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Abstract. This paper evaluates a nonlinear registration method for
warping a 3D histological atlas of the basal ganglia into pati ent data for
deep brain stimulation (DBS) planning. The power of the method is the
possibility to combine iconic registration with geometric con straints un-
der a uni�ed di�eomorphic framework. This combination aims to en sure
robust and accurate atlas-to-patient warping and anatomy-pres erving de-
formations of stimulation target nuclei. A comparison of the met hod with
a state-of-the-art di�eomorphic registration algorithm reveals h ow each
approach deforms low-contrasted image regions where DBS target nuclei
often lie. The technique is applied to T1-weighted magnetic re sonance
images from a cohort of Parkinsonian subjects, including subjects with
standard-size and large ventricles. Results illustrate the e�e cts of iconic
or geometric registration alone, as well as how both constraints can be
integrated in order to contribute for registration precision enhan cement.

Keywords: nonlinear registration, di�eomorphism, basal ganglia, sub-
thalamic nucleus, Parkinson's disease, deep brain stimulation

1 Introduction

In deep brain stimulation surgical planning, targeting of the basal ganglia is
an important step, since it allows to estimate the location of target nuclei in
the patient's brain. These estimates are used to plan the possible trajectories
for electrode implantation during surgery. Precise positioning of electrodes is
a key factor for the success of DBS, since stimulation of areas surrounding the
target nuclei instead of the nuclei themselves, or stimulation of distinct territories
within the same target, such as the motor or limbic parts of the subthalamic
nucleus (STN), may account for drastic negative side-e�ects [1{3].
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Automatic atlas registration methods are among the solutions [4{6] for anatom-
ical targeting. These methods usually depend on the data to be registered, on
a transformation model of the possible deformations (rigid, a�ne, nonlinear),
and on a similarity measure to align atlas and patient data. The suitability of
each transformation type and similarity criterion depends on the problem at
stake. A registration method suitable for DBS applications should be able to
map a basal ganglia atlas to a patient's brain robustly and accurately, whilere-
specting anatomical constraints. For example, although inter-subjectvariability
of subcortical structures is natural, these structures may share common shape
patterns that are not expected to change signi�cantly unless a pathology induces
such deformations. However, targeting of DBS nuclei in images may be di�cult,
since certain nuclei (e.g. STN) are hardly or only partially visible in 1.5T T1 or
T2-weighted magnetic resonance images (MRI). In these cases, the estimation
of target nuclei location must rely on their surrounding visible structures.

This paper evaluates a nonlinear registration algorithm applied to the prob-
lem of atlas-to-patient basal ganglia registration of 1.5T T1-weighted MRI from
DBS-eligible patients treated in the local neurosurgical department. This new
method aims at improving, by means of nonlinear deformations, the accuracy
of the current two-step rigid/a�ne registration, which is not always cap able of
satisfactorily registering the atlas data to the patient brain, especially in the case
of subjects with large ventricles. This deformation model introduces a uni�ed
formalism for the use of geometric and iconic constraints. Iconic information is
often considered when aligning image contours that are present everywhere in
the image domain. Also, labeled structures segmented from images and repre-
sented by geometric entities (e.g. 3D surface meshes) may be used asgeometric
constraints. However, geometric registration is de�ned only on the contours to
be aligned, and does not cover the whole image domain as in the iconic case.

The main advantage of the uni�ed approach is thus the possibility to combine
iconic and geometric information, since geometry can be used as a constraint to
guide local anatomical deformations, whereas the intensity-based information
can account for deformations in other regions. This combination is attained by
choosing a suitable deformation de�ned in the ambient space (the domain em-
bedding images and surfaces to be registered), which is also applicable to every
object embedded in such a space. This is possible because the parametriza-
tion of deformations is made independent of the data to be registered. Our
experiments show how each of these constraints alone in
uences registration,
as well as how they can be put together to improve atlas-to-patient warping.
Results also show that the modeled class of di�eomorphisms produces desir-
able anatomy-preserving deformations of the subthalamic nucleus, unlike other
nonlinear state-of-the-art methods.

2 Iconic-Geometric Di�eomorphic Nonlinear Registration

Consider a total of Nobj deformable objects (e.g. images, surfaces). LetSk ,
k = 1 : : : Nobj , be a source object to be registered to a target objectTk , and let
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M k be its corresponding deformed object. Our purpose is to �nd a compound
registration from these sources to their respective targets. Such aregistration
corresponds to a single di�eomorphic transformation� c;� of the whole 3D space
embedding all these objects, which is obtained thanks to the controlpoint for-
mulation introduced in [7] for geometric entities (curves, surfaces, etc.)6 and
in [8] for images. The proposed formalism is built on these works and uni�es the
geometric and iconic di�eomorphic registrations under a single model.

