(e2ijπ/N )N/2λ+1

= x ◦ (e2ijπ/2λ+1

) = e2ijπ/2
λ+1

.

The actual computation of ω(x) ∈ R can be done with Lagrange interpolation. A crucial

observation is that ω
N

2λ+1 = x ∈ R, which means that a fraction 2λ+1

N of the roots of unity
reduces to a negacyclic permutation in R.

Let us now consider how an FFT of length N in R[X ] can be computed with Algorithm 3, with
N1 = 2λ+1 and N2 = N

2λ+1 . The N1 transforms of length N1 will be performed recursively with

LargeRadixFFT. As for the N2 transforms of length N1 = 2λ+1, since ωN2 = x, all multiplication
by roots of unity within these transforms are cheap. The amount of expensive multiplications
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is expressed in a similar fashion as in Equation (1), which allows one to state that E(N) =
N(⌈log2λ+1 N⌉ − 1).

Fürer defined R with 2λ = 2⌊log
(2) n⌋ and proves that precision O(log n) is sufficient for the

coefficients of the elements of R occuring in the computation. The integers to be multiplied
are split into pieces of r bits, and blocks of 2λ/2 such pieces are grouped together to form

the coefficients of an element of R. In other terms, we have N ≤ 2n/ log2 n. Finally, using
Kronecker substitution, we embed elements of R in Z and we call recursively the algorithm to
multiply integers. We get the following recursive formula for the binary complexity M(n) :

M(n) ≤ N(3⌈log2λ+1 N⌉+ 1) ·M(O(log n)2) +O(N logN · 2λ)(2)

Fürer proves that this recurrence leads to

M(n) ≤ n logn(2d log∗ 4
√
n − d′)

for some d, d′ > 0.

3.3. Analysis framework of Harvey, van der Hoeven and Lecerf. In [16], Harvey, van der
Hoeven and Lecerf give a whole new algorithm allowing one to compute integer multiplication
with a new repartition of cheap and expensive multiplications during the FFT and the use of
the Bluestein’s chirp transform [3]. Basically, they transform the computation of the Radix2FFT

into the computation of the multiplication of two integers, which changes the balance of the cost
of different multiplications in Fürer’s algorithm.

We focus in this part on the framework developed in [16] simplifying the analysis of the
algorithm proposed in the current paper and we reuse some tricks in the algorithm itself.

Definition 8. Let Φ : (x0,∞)→ R be a smooth increasing function, for some x0 ∈ R. We say
that Φ∗ : (x0,∞)→ R≥ is an iterator of Φ if Φ∗ is increasing and if

Φ
∗(x) = Φ

∗(Φ(x)) + 1

for all sufficiently large x.

An iterator Φ
∗ can be thought as a generalization of the map x→ log⋆(x) for Φ = log.

Definition 9. A function Φ is logarithmically slow if there exists 2λ ∈ N such that

(log(2
λ) ◦ Φ ◦ exp(2λ))(x) = log x+O(1)

for x→∞.

Proposition 10. For any iterator Φ
∗ of a logarithmically slow function Φ, we have

Φ
∗(x) = log∗ x+O(1).

Proposition 10 allows us to count the number of recursive calls performed by the algorithm
described in Section 4.

Moreover, we have to reuse 2 ideas proposed in [16] improving the complexity analysis.

• It appears that during the execution of LargeRadixFFT, we have to multiply elements
of R by the same root of unity ω several times. Since the multiplication by ω involves
the computation of the Fourier transform of the integer associated to ω given by the
Kronecker substitution, we can compute it once, and reuse it for all the multiplications
requiring ω.
• Finding primes may be an expensive operation. This is why it is proposed to use Fur-

erComplexMul (described in 3.2) at first, and, for deeper levels of recursion, we switch
to another algorithm. Consequently, we spare the computation of the most expensive
prime. Moreover, the remaining primes that we use are small enough to make their
computation negligible.
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Those ideas are discussed again in Section 5.

4. Generalized Fermat Primes

This section states the main hypothesis on which the forecoming complexity analysis relies
and proves some properties of the density of generalized Fermat primes.

Notation 11. Let L(R, λ) denote the number of generalized Fermat primes r2
λ

+1 with r ≤ R.

A conjecture about generalized Fermat primes is needed in order to fix the conjecture of [9].
Such a conjecture requires supportive arguments from results (effective, if possible) on generalized
Fermat primes. Those arguments differ from the arguments supporting the conjecture made
in [16, §9.1] on Mersenne primes, which we mention here.

Conjecture 12 ([16, §9.1]). Let πm(x) be the number of Mersenne primes less than x. Then
there exist constants 0 < a < b such that for all x > 3

a log(2) x < πm(x) < b log(2) x.

This conjecture is a weaker version of a conjecture stated by Lenstra, Pomerance, Wagstaff,
who conjectured that

πm(x) ∼ eγ

log 2
log(2) x

as x→∞. This conjecture relies on probabilistic arguments [13], investigated by Wagstaff in [26]
and supported by numerical evidence.

Dubner and Gallot proposed in [7] a study of generalized Fermat primes, supported by numer-
ical evidence and heuristic arguments quite similar to the ones exhibited by Wagstaff. Actually,
the fact that there is probably an infinite amount of generalized Fermat primes is a particular
case of the “Hypothesis H” stated in 1958 by Sierpiński and Schinzel, and given through a quan-
titative form by Bateman and Horn in 1962 [2]. Dubner and Gallot [7] give an estimation of

the number of generalized Fermat primes r2
λ

+ 1 for each λ, from r = 2 to R, assuming the
“Hypothesis H”. We need a notation to introduce this estimation.

Notation 13. Let E(R, λ) be the expectancy of the number of generalized Fermat primes r2
λ

+1
for r in [2, R], defined as:

E(R, λ) =
Cλ

2λ

R∑

r=2

1

log r
∼ Cλ

2λ

∫ R

2

dt

log t
.(3)

The term Cλ in Equation (3) denotes the quantity lim
K→∞

t(K,λ)

u(K,λ)
where

t(K,λ) =
∏

k∈[[1,K]]

k·2λ+1+1 prime

(

1− 2λ

k · 2λ+1 + 1

)

,

which is a factor due to the fact that the possible factors of r2
λ

+1 must be of the form k ·2λ+1+1,
and

u(K,λ) =

K·2λ+1+1∏

p prime

(

1− 1

p

)

which describes the product of all primes up to the largest one considered in t(K,λ). The proof

of the fact that lim
K→∞

t(K,λ)

u(K,λ)
exists is given in [2].
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When specialized to the case of generalized Fermat primes, the quantitative form of the
“Hypothesis H” can be stated as follow.

Conjecture 14 (Hypothesis H applied to generalized Fermat primes). For any λ, the actual

number of generalized Fermat r2
λ

+ 1 is equivalent to the expectancy E(R, λ):

L(R, λ) ∼R E(R, λ).

Considerations in this article lead us to need the following statement.

Proposition 15. There exists an absolute constant C > 0 such that Cλ ≥ C
λ for any λ.

Proof. See Appendix A. �

Given the numerical values brought by [7], we may consider that this lower bound is quite
pessimistic.

Proposition 16. Assuming Hypothesis H, for any λ > 0, there exists a bound Bλ ≥ 2λ such that

for any R > Bλ, there exists a generalized Fermat prime r2
λ

+ 1 such that r ∈ [[R,R · (1 + λ2)]].

Proof. We come back to the expectancy

E(R, λ) =
Cλ

2λ

R∑

r=2

1

log r
.

We have to consider in our case the quantity ∆(R, λ) = E(R · (1 + λ2), λ)−E(R, λ). Assuming
the Hypothesis H, there exists B′

λ such that for R > B′
λ,

L(R · (1 + λ2), λ) − L(R, λ) >
1

2
∆(R, λ).

Thus, one needs to prove that for Bλ > B′
λ large enough and R > Bλ, ∆(R, λ) ≥ 2. In fact, we

even prove that min
R>Bλ

|∆(R, λ)| → ∞ as λ goes to infinity.

It is known that
∫ x

2
dt

log t ∼ x
log x . Then, for any µ > 0 and x large enough,

(1 − µ) · x

log x
≤

∫ x

2

dt

log t
≤ (1 + µ) · x

log x
.

Since
∑R

r=2
1

log r ∼
∫ R

2
dt

log t , for any ν > 0 and R large enough,

(1− ν) ·
∫ R

2

dt

log t
≤

R∑

r=2

1

log r
≤ (1 + ν) ·

∫ R

2

dt

log t
.

It is possible now to get a lower bound for ∆(R, λ) assuming that λ is large enough:

∆(R, λ) ≥ Cλ

2λ
·
(

(1 − ν)(1− µ) · R · (1 + λ2)

log(R · (1 + λ2))
− (1 + ν)(1 + µ) · R

logR

)

.

Using the constant C given by Proposition 15 and 2λ ≤ R:

∆(R, λ) ≥ C

λ
·
(

(1− ν)(1 − µ) · R · (1 + λ2)

log(R · (1 + λ2))
− (1 + ν)(1 + µ) · R

logR

)

.

In conclusion,

∆(R, λ) ≥ C

λ
·
(

(1− ν)(1 − µ) · 1 + λ2

2 log(2λ) + log(1 + λ2)
− (1 + ν)(1 + µ) · 1

logR

)

,

which verifies min
R>Bλ

|∆(R, λ)| → ∞ as λ→∞ for µ and ν sufficiently small. �
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Assuming the Hypothesis H, for any constant K > 1 and any integer λ, there exists a bound
Bλ such that for R ≥ Bλ,

L(R, λ) ≥ 1

K
·E(R, λ).