Di�eomorphic deformations of all points in the ambient space are obtained
through the integration of a time-varying vector �eld over the time in terval
[0; 1], given by vt (x) =

P N C
i K (x; ci (t)) � i (t). Each � i is a momentum vector

associated to a control pointci out of a total of NC control points. These control
points are not de�ned over the input data, but they are optimized with in the
ambient space and tend to move towards the most variable parts of the data.The
previous equation de�nes a parametrization of di�eomorphisms that depends
on the interpolation of the set of momenta located at the control points. It
also describes the velocity of any point in the ambient spacex at time t 2
[0; 1]. K is an interpolation Gaussian kernel that de�nes a Reproducing Kernel
Hilbert Space (RKHS) and is given by K (x; y) = exp ( �jj x � y jj 2 )=� 2

g . This shows
that the deformation integrates iconic and geometric information containedin a
neighborhood of size� g 2 < , whereas points farther than� g from image contours
or surfaces almost do not move.

To compute the compound registration of the set of deformable objects, which
corresponds to a di�eomorphic transformation of the ambient space, we need to
estimate the position of these control points and associated momenta. Given an
initial set c0 of control points and their associated set� 0 of initial momenta,
this registration is achieved by minimizing the following objective function:

E(c0; � 0) = (
N objX

k=1

1
2� k

2 D(� c;� � M k ; Tk )2) + Reg(� c;� ) , (1)

whereD is a similarity measure computed between each transformed source data
and their corresponding target, and Reg is a regularity term de�ned over the
di�eomorphic transformation � c;� . For more details on the di�eomorphism � c;� ,
the reader is referred to [7, 8].

The parameter � k 2 < is of great importance. It consists in a scalar trade-
o� value between �delity-to-data and the regularity of the sought deform ation.
It also balances the relative importance of each iconic and geometric constraint
among themselves. Besides this, the underlying parameter� g plays a crucial role
in the interpolation of geometric and iconic information present in the ambient
space, as discussed previously in this section. It also regulates the scale at which
deformations are taken into account. A small kernel will tend to consider local
variations, which may be desirable when trying to register re�ned anatomical
details, whereas a larger kernel will promote more homogeneous deformations.

6 This di�eomorphic registration of geometric objects is imp lemented in the software Deformetrica ,
publicly available at http://www.deformetrica.org
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If Sk and Tk are images, the similarity measureD is based on the quadratic
error to the local a�ne model proposed in [9], which is more robust to source
and target contrast di�erences than whole-image measures such as the sumof
squared di�erences. This distance is de�ned as:

D(� c;� � M k ; Tk )2 =
Z

(� 2
p(� c;� � M k ) �

Corr (Tk ; � c;� � M k )2
p

� 2
p(Tk )

)dp. (2)

Corr (I; J ) is the local correlation between two given imagesI and J , de�ned
over a symmetric and normalized window functionW : < d ! < . Let Wp be the
window translation around a point p and let x be a point in the images domain.
Then Corr (I; J ) is written as:

Corr (I; J )p =
Z

Wp(x)( I (x) �
Z

Wp(x)I (x)dx)(J (x) �
Z

Wp(x)J (x)dx)dx.

(3)
Besides,� 2

p(I ) is the local variance of a given imageI , written as:

� 2
p(I ) = Corr (I; I )p. (4)

If Sk and Tk represent geometric primitives,D is a point-correspondence-free
distance on varifolds, which are the adopted mathematical representations of
geometric deformable objects in this formulation. WhenM k and Tk are surfaces
represented by computer meshes, the similarity measure is written as:

D(� c;� � M k ; Tk )2 = < � c;� � M k ; � c;� � M k > + < T k ; Tk > � 2 < � c;� � M k ; Tk > ,
(5)

where the operator< S; S 0 > represents the inner product of two given surfaces
S and S0 represented by computer meshes and de�ned as:

< S; S 0 > =
X

s

X

s0

K W (ps; ps0)
(nT

s ns0)2

jns jjns0j
, (6)

where s (resp. s0) is the total number of mesh cells composing the surface,ps

and ns (resp. ps0 and ns0) represent the centers and normals of the faces inS
(resp. S0), and jns j (resp. jns0j) is the area of each mesh cell. Finally,K W is a
Gaussian function with a �xed standard deviation � W .