However, we are unable to predict how large this bound Bλ can be. In [1], Adleman and
Odlyzko propose a conjecture based on generalized Riemann hypothesis suggesting that Bλ is
smaller than exp(O(λ2λ)) in the context of generalized Fermat primes. In [18], the authors prove
that there exist infinitely many irreducible polynomials f that do not take prime values below

exp
(

exp(O( log ℓ(f)

log(2) ℓ(f)
))
)

, with

ℓ
(∑

aix
i
)

=
∑

bitsize(1 + |ai|).
In this work, we establish a complexity depending on how small Bλ can be. The following

hypothesis gives a sufficient condition in order to get the best asymptotic bound that we can
reach using the algorithm described in Section 5.

Hypothesis 17. There exists an absolute constant K > 1 and a sequence γ(λ) verifying

λ ≤ γ(λ) ≤ 1

2
λ log2 λ−

1

4
λ

such that for λ large enough and any X ≥ 2γ(λ),

L(X,λ) ≥ 1

K
·E(X,λ).

However, for our purpose, Hypothesis 17 is too strong. Thus, the complexity analysis of the
algorithm described in this work is unchanged if the weaker hypothesis 18 is used.

Hypothesis 18. There exists a sequence γ(λ) verifying

λ ≤ γ(λ) ≤ 1

2
λ · log2 λ−

1

4
λ

such that for λ large enough and for any X such that 2γ(λ) ≤ X ≤ 22·γ(λ), there exists a

generalized Fermat prime r2
λ

+ 1 such that r ∈ [[X,X(1 + λ2)]].

Hypothesis 18 allows one to reach the best complexity bound using generalized Fermat primes
for the multiplication of two n-bit integers, which means O(n log n · 4log∗ n).

Weaker hypotheses can also be formulated:

Hypothesis 19. There exists a sequence γ(λ) ≥ λ verifying γ(λ) = 2o(λ) such that for λ large
enough and for any X such that 2γ(λ) ≤ X ≤ 22·γ(λ), there exists a generalized Fermat prime

r2
λ

+ 1 such that r ∈ [[X,X(1 + λ2)]].

Hypothesis 20. There exists a sequence γ(λ) ≥ λ verifying γ(λ) = 2λ+o(λ) such that for λ large
enough and for any X such that 2γ(λ) ≤ X ≤ 22·γ(λ), there exists a generalized Fermat prime

r2
λ

+ 1 such that r ∈ [[X,X(1 + λ2)]].

Hypothesis 19 and 20 would give respectively O(n log n · 8log∗ n) and O(n logn · 16log∗ n) for
the complexity analysis of the multiplication of two n-bit integers. We might have considered
even weaker hypothesis, but the complexity would not be interesting.

In table 1, we compare

∆(R, λ) ∼ Cλ ·
R

2λ
·
(

1 + λ2

log(R · (1 + λ2))
− 1

logR

)

,
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used in the proof of Proposition 16, to the actual number of generalized Fermat primes r2
λ

+ 1,
taking R = 2λ and R = 22λ. We observe that in practice the estimates given by the conjecture
H are close to the reality and that it is not hard to find a suitable generalized Fermat prime for
Hypothesis 18.

Interval [2λ, 2λ · (1 + λ2)] [22λ, 22λ · (1 + λ2)]
λ Actual number Estimate Actual number Estimate
2 4 2.54 11 8.36
3 0 3.77 22 21.88
4 10 9.81 139 108.59
5 19 12.93 310 278.32
6 23 17.83 824 752.28
7 16 17.09 1553 1420.09
8 42 48.38 8614 7932.90
9 75 56.49 19707 18182.83
10 82 68.98 — 44289.34

Table 1. Number of generalized Fermat primes r2
λ

+ 1 with r in
[2λ, 2λ · (1 + λ2)] and [22λ, 22λ · (1 + λ2)].

Taking γ(λ) = λ, if the second and the fourth column are never 0 for λ ≥ 4
the extreme cases X = 2γ(λ) and X = 22γ(λ) in Hypothesis 18 are verified.

5. A new algorithm

This section describes a new algorithm to multiply integers. Since it relies on some assumption
about the repartition of particular primes, its complexity is conjectural. We prove in the next
section that this conjectural complexity is the same as the one that Harvey, van der Hoeven and
Lecerf get from the use of Mersenne primes with the Bluestein’s chirp transform [16]. However,
this new algorithm seems to be simpler to implement.

5.1. A new ring. The main contribution of this article is to propose a ring R allowing one to
get rid of the disadvantages of the polynomial ring proposed by Fürer [11] and yet benefit from
the advantages of the construction proposed in [9]. Instead of working in C[x]/(x2λ + 1), we work

in R = Z/pZ, where p is a prime chosen as

p = r2
λ

+ 1.

We call GenFermatMul the algorithm computing the multiplication of two n-bit integers with
the Cooley-Tukey FFT and using R as the base ring.

The n-bit integers a and b to be multiplied are decomposed in some base η, as in §2.1.
Consequently, we multiply two polynomials

A =

N−1∑

i=0

aix
i

and

B =

N−1∑

i=0

bix
i
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bit size range p
216 ≤ n < 232 7416 + 1
232 ≤ n < 264 88432 + 1
264 ≤ n < 2128 108464 + 1
2128 ≤ n < 2256 1738128 + 1
2256 ≤ n < 2512 1348256 + 1

Table 2. Primes used in the algorithm taking γ(λ) = λ in Hypothesis 18

whose coefficients are bounded by 2η. Thus, the coefficients ci of C = A · B mod xN − 1 have
the following form:

|ci| = |
i∑

j=0

aj · bi−j +
N−1∑

j=i+1

aj · bN−1−j| < N · 22·η

Thus, for the evaluation-interpolation scheme to be valid, the parameter η and the transform
length N must be such that log2 N + 2 log2 η ≤ log2 p.

The integer 2λ plays a role similar to 2λ in Fürer’s construction. We therefore define it
likewise, as the smallest power of 2 above log2 n. We denote by µ the power of 2 such that
1
2γ(λ) ≤ µ ≤ γ(λ)− 1, where γ(λ) is the sequence defined in Hypothesis 18, 19 and 20.

Let then η = µ2λ and the integer r is chosen subject to the condition that

log2(r
2λ ) ≥ 2η + log2

n

2λµ
(4)

which is equivalent to

r > R, with R = 22µ+
log2 n

2λ
− log2(2λµ)

2λ .

By definition of µ, we have

log2(2
λµ) ≤ λ+ log2(γ(λ)− 1).

So, assuming Hypothesis 18, 19 or 20, there exists n0 such that for n ≥ n0,

log2(2
λµ) ≤ log2 n.(5)

Assuming in particular Hypothesis 18, we have λ+ log2(γ(λ)− 1) ≤ λ+ log2 λ+ log
(2)
2 λ− 1.

Since λ+log2 λ+log
(2)
2 λ−1 ≤ 3 log

(2)
2 n+2, we observe that the inequality (5) is met for n ≥ 216.

Thus, we expect that the constant n0 is not too large.

For n ≥ n0, the bound R = 22µ+
log2 n

2λ
− log2(2λµ)

2λ verifies the conditions of Hypothesis 18, 19
and 20:

2γ(n) ≤ R ≤ 22γ(n).

Indeed, we have

γ(log2 2
λ) +

log2 n

2λ
− log2 n

2λ
≤ 2µ+

log2 n

2λ
− log2(2

λµ)

2λ
≤ 2γ(log2 2

λ)− 2 + 1.

In conclusion, there exists a size n0 such that, for any n ≥ n0, we are able to find a prime
verifying the constraint (4). For bit sizes in the foreseeable relevant practical range and well
beyond, the primes p may be chosen as given by Table 2.
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Notation 21. Let s(2λ) be the value 2λ+1(γ(λ) + 2 log2 λ + 1) for γ(λ) chosen as in Hypothe-

sis 18, 19 or 20. It is an upper bound of log2 p, since we have p = r2
λ

+ 1 and

log2 r ≤ log2

(

22γ(λ) · (1 + λ2)
)

≤ 2γ(λ) + log2(1 + λ2) ≤ 2 · γ(λ) + 2 log2 λ+ 1.

5.2. Arithmetic properites of the ring chosen. We now discuss the advantages of the ring
R = Z/pZ in our context. The notation s(2λ) denoting a bound on the bit size of p used for
multiplying two n-bit integers will be retained throughout this section. We remind that the fact

that p = r2
λ

+ 1 is prime implies that there exists an element of order p − 1 in R. Since r is

even, we have a 22
λ

-th principal root of unity and there exists, consequently, for any power two

N such that N < 22
λ

, an N -th principal root of unity. This allows large transform lengths.
Using the base ring R allows a more compact encoding of the integers to be multiplied com-

pared to Fürer’s algorithm presented in [11]. Indeed, the embedding of the coefficients ai of

the polynomial A described in §2.1 leads to elements in C[x]/(x2λ + 1) whose representation
∑2λ−1

i=0 aijx
j has aij = 0 for j ∈ [[2λ/2, 2λ[[ and the number of bits required to store the aij is

approximatively twice smaller than the number of bits required to store the coefficients of the
product. The elements of the ring R require approximatively 2η = 2µ · 2λ ≈ log2 r · 2λ bits to
be represented and, initially, the coefficients of A fit on η = µ · 2λ bits by construction. In other

terms, the coefficients of A occupy one fourth of the bitsize of the ring C[x]/(x2λ + 1), whereas
in R, they occupy one half of the bitsize.

Given the form of p, elements x of Z/pZ can be represented as x =
∑2λ−1

i=0 xir
i, with 0 ≤ xi < r

(since the element r2
λ

= −1 cannot be decomposed like the other elements, it has to be treated
separately). In other terms, we write down the expansion of x in radix r.

During the Fast Fourier Transform, we perform various operations in the ring R, among
which additions, subtractions, multiplications of two ordinary elements of R and multiplications
by powers of r.

• Additions and subtractions are computed within a time linear in 2λ: computing the sum
of

∑

i xir
i and

∑

i yir
i is basically computing all the sums xi + yi and handling the

propagation of carries.
• Multiplications of two ordinary elements

∑

i xir
i and

∑

i yir
i of R is done by considering

these elements as polynomials in T :
∑

xiT
i and

∑
yiT

i in Z[T ]/(T 2λ + 1).

• Multiplications by powers of r are as hard as negacyclic shifts in Z[T ]/(T 2λ + 1).

Let us explain why multiplications by powers of r are negacyclic shifts. As an example, the
product of x =

∑

i∈[[0,2λ−1]] xir
i with r writes as:

x · r =
∑

i∈[[1,2λ]]

xi−1r
i = −x2λ−1 +

∑

i∈[[1,2λ−1]]

xi−1r
i,

= (−x2λ−1 + r) + (x0 − 1) · r +
∑

i∈[[2,2λ−1]]

xi−1r
i.

We see that in contrast to Fürer’s choice, operations in R must take into account the propagation
of carries (possibly further than in the example above, as x0 may be zero). However the induced
cost remains linear.

Moreover, there are a few more operations to take into account in the formula representing
the complexity estimate of the algorithm:

• The decomposition of the elements of R in base r. According to [4, §1.7], this can be
done in c ·M(s(2λ)) log 2λ for some constant c.
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• The modulo r operations after a multiplication in radix-r representation. This requires
2λ successive reductions modulo r, hence a total cost c′2λM(s(2λ)/2λ) for some constant
c′.
• The linear operations: additions, subtractions, multiplication by powers of r and propa-

gation of carries.

Finally, the fact that we multiply polynomials over Z[T ]/(T 2λ + 1) implies that the integers
associated to those polynomials through Kronecker substitution can be multiplied modulo 2m+1
for some m. Since multiplying two m-bit integers modulo 2m+1 implies to multiply polynomials
modulo Xm/η+1, we have to use the half-DFT detailed in 2.2, as it is done in Schönhage-Strassen
algorithm.

5.3. Notations and overall structure of the algorithm. In [16, §6], the authors use the
idea that some roots of unity are involved in several multiplications. Let us say that in the ring
R we consider the multiplications by ω, ω being an N -th principal root of unity involved in
GenFermatMul. Then let (ai)1≤i≤m be the sequence of elements of R multiplied by ω in Larg-

eRadixFFT. These m multiplications involve m recursive calls to GenFermatMul, and computing
m times a Fourier transform for the integer corresponding to the Kronecker substitution of ω,
which can be optimized. Thus, we have to precompute, before the Fast Fourier Transform, the
transforms of the N roots of unity by which we multiply elements of R.
Description of the rings. Algorithm GenFermatMul is a recursive algorithm. We assume that we
use Kronecker substituion for recursive calls to GenFermatMul. Let i denote the denote the depth
in the tree describing all the recursive calls. The quantity I describes the number of levels of
recursion.

• Let pi+1 be the prime used by every instance of GenFermatMul at the depth i.

• Let ri+1 and λi+1 be the quantities such that pi+1 = r2
λi+1

i+1 + 1.
• Let ni be the bitsize of the input used by GenFermatMul at the depth i. Since we use

Kronecker substitution, ni ≈ 2 log2 pi.
• Let the sequence (Ni) corresponds to the successive degrees implied at the depth i.
• Let Ri+1 denote the ring Z/pi+1Z.
• Let ωi+1 be a 2Ni-th principal root of unity of Ri+1.

The parameters defined above can be precomputed. Thus, we store in a list L the set of all
the primes pi. All the roots ωi are computed and represented in radix ri. The powers of these
principal roots of unity ωj

i for j ∈ [[0, 2Ni−1 − 1]] are computed and we store in a list Gi their
(2Ni−1 + 1)-Fourier transforms over Z/pi+1Z.

In conclusion, we completely describe the rings used by our algorithm with

• a list L of primes F (ri, λi) used at each level of recursion,
• a list Gi of the Fourier transforms of the 2Ni−1-th roots of unity in radix ri for each level
i.

Algorithm Precomputations describes how the lists L and Gi are computed.
Algorithm 8 is a description of GenFermatMul. In lines 12, 13 and 15 of Algorithm 8, we need

to define which procedure we use to compute the Fourier transforms. Because the ring Ri has
“cheap” roots of unity, we achieve this with Algorithm NewLargeRadixFFT which is a variation
around algorithm LargeRadixFFT presented in Section §2. We do not describe the algorithm
computing the inverse Fourier transform, since its pseudocode would be essentially the same as
NewLargeRadixFFT.

5.4. Expressing the complexity from the sequences (ni)i and (λi)i. Since the algorithm
proposed in the current work relies on finding some primes sufficiently quickly, the remarks of [16,
§8.2] are useful as well, which has already been discussed in §3.3. It is suggested in particular
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Algorithm 7 Precomputations

Input: n a bitsize
Output: L and Gi
1: function GenFermatMulPrecomp(n)
2: L ← { }
3: s← n
4: while s is large enough do

5: 2λ is the smallest integer above log2 s
6: µ is the smallest power of two above 1

2γ(λ)

7: η ← 2λ · µ
8: N ← s/η is the degree of the polynomials that will be multiplied
9: p is the smallest prime verifying the constraint (4)

10: m is the size given by the Kronecker substitution for multiplying elements of Z/pZ
11: s← m
12: L ← L ∪ {p}
13: end while

14: (Gi)i ← ({ })i
15: for i ∈ [[0,#L− 1]] do

16: i is the index of the prime pi = r2
λi

i + 1 in L
17: gi is a generator of Ri = Z/piZ

×

18: Ni is the degree of the polynomials representing elements of Ri

19: ωi is an 2Ni−1-th root of unity in Ri represented in radix ri
20: for j ∈ [[0, 2Ni−1 − 1]] do

21: Gi ← Gi ∪ {FFT(ωj
i ,Ri+1)} ⊲ We store the Fourier Transforms of ωj

i in
Ri+1 = Z/pi+1Z

22: end for

23: end for

24: return L,(Gi)i
25: end function

that, since there is essentially one prime that is expensive to compute, and which corresponds to
the first encountered prime, FurerComplexMul is called for the top level and for deeper recursion
levels we switch to another algorithm.

Indeed, assuming that for an input of size n we compute an FFT modulo a prime p verifying

p = 2O(log2 n)2 (O(log2 n)
2 corresponds to the size of integers that we multiply on the second

level of recursion in FurerComplexMul), the bitsize n′ on deeper levels of recursion verifies n′ =
O(log22 n). The prime p′ corresponding to n′ verifies

p′ = 2O(log2(log
2
2 n))2 = 2O(log2 log2 n)2 = log2 n

O(log
(2)
2 n) = o(n).

Using the Eratosthenes sieve (which is even not the fastest known algorithm) to find all primes

below n, we get a complexity estimated to O(n log
(2)
2 n).

In conclusion, at the toplevel it is required to use the algorithm FurerComplexMul, and to
call GenFermatMul on deeper levels of recursion, using Kronecker substitution to transform poly-
nomials into integers, or any other algorithm which is more efficient for the multiplication of
polynomials in Z[T ]/(T 2λ + 1). Thus, at the recursive depth i = 0 we use FurerComplexMul and

n0 corresponds to the bitsize of elements of R0 = Z/p0Z passed to GenFermatMul during the
multiplications involved in FurerComplexMul.
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Algorithm 8 GenFermatMul

Input: a, b two integers of ⌈ni⌉ bits
Output: c = a× b mod 2ni + 1
1: function GenFermatMul(a,b,i,L,G)
2: if i < I then

3: return a ∗ b ⊲ Basecase multiplication
4: else

5: µ is the smallest power of two above 1
2γ(λi+1)

6: η ← 2λi+1 · µ
7: A is the polynomial such that A(η) = a
8: B is the polynomial such that B(η) = b
9: A′ is the polynomial A(ωi+1 ·X) ⊲ Due to Half-FFT

10: B′ is the polynomial B(ωi+1 ·X) ⊲ Due to Half-FFT
11: Decompose the coefficients of A′ and B′ in radix ri+1

12: P ←∑

j A
′(ω2j

i+1)X
j

13: Q←∑

j B
′(ω2j

i+1)X
j ⊲ Multiplications modulo pi+1 are done with a Kronecker

substitution and a recursive call to GenFermatMul.
14: R← ComponentwiseProduct(P,Q)

15: S ←∑

j R(ω−2j
i+1 )X

j

16: S ← 1
Ni
· S

17: Recompose the coefficients of S from radix ri+1 to radix 2
18: S ← S(ω−1

i+1 ·X) ⊲ Composition due to Half-FFT
19: return S(2η)
20: end if

21: end function

Algorithm 9 Optimized Large Radix FFT

Input: P =
∑Ni−1

j=0 pjX
j ∈ Ri+1[X ] and Gi+1

Output: P (1) + P (ω2
i+1)X + · · ·+ P (ω

2(Ni−1)
i+1 )XNi−1

function NewLargeRadixFFT(P ,Gi+1)

Let (Qj(X))j be a sequence in Ri+1[X ] such that P (X) =
∑2·2λi+1−1

j=0 Qj(X
2·2λi+1

)Xj

for j ∈ [[0, 2λi+1+1 − 1]] do

Qj ← NewLargeRadixFFT(Qj ,Gi+1)
Qj ← Qj(Gi+1[2j] ·X) ⊲ The factor 2 is due to Half-FFT

end for

Let (Sj(Y ))j be a sequence in Ri+1[Y ] such that
∑

k Qk(X)Y k =
∑

j Sj(Y )Xj

for j ∈ [[0, Ni/2
λi+1+1 − 1]] do

Sj(Y )← CheapFFT(Sj , ri+1) ⊲ The multiplications by rji+1 are negacyclic shifts
end for

return
∑Ni/2

λi+1+1

j=0 Sj(X
Ni/(2·2λi+1))Xj

end function

Let us denote by M(n) the binary complexity of the algorithm described in 5.3 computing
the product of two n-bit integers a and b using FurerComplexMul on toplevel and GenFermatMul

on deeper levels.
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Let us denote by UG,L(i) the binary complexity of the algorithm multiplying two elements of
Ri using GenFermatMul, after having precomputed the lists Gi and L. We write it U(i) if these
lists are implicitly specified.