3 Atlas-to-Patient Registration

In the local neurosurgical department, targeting of basal ganglia is currently
achieved through atlas-to-patient registration. DBS-eligible patient data con-
sists of pre-operative T1-weighted MRI acquired with a GER
 1.5T scanner. The
adopted atlas was described in [4, 10] and consists in a detailed 3D histological
model of the human basal ganglia, obtained through the co-registration of his-
tological and T1-weighted MRI data from a post-mortem specimen, which may
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Atlas

Subject A

Subject B

Subject C

Subject D

Subject E

Fig. 1. Atlas left-hemispheric cropped volume from the post-mortem speci men MRI
used in the registration process (top row, �rst three views to the le ft) and registered
MRI left-hemispheric cropped volumes from �ve subjects of the loca l cohort of patients
liable to DBS. For the atlas and for each subject, sample axial, sagittal, and coronal
slices are shown from left to right.

be adapted into patient's space. Then, targeting of the basal ganglia follows a
pipeline that is similar to the inclusion protocol described in [11]: �rst the AC-
PC coordinates are interactively de�ned over the patient's MRI; t hen, the scalp,
gray/white matter, and sulci are segmented from the T1-weighted MRI; � nally,
spatial normalization of the patient data in the atlas space is performed.

This normalization is achieved through a patient-to-atlas two-step image reg-
istration process. The patient's MRI is rigidly registered to the atlas MRI for
brain volume alignment. Next, the result and the atlas image are cropped into
two regions of interest (ROI) around the basal ganglia, resulting in right and
left hemisphere ROIs. Finally, each hemispheric patient ROI isregistered to
the corresponding atlas ROI, through a�ne transforms, allowing for a more re-
�ned alignment of data around the basal ganglia. Examples of the atlas cropped
volume and the registered input cropped volumes are shown in Fig. 1. Allreg-
istrations are done with the Baladin software [10], a multiscale block-matching
algorithm. Finally, the atlas meshes are deformed into the original patient MRI
space by applying the composition of atlas-to-patient a�ne and rigid matric es
to each mesh. This allows for easy assessment7 of registration quality directly
over the patient MRI. Although this pipeline is robust for STN targeti ng, the

7 Results visualized with the software 3D Slicer (http://www.slicer.org ).



6

Fig. 2. Registration deformations obtained from the Baladin algorithm (b righter col-
ors) and from ANTS with standard parameters (darkers colors), applied to meshes of
the caudate nucleus (green), thalamus (red), putamen (pink), and subthalamic nucleus
(yellow/orange). These meshes were warped into the image spaceof a subject D with
standard-size ventricles (top) and a subject E with large ventric les (bottom). Although
ANTS produces accurate caudate and thalamus registrations, its deformations implied
onto the STN do not preserve anatomy.

rigid-a�ne combination is not always accurate for dealing with patient-t o-atlas
deformations that are of nonlinear nature. For instance, one common pitfall
concerns the caudate nucleus, whose corresponding region tends to go over the
actual ventricle region after registration, as seen in Fig. 2. This typical problem
leads us to consider the adoption of a nonlinear registration step in the basal
ganglia targeting pipeline.

Nonlinear registration methods may cope with broader types of deforma-
tions and, thus, produce more precise patient-to-atlas registration,but a com-
mon drawback is that they may also lead to spurious deformations due to image
noise or to the way the deformation model acts in low-contrast image regions.
For instance, the software ANTS [12, 13] accurately aligns anatomical structures
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that present high contrast and are fairly visible in a given image, such asthe
caudate, the ventricles, and the thalamus. However, structures present in low-
contrast image regions, e.g. the STN, are deformed in an unrealistic manner.
This e�ect is shown in Fig. 2 for the STN, whose left-hemispheric 3Dhistologi-
cal mesh was warped into patient space according to the deformation �eldfound
by ANTS for atlas-to-patient registration. In the ANTS deformation model, im -
age forces computed in high-contrast regions propagate to low-contrast regions
and dominate the deformation of the more homogeneous regions. Thus, the good
accuracy in the alignment of highly-contrasted structures is done at the cost of
less controlled deformations in low-contrast regions. On the other hand, the reg-
istration model proposed in Sect. 2 deals with low-contrasted and weak-gradient
regions in a distinct manner. It tends to penalize deformations in such regions,
leading to anatomy-preserving deformations of the STN. Next, we discuss the
experimental assessment of this method.