Let Uω(i) correspond to the complexity of the algorithm multiplying any element of Ri and
an element of Gi.

Let S denote the binary complexity of the multiplication of two n-bit integers modulo 2n + 1
using the Schönhage-Strassen algorithm: S(n) ≤ dn log2 n log2 log2 n for some d > 0.

Since the recursive equation associated to FurerComplexMul has already been described in 3.2,
we can reuse it and injecting into this equation the complexity U of GenFermatMul:

M(n) ≤ N(3⌈log2λ+1 N⌉+ 1) · U(1)
︸ ︷︷ ︸

calls to GenFermatMul

+O(N logN · 2λ)
︸ ︷︷ ︸

linear operations

+ P(n)
︸ ︷︷ ︸

precomputations

(6)

where P(n) denotes the cost for the precomputation of the lists L and Gi.
Now, one can express the complexity U depending on the complexity Uω of the multiplication

by an element of Gi like this:

U(i) ≤Ni(3⌈log2λi+1+1 Ni⌉)(Uω(i+ 1) + c2λi+1S
( ni+1

2λi+1

)

︸ ︷︷ ︸

modulo operations

)

︸ ︷︷ ︸

calls to GenFermatMul → DFT of roots of unity precomputed

+4Ni(S(ni+1) + c2λi+1S
( ni+1

2λi+1

)

︸ ︷︷ ︸

modulo operations

)

︸ ︷︷ ︸

componentwise multiplications and
3Ni multiplications due to Half-FFT

+

c′Niλi+1S(ni+1)
︸ ︷︷ ︸

decomposition in radix ri
and recomposition

+ c′′ni logni
︸ ︷︷ ︸

linear operations

where c is a constant given by the modulo operation after each multiplication in radix ri and
c′ is a constant associated to the decomposition and recomposition in radix ri (line 9 and 13 of
GenFermatMul). The constant c′′ corresponds to the cost of linear operations such as negacyclic
shifts in radix ri, addition, subtractions, etc. One notices that the complexity estimate S is used
for the modulo operation in radix ri or for the decomposition in radix ri: a similar injection has
been used in [16] in order to simplify the complexity analysis.

The complexity Uω can be expressed in a similar way

Uω(i) ≤Ni(2⌈log2λi+1+1 Ni⌉)(Uω(i+ 1) + c2λi+1S
( ni+1

2λi+1

)

) + 4Ni(S(ni+1) + c2λi+1S
( ni+1

2λi+1

)

)+

c′Niλ1S(ni+1) + c′′ni logni

(7)

but the factor 3 of the multiplications involved during the FFT becomes a factor 2.
Theoretically, we might already compute the binary complexity of our algorithm, assuming

that we use Kronecker substitution to multiply elements of Ri. But then, the analysis would be
suboptimal, since this substitution involves some zero-padding and thus a useless increase of the
size of the coefficients. We would have O(n log n · 8log∗ n) for the binary complexity of integer
multiplication.

The next part introduces another strategy, which borrows from the Schönhage-Strassen al-
gorithm and which is very similar to the technique speeding up the multiplication of r-adic
numbers used in [24], avoiding the padding due to the Kronecker substitution. The Kronecker
substitution, however, is retained for the last level of recursion corresponding to i = I.

5.5. Avoiding the Kronecker Substitution. Instead of embedding an element of Ri =

Z/
(

r2
λi

i + 1
)

Z in radix-ri representation into an integer, it might be profitable to stay in radix-r

representation and to consider the same element in radix-r
βi+1

i representation, for some βi+1



20 SVYATOSLAV COVANOV AND EMMANUEL THOMÉ

dividing 2λi . In other terms, some coefficients may be grouped together. We may then perform

the multiplication in Ri via the multiplication of two polynomials modulo X2λi/βi+1 + 1, as it
is done in the Schönhage-Strassen algorithm, using the half-DFT detailed in 2.2. Therefore, for

computing the product of two polynomials of degree 2λi/βi+1 modulo X2λi/βi+1 +1, a ring Ri+1

containing a 2 · 2λi/βi+1-th principal root of unity ωi+1 is needed and 3 · 2λi/βi+1 additional
multiplications due to the half-DFT in Ri+1 have to be performed: one composition with ωi+1X
per polynomial given in the input and one composition with ω−1

i+1X after the final inverse DFT.
Grouping coefficients together is only possible in the case of Hypothesis 18, because, otherwise,

the integer ri would not be small enough. Thus, in the following, we work under this hypothesis.
We have to use the same sequence γ(λ).

Proposition 22. Let rλ+1 be a prime such that r ∈
[
2γ(λ), 22γ(λ)(1 + λ2)

]
. Let s be the quantity

log2(r
λ + 1) (s is approximatively the bitsize of the prime rλ + 1). Let λ′ be the smallest integer

such that 2λ
′ ≥ log2 s.

For λ ≥ 6 there exists β ∈ N a power of two such that

2β log2 r + λ− log2 β ≤ 2γ(λ′)2λ
′

.(8)

Proof. A sufficient condition for the map k → 2 · 2k · log2 r + λ− k to be increasing for k ≥ 0 is
log2 r ≥ 1, which is met for our applications. Thus, it is enough to prove that for λ big enough,

2 log2 r + λ ≤ 2γ(λ′)2λ
′

.
By hypothesis, 2 log2 r + λ ≤ 4γ(λ) + 2 log2(1 + λ2) + λ. Assuming Hypothesis 18, 4γ(λ) ≤

2λ · log2 λ− λ, which means that 4γ(λ) + 2 log2(1 + λ2) + λ ≤ 2λ · log2 λ+ 2 log2(1 + λ2).

By definition, 2λ
′ ≥ log2 s > log

(2)
2 (rλ). Thus, 2λ

′

> λ+log
(2)
2 r ≥ λ+log2 γ(λ) since r ≥ 2γ(λ)

by hypothesis. We deduce from that the following:

2λ
′+1γ(λ′) ≥ 2λ

′+1λ′ ≥ 2(λ+ log2 γ(λ))(log2(λ+ log2 γ(λ))) ≥ 2(λ+ log2 λ)(log2(λ+ log2 λ)).

Then, it is enough to prove that there exists λ0 such that, for any λ ≥ λ0, we have

2 log2 r + λ ≤ 2λ · log2 λ+ 2 log2(1 + λ2) ≤ 2(λ+ log2 λ)(log2(λ + log2 λ)) ≤ 2λ
′+1γ(λ′).

Thus, we prove that

0 ≤ 2(λ+ log2 λ)(log2(λ+ log2 λ))
︸ ︷︷ ︸

E

− (2λ · log2 λ+ 2 log2(1 + λ2))
︸ ︷︷ ︸

F

.

We have

E = 2λ log2 λ+ 2λ log2

(

1 +
log2 λ

λ

)

+ 2 log2 λ · (log2(λ+ log2 λ))

and

F = 2λ · log2 λ+ 4 log2 λ+ 2 log2

(

1 +
1

λ2

)

≤ 2λ · log2 λ+ 4 log2 λ+ 2.

Thus,

E − F ≥ 2 log2 λ · (log2(λ+ log2 λ)) − 4 log2 λ− 2 ≥ 2(log2 λ)
2 − 4 log2 λ− 2.

For λ ≥ λ0 = 6, the inequality (8) holds, since 2(log2 λ)
2 − 4 log2 λ− 2 ≥ 0. �

Definition 23 redefines the sequence (λi) in the context of the current strategy to multiply
elements of Ri.

Definition 23 (How to choose λi+1 knowing λi). Let p1 be the prime used on the recursion level

i = 1 of GenFermatMul. Then r2
λ1

1 + 1 = p1. Let I be the number of recursion levels.

Then, for 1 ≤ i ≤ I, 2λi+1 is the smallest power of two above log
(2)
2 pi and r2

λi+1

i+1 + 1 is the
prime used on the i-th level of recursion.
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The redefinition of the sequence of (λi) for a given i corresponds to the definition of λ′ in

Proposition 22 for r2
λ

+ 1 = pi. Thus, given an i ≥ 1, there exists β such that 2β log2 ri + λi −
log2 β ≤ 2γ(λi+1) ·2λi+1 . For our purpose, we will choose the largest power of two βi+1 such that
2βi+1 log2 ri + λi − log2 βi+1 ≤ 2γ(λi+1)2

λi+1 . Thus, this power of two verifies by definition:

4βi+1 log2 ri + λi − log2 βi+1 − 1 > 2γ(λi+1)2
λi+1 .

Let us name Ri+1 the factor such that log2 Ri+1 = 2βi+1 log2 ri+λi−log2 βi+1

2λi+1
. For our purpose,

we need to find a prime pi+1 such that log2 pi+1 ≥ 2βi+1 log2 ri + λi − log2 βi+1. By definition
of βi+1, pi+1 would be sufficiently large to contain the result of a multiplication of two elements
of Ri for which the coefficients have been grouped in chunks of size βi+1. In order to use
Hypothesis 18, one has to prove that 2γ(λi+1) ≤ Ri+1 ≤ 22γ(λi+1).

Proposition 24. Let i ≥ 1 and Ri+1 be the number defined as log2 Ri+1 = 2βi+1 log2 ri+λi−log2 βi+1

2λi+1
.

Then

2λi+1 ≤ Ri+1 ≤ 22λi+1 .

Proof. By construction of βi+1, 2
λi+1 log2 Ri+1 ≤ 2γ(λi+1)2

λi+1 , which means that log2 Ri+1 ≤
2γ(λi+1) and Ri+1 ≤ 22γ(λi+1).

Now, let us use the fact that

4βi+1 log2 ri + λi − log2 βi+1 − 1 > 2γ(λi+1)2
λi+1 .

Using the rewriting

2βi+1 log2 ri + λi − log2 βi+1 = 2βi+1 log2 ri +
1

2
(λi − log2 βi+1) +

1

2
(λi − log2 βi+1) +

1

2
− 1

2
,

one gets:

2βi+1 log2 ri + λi − log2 βi+1 > γ(λi+1)2
λi+1 +

1

2
(λi − log2 βi+1) +

1

2
> γ(λi+1)2

λi+1 .

Thus, Pi+1 ≥ 2λi+1 . �

Proposition 24 allows one to find a prime pi+1 not too large compared to the chunks of βi+1

coefficients of elements of Ri in terms of bitsize. Thus, instead of performing the multiplication of

two integers through Kronecker substitution, we multiply two polynomials modulo X2λi/βi+1 +1
over the ring Ri+1 = Z/pi+1Z.

Definition 25 (Definition of pi+1). Given a prime pi = r2
λi

i + 1 with λi ≥ 4, let βi+1 be the
largest power of two such that

2βi+1 log2 ri + λi − log2 βi+1 ≤ 2γ(λi+1)2
λi+1 .

Let Ri+1 = 2βi+1 log2 ri+λi−log2 βi+1

2λi+1
. Then pi+1 is the smallest prime given by Hypothesis 18

taking R = Ri+1.

Definition 26 (Definition of ni). For any i ≥ 0, ni denotes the quantity

ni = log2 pi.

In order to be able to use the half-DFT, one needs to verify that there exists in Ri+1 a 2Ni-th
principal root of unity, where Ni = 2λi/βi+1. Therefore, 2Ni must divide pi+1 − 1.

Proposition 27. If λi ≥ 2 then 2Ni divides pi+1 − 1.
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Proof. Since pi+1 = r2
λi+1

i+1 +1 is prime, ri+1 is necessarily even (except if pi+1 = 2). A sufficient

condition for 2Ni dividing pi+1 is 2Ni dividing 22
λi+1

. Since 2λi+1 ≥ log
(2)
2 pi > λi + log

(2)
2 ri, if

log2(2Ni) = λi + 1− log2 βi+1 ≤ λi + log
(2)
2 ri

then 2Ni+1 divides 22
λi+1

. Therefore, it would be enough to prove that log
(2)
2 ri − 1 ≥ 0. Since

ri ≥ 2λi , this is true for log2 λi ≥ 1 and thus λi ≥ 2. �

Algorithm 10 is a rewriting of Algorithm GenFermatMul taking into account this new strategy.
In particular, the input is not anymore integers: it is polynomials in Z[T ]/(T 2λi

+ 1).

Algorithm 10 New version of GenFermatMul

Input: A,B two polynomials of degree 2λi representing elements of Z/(r2
λi

i + 1)Z

Output: C = A×B mod T 2λi
+ 1

1: function GenFermatMul(A,B,i,L,G)
2: if i < I then

3: return A ∗B ⊲ Basecase multiplication
4: else

5: A′ is the polynomial obtained from A by grouping βi+1 coefficients
6: B′ is the polynomial obtained from B by grouping βi+1 coefficients
7: A′′ is the polynomial A′(ωi+1 ·X) ⊲ Due to Half-FFT
8: B′′ is the polynomial B′(ωi+1 ·X) ⊲ Due to Half-FFT
9: Decompose the coefficients of A′′ and B′′ in radix ri+1

10: P ← NewLargeRadixFFT(A′′, i) ⊲ Algorithm 9 called
11: Q← NewLargeRadixFFT(B′′, i) ⊲ Algorithm 9 called
12: R← ComponentwiseProduct(P,Q)
13: S ← NewLargeRadixInverseFFT(R, i) ⊲ Algorithm 9 called
14: S′ is the polynomial S(ω−1

i+1 ·X) ⊲ Due to Half-FFT
15: Change the representation of coefficients of S′ from radix ri+1 to radix ri
16: return S′

17: end if

18: end function

6. A sharper complexity

This section establishes the bound announced in the introduction, reusing the notations in-
troduced in Section 5. First of all, we prove that the quantity P(n) in Equation (6) is negligible
compared to n logn. Secondly, we cut Equation (7) such that negligible parts are identified. Fi-
nally, using an induction argument, we get the complexity of GenFermatMul and, thus, a bound
on the cost M(n).

Using the bound s(2λ) defined in Section 5 and Proposition 10, we prove the following result.

Proposition 28. There exists K ∈ Z such that I = log∗2 n+K for any n.

Proof. Let us consider the function

Φ : n→ s(2 log2 n).

Without loss of generality, since Hypothesis 20 is the worst case, we can assume that γ(λ) =
2λ+o(λ). Then,

Φ(n) = 2 log2 n · (2 log2 n+ o(log2 n)) = 4 log22 n · (1 + o(1)).
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We have Φ(22
x

) = 4 · 22x · (1 +O(1)) and

log2 log2(Φ(2
2x)) = log2 x+O(1).

In conclusion, Φ is a logarithmically slow function and, therefore, using Proposition 10, Φ∗(n) =
log∗2 n+O(1), which allows one to conclude. �

6.1. Precomputations are negligible. We prove in this part that the precomputations in
Equation (6) are negligible, and we do not need to choose from the hypothesis 18, 19 or 20 to
get this result. Those precomputations consist in the following computations.

• Given an input of bitsize n, compute the sequence of generalized Fermat primes r2
λi

i +1
for 1 ≤ i ≤ I that will be used by GenFermatMul.
• Compute generators in Ri = Z/piZ.

• Compute 2Ni−1-th principal root of unity ωi such that ω
Ni−1/2

λi

i = ri.
• Compute the DFT of the roots of unity.

In §3.3, we discussed how to compute the primes for a bitsize n′ = O(log n)2. Those primes p

verify p = o(n). We compute all primes below n using Eratosthenes sieve in O(n log(2) n), which
is negligible compared to n logn.

We give now the different arguments proving that precomputations are negligible. All these
arguments rely mainly on the fact that the primes involved in the precomputations are expo-
nenantially smaller than the input size n given to our algorithm multiplying two integers. This
fact allows one to use naive algorithms like schoolbook multiplication in the complexity estimates,
and simplifies the analysis.

At first, we should note that n0 = O(log n)2 where n is the bitsize of the integers that we
multiply and n0 is the bitsize of the input given at the first call to GenFermatMul. Thus, for all
i ≥ 1, λi verifies

λi ≤ 2 log
(2)
2 n0 = 2 log

(3)
2 n+O(1).

Each λi verifies 2λi = O(log
(2)
2 n). As usual we consider the worst case given by Hypothe-

sis 20. Thus, finding primes takes less than 22·γ(λi)(1 + λ2
i ) = 22

λi+o(λi)

= 22
2λi

tests of pri-
mality (we check the primality with the array given by the Eratosthenes sieve). Each test is
an exponentiation of an integer of less than 3 · 2λi+o(λi) bits to the power 2λi : we roughly ap-

proximate this to 2 log
(3)
2 n + O(1) multiplications of O(log

(2)
2 n)2-bit integers. Since there are

approximatively log∗2 n primes to find, the whole complexity estimate is 2O(log
(2)
2 n)2 log∗2 n log

(3)
2 n·

M(O(log
(2)
2 n)2) = o(n).

The computation of a generator g′i of Z/piZ can be done with a deterministic algorithm [22] in

O(p
1
4+ǫ
i ) for any ǫ > 0 and any i. Once one gets this generator g′i, we raise it to the power pi−1

2·Ni

in order to get a 2Ni−1-th principal root of Z/piZ that we call gi: the cost of this operation is

less than O(log2 pi) multiplications in Z/piZ using fast exponentiation. Since pi ≤ 2s(2 log2 n) ≤
2O(log

(2)
2 n)2 , the cost of an algorithm computing gi knowing pi is negligible compared to n logn.

For all pi, we need now to find a principal root of unity such that raised at the power Ni−1/2
λi

it is equal to ri. For a specific pi, g
Ni−1/2

λi

i is a 2λi+1-th principal root of unity, thus it is included

in
{

r2j+1
i | j ∈

[
0, 2λi − 1

]}

. Let us say that g
Ni−1/2

λi

i = r2j0+1
i . The quantity 2j0+1 is invertible

modulo 2λi+1, which means that there exists k such that

g
kNi−1/2

λi

i = r
k·(2j0+1)
i = ri.
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Thus, we need to compute g
Ni−1/2

λi

i , which corresponds to the exponentiation of an integer

modulo pi and costs O(log2 pi)
3 = O(log2 n)

3. Computing the 2λi powers of ri costs λiO(log
(3)
2 n)

multiplications modulo pi, and their complexity is therefore equal to O(log
(3)
2 n(log2 n)

2). Finding

j0 can be done in 2λi = O(log
(2)
2 n) comparisons modulo pi: O(log

(2)
2 n · log2 n). Finding k can be

done using the extended Euclidean algorithm: O(λiM(λi)) = O(λi)
3. In conclusion, computing

our principal root of unity ωi modulo pi requires o(n) operations. The cost for all pi will be
o(n log∗2 n) then.

Given i ≥ 1, we need to compute all the powers of ωi: the cost is pi multiplications modulo
pi and is thus

O(pi(log2 pi)
2) = O(2O(log2 log2 n)2(log2 log2 n)

4) = o(n).

For each of these powers ωj
i we compute their representation in radix ri, which costs

pi · O(λiM(log2 pi)) = o(n),

and a DFT modulo pi+1, which costs Ni log2 NiM(pi+1) bit operations and since there at most
pi powers and Ni ≤ 2λi by construction of Ni, the cost is equal to

piM(pi+1)
︸ ︷︷ ︸

o(n)

2λiλi
︸ ︷︷ ︸

=O(log
(2)
2 n·log(3)

2 n)

= o(n log
(2)
2 n log

(3)
2 n).

The global complexity estimate is then equal to o(n log
(2)
2 n log

(3)
2 n log∗2 n) which is negligible. In

conclusion, P(n) = o(n log n).

6.2. Merging some terms in the recursive formula. In the following, we assume Hypothe-
sis 18. However, we have a similar analysis under Hypothesis 19 or 20. The only change appears
in the constants.

Let us come back to Equation (7):

Uω(i) ≤Ni(2⌈log2λi+1+1 Ni⌉)(Uω(i+ 1) + c2λi+1S
( ni+1

2λi+1

)

) + 4Ni(S(ni+1) + c2λi+1S
( ni+1

2λi+1

)

)+

c′Niλi+1S(ni+1) + c′′ni logni.

We prove in this part that there exists a constant d0 such that

cNi(2⌈log2λi+1+1 Ni⌉)2λi+1S
( ni+1

2λi+1

)

+ 4Ni(S(ni+1)+

c2λi+1S
( ni+1

2λi+1

)

) + c′Niλi+1S(ni+1) + c′′ni logni ≤ d0ni log2 ni.

The two following lemmas prove useful bounds on the size of pi and ri.

Lemma 29. For any i ≥ 1 such that λi+1 ≥ 4,

log2 pi+1 ≤ 2βi+1 log2 ri+λi− log2 βi+1+2λi+1+1 log2 λi+1 ≤ 2λi+1+1γ(λi+1)+2λi+1+2 log2 λi+1.

Proof. By construction, pi+1 ≤ (Ri+1(1 + λ2
i+1))

2λi+1
+ 1. Let us consider log2 pi+1. We have

the following bound for λi+1 ≥ 4:

2λi+1(log2(1 + λ2
i+1)) + 1 ≤ 2λi+1+2 log2 λi+1.

Remembering that log2 Ri+1 = 2βi+1 log2 ri+λi−log2 βi+1

2λi+1
, we get the announced result.

�

Lemma 30. For any i ≥ i, 5βi+1 log2 ri ≥ 2λi+1+1γ(λi+1).
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Proof. By definition of βi+1, 4βi+1 log2 ri+λi− log2 βi+1− 1 > 2λi+1+1γ(λi+1). By construction
of ri, log2 ri ≥ λi and, thus,

(4βi+1 + 1) log2 ri − log2 βi+1 − 1 > 2λi+1+1γ(λi+1).

Since, 5βi+1 log2 ri ≥ (4βi+1 + 1) log2 ri − log2 βi+1 − 1, we can conclude.
�

Lemma 31. There exists a constant d1 > 0 such that for any i > 0

Ni(2⌈log2λi+1+1 Ni⌉)2λi+1S
( ni+1

2λi+1

)

≤ d1ni log2 ni.

Proof. By definition of Ni, Ni =
2λi

βi+1
and thus

Ni =
2λi log2 ri
βi+1 log2 ri

≤ ni

βi+1 log2 ri
.

One needs to estimate now the quantity ⌈log2λi+1+1 Ni⌉. We can clearly get the following
upper bound:

⌈log2λi+1+1 Ni⌉ ≤ log2λi+1+1 Ni + 1.

Reusing the definition of Ni, we get

log2λi+1+1 Ni + 1 ≤ λi

λi+1 + 1
+ 1 ≤ λi

λi+1
+ 1 ≤ 2

λi

λi+1
.

It remains to estimate S
(

ni+1

2λi+1

)

= S (log2 ri+1): there exists a constant d such that S(n) ≤
dn log2 n log2 log2 n for any n. Then,

S
( ni+1

2λi+1

)

≤ d
ni+1

2λi+1
(log

(2)
2 ri+1) log

(3)
2 ri+1.

Remembering that log2 ri+1 ≤ 2γ(λi+1) + log2(1 + λ2
i+1) by the bound of Hypothesis 18, we can

state the rough upper bound log2 ri+1 ≤ 3γ(λi+1) ≤ 3
2λi+1 log2 λi+1 < 2λi+1 log2 λi+1.

Combining those upper bounds and Lemma 30, we get

Ni(2⌈log2λi+1+1 Ni⌉)2λi+1S
( ni+1

2λi+1

)

≤ 5
ni

γ(λi+1)2λi+1+1

(

4 · λi

λi+1

)

dni+1(2 log2 λi+1 + 2) log2(2 log2 λi+1 + 2).

Lemma 29 gives an upper bound on ni+1 which can be estimated to

2λi+1+1γ(λi+1) + 2λi+1+2 log2 λi+1 ≤ 2λi+1+2γ(λi+1).

Thus, one gets

Ni(2⌈log2λi+1+1 Ni⌉)2λi+1S
( ni+1

2λi+1

)

≤ 5ni

(

4
λi

λi+1

)

2d(2 log2 λi+1 + 1) log2(2 log2 λi+1 + 1).

Since (2 log2 x+1) log2(2 log2 x+1)
x = o(1) when x→∞ and λi ≤ log2 ni, one can conclude. �

Lemma 32. There exists d2 > 0 such that for any i > 0

Niλi+1S(ni+1) ≤ d2ni log2 ni.

Proof. Reusing the bounds of the proof of Lemma 31, one gets

Niλi+1S(ni+1) ≤ 5niλi+12d log2 ni+1 log2 log2 ni+1.

By definition, 2λi+1 ≈ log2 ni and ni+1 is bounded by 2λi+1+2λi+1. In conclusion,

λi+1 log2 ni+1 log2 log2 ni+1 = o(log2 ni),

from which we deduce the result of Lemma. �
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Since NiS(ni+1) ≤ Niλi+1S(ni+1) and

Ni2
λi+1S

( ni+1

2λi+1

)

≤ Ni(2⌈log2λi+1+1 Ni⌉)2λi+1S
( ni+1

2λi+1

)

,

Lemma 31 and 32 prove the existence of the announced constant d0 and we can state Proposi-
tion 33.

Proposition 33. There exists d0 such that for any i > 0

Uω(i) ≤ Ni(2⌈log2λi+1+1 Ni⌉)Uω(i+ 1) + d0ni log2 ni.(9)

6.3. Inductive argument. Coming back to Equation (9), it is possible to prove the announced
complexity estimate for Uω(i) through an inductive argument similar to the one used by Fürer
in [11].

Theorem 34. There exist L > 0 and 1 > d′ > 0 such that for any i > 0

Uω(i) ≤ Lni log2 ni(4
I−i − d′),

I being the number of recursive levels.

Proof. The constants L and d′ will be determined later. At first, let us assume that the theorem
is true for i+1 and let us prove it for i. It is thus possible to inject the formula of Uω(i+1) into
Uω(i):

Uω(i) ≤ Ni(2⌈log2λi+1+1 Ni⌉)Lni+1 log2 ni+1(4
I−i−1 − d′) + d0ni log2 ni.

Let us rewrite Ni:

Ni =
ni

βi+1 log2 ri
.

Moreover, according to Lemma 29,

ni+1 ≤ 2βi+1 log2 ri + λi − log2 βi+1 + 2λi+1+2 log2 λi+1.

For log2 ni+1, we use the following bound:

log2 ni+1 ≤ log2(2
λi+1+1γ(λi+1) + 2λi+1+2 log2 λi+1) ≤ λi+1 + 1+ log2 γ(λi+1) + log2

(

1 + 2
log2 λi+1

γ(λi+1)

)

.

We already proved that

⌈log2λi+1+1 Ni⌉ ≤
λi

λi+1
+ 1.

Thus, we can rewrite the formula Uω(i)

Uω(i) ≤L
ni

βi+1 log2 ri
· 2

(
λi

λi+1
+ 1

)
(
2βi+1 log2 ri + λi − log2 βi+1 + 2λi+1+1 log2 λi+1

)

(

λi+1 + 1 + log2 γ(λi+1) + log2

(

1 + 2
log2 λi+1

γ(λi+1)

))

(4I−i−1 − d′) + d0ni log2 ni

=2L
ni

βi+1 log2 ri

(
λi

λi+1
+ 1

)
(
2βi+1 log2 ri +O(2λi+1+1 log2 λi+1)

)
(λi+1 +O(log2 λi+1))

(4I−i−1 − d′) + d0ni log2 ni

=2Lni

(
λi

λi+1
+ 1

)(

2 +O

(
2λi+1+1 log2 λi+1

βi+1 log2 ri

))

(λi+1 +O(log2 λi+1)) (4
I−i−1 − d′)

+ d0ni log2 ni.
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Since pi = r2
λi

+ 1, λi ≤ log2 ni ≤ 2λi+1 . Thus, combining this bound on λi with the bound
of Lemma 30 and the fact that there exists K ∈ Z such that I = log∗2 ni + K according to
Proposition 28, one can neglect most of the terms of the previous equation, and proves the
existence of a constant d4 > 0 such that

Uω(i) ≤ Lniλi(4
I−i − 4d′) + d4ni log2 ni + d0ni log2 ni ≤ Lni log2 ni(4

I−i − 4d′) + d4ni log2 ni + d0ni log2 ni.

This is due to the fact that 5βi+1 log2 ri > 2λi+1+1λi+1 and that

λi

λi+1
· 2

λi+1+1 log2 λi+1

βi+1 log2 ri
·λi+1 ·4log

∗

2 ni ≤ 5
λi

λi+1
log2 λi+14

log∗

2 ni = o(λi ·
(log2 λi+1)

2

λi+1
) = o(log2 ni).

Choosing d′ and L such that d4+d0

L ≤ 3d′ and Uω(I) is greater than the cost at the deeper
level, we prove recursively the result of the theorem.

�

Remark 35. Assuming Hypothesis 18, at the depth i+1, the initial coefficients of the polynomials
given to the FFT have a bitsize equal to ηi+1 = βi+1 log ri. We reach 4log

∗ n in the complexity
analysis thanks to the fact that ni+1/ηi+1 = 2 + o(1).

If Hypothesis 18 does not hold and Hypothesis 19 holds, we would have to use Kronecker
substitution, which would give ni+1/ηi+1 = 4+ o(1) since the zero-padding doubles the size of the

ring Ri+1. This explains in particular why we get 8log
∗ n.

If Hypothesis 20 holds, then

log2 pi+1 = 2λi+1 · 2λi+1+o(λi+1)

and
log

(2)
2 pi+1 = 2λi+1 + o(λi+1).

Thus, we get another factor 2 due to log
(2)
2 pi+1 = log2 ni+1 since we would have a factor 2λi+1+

O(log2 λi+1) instead of λi+1 +O(log2 λi+1) that contributes to Uω(i) in the proof of Theorem 34,
which gives 16log

∗ n.

It is not hard to deduce from Theorem 34 and Proposition 28 that, assuming Hypothesis 18,

Uω(1) = O(n1 log2 n14
log∗

2 n1).

Injecting Uω(i + 1) into U(i), and then M(n), one gets the estimated conditional complexity,
which concludes this section.

7. Practical considerations

In practice, the algorithm that has been described in this section should not be implemented
following the various tricks that make the complexity analysis work. Firstly, the strategy of using
GenFermatMul for the toplevel of the tree of recursive calls is no longer mandatory if one considers
the determination of p0 as a precomputation. In light of Table 2, we may consider such primes
as given in the context of an implementation. Moreover, the 3N additional multiplications due
to Half-FFT can be avoided at the toplevel, for the same reason explained in [12, §2.3], applied
to the Schönhage-Strassen algorithm.

Secondly, the bounds of Hypothesis 18, 19 or 20 are no longer relevant for a competitive
implementation. Indeed, Hypothesis 18 is meant to improve the complexity analysis. Thus,
we are not forced to use the primes suggested in Section 5.1. However, we retain that given a
parameter η fixing the size of coefficients of polynomials A and B of degree N , the bitsize of the
generalized Fermat prime p should not be too large compared to 2η+ log2 N . Thus, in practice,

we choose the smallest prime p = r2
λ

+ 1 larger than 2η + log2 N .
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For instance, for n = 231, if η = 25, then 2η + log2 N = 26 + 26 ≤ log2(74
16 + 1). The prime

p = 7416 + 1 is the smallest generalized Fermat prime with exponent 24 and a bitsize above 90.
Let us express the cost C of the pointwise product:

C =
n

η
S(log2 p) ≈

n

η
S(2η + log2 N).

The term S denotes the complexity of Schönhage-Strassen’s algorithm. It is clear from this
equation that if log2 N ≈ η, then

C ≈ 3n · log2 η log
(2)
2 η

whereas if log2 N ≪ η, then

C ≈ 2n · log2 η log
(2)
2 η.

In conclusion, the previous analysis shows that, in the context of a practical implementation,
we should choose η such that log2 N ≪ η and p such that p is the smallest prime larger than
2η + log2 N .

Moreover, it is possible to use an intermediate strategy between the Kronecker substitution
and the strategy proposed in §5.5. For instance, multiplying elements represented in radix 74 in
the ring R = Z/pZ = Z/7416 + 1Z using Kronecker substitution would require a multiplication
of two integers of bitsize greater than 2 · 8 · 16 = 256. This requires, on a 64-bit architecture, 9
machine-word multiplications using Karastuba on two levels of recursion.

Considering elements of R in radix 742, we can use the multipoint Kronecker substitution
proposed by Harvey in [15]. This way, we perform 2 multiplications of 128-bit integers, which
corresponds to 6 machine-word multiplications, to which we should add the cost of the recom-
position in radix 742 and the decomposition in radix 74.

Let us compare approximatively the cost of Schönhage-Strassen’s algorithm to the new al-
gorithm. Roughly speaking, for 230-bit integers, a Schönhage-Strassen would involve 2 · 215
multiplications of integers of approximate size 216. In our case, we cut this 230-bit integer into
pieces of size less than 25-bit. Thus, N = 2 · 225 (the size of the product is twice the size of the
input) and we have

N · (3⌈log2·16 N⌉+ 1) = 226 · 19
multiplications of 288-bit integers using Kronecker substitution if p = 7416 + 1. Thus, we need
to know if there is a chance that the cost induced by 226 ·19 multiplications of integers of 288-bit
is cheaper than the cost induced by 216 multiplications of size 216-bit.

For 240-bit integers, we use p = 88432 + 1. Thus, we cut our integers in pieces of size 27

and N = 2 · 233. Thus, we multiply 234(3 · ⌈ 346 ⌉ + 1) ≈ 19 · 234 integers of 800-bit using

Kronecker substitution. The Schönhage-Strassen involves 221 multiplications of approximately
221-bit integers.

We investigate in Table 3 how changing the prime used in GenFermatMul for the multiplication
of two n-bit integers, where n equal to 230, 236, 240 or 246, may impact the estimated time spent to
compute expensive multiplications. We computed this estimated time by measuring the average
time spent by the routine mpz_mul of GMP [14] for different bitsizes on an architecture Intel
Core i5-4590 (3.30GHz and Haswell product). We obtain the expected time spent in expensive
multiplications by estimating the bitsize of the integers that we get with Kronecker substitution
and we multiply the number of expensive multiplications by the average time of mpz_mul for this
bitsize. This approximation does not take into account the fact that expensive multiplications of
integers of bitsize m are done modulo an integer 2m+1, which may save a factor 2 in practice. We
deduce from Table 3 that changing the prime may improve on the cost induced by the expensive
multiplications, but not significantly.
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bitsize 230

prime expensive multiplications bitsize of K.S. estimated time (s)
20972088 + 1 225 · 22 376 5.62 · 10

7416 + 1 226 · 19 288 8.61 · 10
5432 + 1 225 · (3 · ⌈ 256 ⌉+ 1) = 225 · 16 (6 · 2 + 5) · 32 = 544 6.12 · 10
562

32 + 1 2
24 · 13 (10 · 2+ 5) · 32 = 800 3.57 · 10

13109032 + 1 223 · 13 (18 · 2 + 5) · 32 = 1312 4.82 · 10
bitsize 236

prime expensive multiplications bitsize of K.S. estimated time (s)
20972088 + 1 231 · 25 376 4.08 · 103
207216 + 1 231 · 22 448 4.26 · 103
5432 + 1 231 · 19 (6 · 2 + 5) · 32 = 544 4.61 · 103
562

32 + 1 2
30 · 16 (10 · 2+ 5) · 32 = 800 3.35 · 103

13109032 + 1 229 · 16 (18 · 2 + 5) · 32 = 1312 3.75 · 103
10264 + 1 230 · 16 (7 · 2 + 6) · 64 = 1280 7.00 · 103
56264 + 1 229 · 16 (10 · 2 + 6) · 64 = 1664 5.65 · 103

bitsize 240

prime expensive multiplications bitsize of K.S. estimated time (s)
20972088 + 1 235 · 28 376 7.32 · 104
207216 + 1 235 · 22 448 6.82 · 104
5432 + 1 235 · 19 (6 · 2 + 5) · 32 = 544 7.52 · 104
562

32 + 1 2
34 · 19 (10 · 2+ 5) · 32 = 800 6.26 · 104

13109032 + 1 233 · 19 (18 · 2 + 5) · 32 = 1312 7.09 · 104
10264 + 1 234 · 16 (7 · 2 + 6) · 64 = 1280 11.28 · 104
56264 + 1 233 · 16 (10 · 2 + 6) · 64 = 1664 9.03 · 104

bitsize 246

prime expensive multiplications bitsize of K.S. estimated time (s)
207216 + 1 241 · 28 448 5.55 · 106
5432 + 1 241 · 22 (6 · 2 + 5) · 32 = 544 5.47 · 106
884

32 + 1 2
40 · 22 (10 · 2+ 5) · 32 = 800 4.64 · 106

13109032 + 1 239 · 22 (18 · 2 + 5) · 32 = 1312 5.25 · 106
56264 + 1 239 · 19 (10 · 2 + 6) · 64 = 1664 7.68 · 106

Table 3. Estimated time for computing the expensive multiplications in
GenFermatMul depending on the prime used.

The table 4 gives an estimation of the time required to compute a multiplication of two
integers using GenFermatMul compared to Schönhage-Strassen. This estimation does not take
into account the cost of linear operations such as additions, subtractions, shifts, which may be
not negligible in practice. We use the best tradeoff obtained in Table 3 and the primes proposed
in Table 2 by default.

Thus, the table 4 allows one to conclude that an implementation of GenFermatMul will unlikely
beat an implementation of Schönhage-Strassen algorithm for sizes below 240. For sizes above
240, it seems that Schönhage-Strassen algorithm is not anymore unreachable. Thus, provided
that there is an improvement on Kronecker substitution allowing one to spare a factor 2 in
the estimation of the cost of the expensive multiplications, it does not seem hopeless to have a
competitive implementation of GenFermatMul.
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Schönhage-Strassen algorithm GenFermatMul

bitsize nb. mult. mult. bitsize time (s) nb. mult. prime KS. bitsize time (s)
230 216 ≈ 216 9.96 226 · 19 56232 + 1 800 3.57 · 10
236 218 ≈ 218 2.60 · 102 230 · 16 56232 + 1 800 3.35 · 103
240 221 ≈ 221 2.36 · 104 234 · 19 56232 + 1 800 6.26 · 104
246 224 ≈ 224 2.17 · 106 240 · 22 88432 + 1 800 4.64 · 106
250 226 ≈ 226 4.10 · 107 244 · 25 88432 + 1 800 7.91 · 107
256 229 ≈ 229 2.94 · 109 250 · 28 88432 + 1 800 5.67 · 109

Table 4. Comparison of multiplications realized by Schönhage-Strassen
algorithm

and GenFermatMul relying on measured times of mpz_mul of GMP [14].
The third column in GenFermatMul corresponds to the bitsize of the integers

obtained after Kronecker substitution.

8. Conclusions

Our algorithm follows Fürer’s perspective, and improves on the cost of the multiplications
in the underlying ring. Although of similar asymptotic efficiency, it therefore differs from the
algorithm in [16], which is based on Bluestein’s chirp transform, Crandall-Fagin reduction, com-
putations modulo a Mersenne prime, and balances the costs of the “expensive” and “cheap”
multiplications.

It is interesting to note that both algorithms rely on hypothesis related to the repartition
of two different kinds of primes. It is not clear which version is the most practical, but our
algorithm avoids the use of bivariate polynomials and seems easier to plug in a classical radix-2λ

FFT by modifying the arithmetic involved. The only additional cost we have to deal with is
the question of the decomposition in radix r, and the computation of the modulo, which can be
improved using particular primes. However, we do not expect it to beat Schönhage-Strassen for
integers of size below 240 bits.

A natural question arises: can we do better? The factor 4log
∗ n comes from the direct and the

inverse FFT we have to compute at each level of recursion, the fact that we have to use some
zero-padding each time, and of course the recursion depth, which is log∗ n+O(1).

Following the same approach, it seems hard to improve on any of the previous points. In-
deed, the evaluation-interpolation paradigm suggests a direct and an inverse FFT, and getting

a recursion depth of 1
2 log

∗ n+O(1) would require a reduction from n to log(2) n at each step.
We can also question the practicality of our approach. Is it possible to make a competitive

implementation of those algorithms which would beat the current implementations of Schönhage-
Strassen’s algorithm ?
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∏
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and

u(K,λ) =

K·2λ+1+1∏

p prime

(

1− 1

p

)

.

The idea is to rely on the proof of the main theorem of [20, §2], and to use the main result
of [8] for arithmetic progressions with powerful moduli, since we consider arithmetic progressions
(q · k + r)k where q is a power of two.

Let P(x) be the set of primes smaller than x.
Let us consider Cλ(x):

Cλ(x) =

∏

p∈P(x)

p≡1 mod 2λ+1

(

1− 2λ

p

)

∏

p∈P(x)

(

1− 1

p

) .

We prove that there exists C > 0 such that Cλ ≥ C for any λ. Thus, let us take a look at the
logarithm:

− logCλ(x) =
∑

p∈P(x)

log

(

1− 1

p

)

︸ ︷︷ ︸

F

−
∑

p∈P(x)

p≡1 mod 2λ+1

log

(

1− 2λ

p

)

︸ ︷︷ ︸

G

.

By Abel’s summation, we have

− logCλ(x) =
∑

p∈P(x)

log

(

1− 1

p

)

︸ ︷︷ ︸

F

−
∑

p∈P(x)

p≡1 mod 2λ+1

p≥2·2λ+1+1

log

(

1− 2λ

p

)

︸ ︷︷ ︸

G′

− log

(

1− 2λ

2λ+1 + 1

)

· π(2λ+1 + 1, 2λ+1, 1)

︸ ︷︷ ︸

First term of G if 2λ+1 is prime

=−γ − log(2) x+ o(1)
︸ ︷︷ ︸

F

− log(1 − 2λ

2λ+1 + 1
) · π(2λ+1 + 1, 2λ+1, 1)

︸ ︷︷ ︸

First term of G if 2λ+1 is prime

+ log

(

1− 2λ

2 · 2λ+1 + 1

)

·

π(2 · 2λ+1 + 1, 2λ+1, 1)− log

(

1− 2λ

x

)

π(x, 2λ+1, 1)−
∫ x

2·2λ+1+1

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt

Since log(1− 2λ

x )π(x, 2λ+1, 1) ∼ − 2λ

x π(x, 2λ+1, 1) = o(1), we have

− logCλ(x) =

∫ x

2·2λ+1+1

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt− log(2) x− γ +O(1).(10)

Now, we can use the result of [8]: there exists an absolute constant K such that for any λ ≥ 0,
q = 2λ+1, and x such that

min(x1/3 exp(−(log(2) x)3), x1/2 exp(−8 log(2) x)) ≥ q,

taking A = 2 and B = A+ 6 = 8 in the theorem,
∣
∣
∣
∣
π(x, 2λ+1, 1)− x

φ(2λ+1) log x

∣
∣
∣
∣
<

K · x
φ(2λ+1)(log x)2

.(11)

There exists an absolute constant H such that for any x > 1

min(x1/3 exp(−(log(2) x)3), x1/2 exp(−8 log(2) x)) ≥ (Hx)1/6.
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Thus, for x > 26·(λ+1)

H , the equation (11) is verified.
Coming back to the equality 10, we cut the integral as in [20, §2]:

− logCλ(x) =

∫ 26·(λ+1)/H

2·2λ+1+1

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt+

∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt− log(2) x− γ +O(1).

We use a Brun-Titchmarsh estimate for the left integral:

∫ 26·(λ+1)/H

2·2λ+1+1

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt <

∫ 26·(λ+1)/H

2·2λ+1+1

2

(t− 2λ) log(t/2λ+1)
dt.

Let us use a change of variable t = u · 2λ+1. Then, dt = 2λ+1du and

∫ 26·(λ+1)/H

2·2λ+1+1

2

(t− 2λ) log(t/2λ+1)
dt <

∫ 25·(λ+1)/H

2

2λ+1

(u · 2λ+1 − 2λ) log(u)
du.

We have
∫ 25·(λ+1)/H

2

2λ+1

(u · 2λ+1 − 2λ) log(u)
du =

∫ 25·(λ+1)/H

2

1

(u− 1
2 ) log(u)

du.

Since
∫ 25·(λ+1)/H

2

1

(u − 1
2 ) log(u)

du−
∫ 25·(λ+1)/H

2

1

u log u
du =

∫ 25·(λ+1)/H

2

1

2

1

u(u− 1
2 ) log u

and
∫ 25·(λ+1)/H

2

1

2

1

u(u− 1
2 ) log u

<

∫ 25·(λ+1)/H

2

1

2 log 2

1

(u− 1
2 )

2

<

∫ ∞

2

1

2 log 2

1

(u− 1
2 )

2

there exists an absolute constant J such that

− logCλ(x) <

∫ 25·(λ+1)/H

2

2

u logu
du+

∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt− log(2) x− γ + J.

We use the result of [8] to bound
∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt.

Since
∣
∣
∣
∣
∣

∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
− 1

(t− 2λ) log t

∣
∣
∣
∣
∣
dt ≤

∫ x

26·(λ+1)/H

∣
∣
∣
∣
2λ

π(t, 2λ+1, 1)

t2 − 2λt
− 1

(t− 2λ) log t

∣
∣
∣
∣
dt

≤
∫ x

26·(λ+1)/H

K

(t− 2λ)(log t)2
dt

≤
∫ x

26·(λ+1)/H

K

(t− 2λ)(log(t− 2λ))2
dt

≤ K ·
[

− 1

log(t− 2λ)

]x

26·(λ+1)/H

≤ K · 1

26·(λ+1)/H − 2λ
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we have ∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt =

∫ x

26·(λ+1)/H

1

(t− 2λ) log t
dt+O(1).

Thus,
∫ x

26·(λ+1)/H

2λ
π(t, 2λ+1, 1)

t2 − 2λt
dt = log(2)(x− 2λ)− log(2)(26·(λ+1)/H − 2λ) +O(1).

In conclusion, there exists an absolute constant J ′ such that

− logCλ(x) <

∫ 25·(λ+1)/H

2

2

u logu
du+ log(2) x− log(λ) − log(2) x− γ + J ′ = logλ+O(1).

This implies in particular that there exists an absolute constant C > 0 such that Cλ ≥ C
λ . �
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