3.1 Experimental Results

For these experiments, subcortical structures surfaces represented by meshes
were obtained with the automatic subcortical segmentation procedurerecon-
all [14], from the Freesurfer image analysis suite, which provides reasonable
segmentations. Although the 3D histological atlas meshes are available, we also
extracted subcortical structures from the atlas MRI using this software, in order
to register meshes with the same level of detail. We adopted the lefthemispheric
lateral ventricle and caudate provided by Freesurfer as geometric constraints for
our tests. For atlas-to-patient registration assessment, we warped the3D histo-
logical atlas meshes according to each resulting di�eomorphic deformation, and
subsequently transformed them into the original patient MRI space in the same
way as explained in Sect. 3. The method was tested on the registered cropped
volumes from the �ve patients depicted in Fig. 1. For illustration pur poses, here
we only show results for subjects A, D, and E, who present thinner,similar and
larger ventricles with respect to the atlas postmortem specimen.

Iconic Registration. Consider the atlas left-hemispheric ROI, and the a�nely-
registered left-hemispheric ROI obtained for a given patient, as explained in
Sect. 3. This �rst experiment consisted in registering the atlasROI to the pa-
tient's ROI, using � g = 3mm as the convolution parameter, and � 1 = 0 :71
for the image data-�delity parameter. The Gaussian kernel is small enoughto
capture image deformations occurring within small image regions, whereas the
data-�delity term was chosen in a way as to give as much importance to the
data as to the allowed regularity of the sought deformation.

Figure 3 depicts registration results for subject A, whose lateral ventricles are
smaller than those from the postmortem specimen, subject D, whose ventricles
are of standard-size, and subject E, whose lateral ventricles are muchlarger.
In all three cases, there is an improvement in the caudate and the thalamus
registrations in comparison with the Baladin results. The chosen parameters
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Fig. 3. Meshes warped according to our nonlinear registration using only iconic con-
straints (darker colors) and the Baladin algorithm (brighter col ors) for subjects A (top),
D (middle), and E (bottom). The color-structure correspondence i s the same as that
of Fig. 2 and will be consistently adopted throughout the pape r. Although registra-
tion is enhanced in comparison with Baladin results, caudate accuracy still requires
improvements, especially for subject E presenting large ventricles.
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are suitable for obtaining a satisfying registration for subjects with standard-
size ventricles. However, results are poorer for the subject with large ventricles,
especially concerning the caudate-ventricle superposition. This is probably due
to the size of � g, which is small in comparison with the ventricle or caudate
di�erences between the atlas and this patient. In this case, the kernel K applied
to each control point does not consider image gradients that are farther than� g

and registration does not capture this large dissimilarity. Increasing the value of
� g and/or adjusting the data-�delity value could lead to better results.

Geometric Registration. This second experiment consisted in registering the at-
las caudate mesh obtained from Freesurfer to the patient's respective Freesurfer
mesh, using� g = 3mm, and � 1 = 0 :71 as the geometric data-�delity parame-
ter. Here, the sought di�eomorphism only considers geometric constraints. The
caudate is the structure of choice, since it is one of the main structures whose
registration must be improved. Figure 4 shows the results of the warpings of
the atlas meshes according to the deformations found for the same subjects as
before. In all three cases, the caudate-ventricle superposition problem is reduced
with respect to the Baladin results. Also, atlas mesh alignment is improved for
subjects D and E in comparison with the iconic case, even though the param-
eters are the same in both cases. However, the registration does not a�ect the
whole thalamus, and this structure is only slightly enhanced. This is because
geometric deformations decay exponentially as they move away from thesurface
mesh, according to the value of� g. Thus, they can only in
uence nearby regions,
as it can be seen in the thalamus frontier close to the caudate in sagittal and
coronal views.

Iconic-Geometric Registration. This last experiment consisted in registering si-
multaneously the atlas left lateral ventricle and caudate meshes obtained from
Freesurfer, and its left hemispheric ROI to the patient's respective meshes and
ROI. The adopted parameter values were� g = 5mm and � 1 = � 2 = � 3 = 0 :1.
In this test, more importance was given to the geometric and iconic constraints
with respect to the regularity term. The lateral ventricles and caudate nuclei
were used as geometric constraints in the attempt to enhance registration for
the subject with large ventricles. Results are illustrated in Fig. 5. Atlas mesh
alignment for each basal ganglia structure is more precise in comparison with
the iconic case and the results from Baladin. Unlike the purely geometric regis-
tration, improvements also occur in other image regions, such as in thethalami
or putamen of these subjects since the iconic information also drivesthe regis-
tration.

4 Discussion

The results discussed in Sect. 3.1 show that our nonlinear di�eomorphic regis-
tration method is capable of improving atlas-to-patient registration where the
current two-step rigid and a�ne combination presents drawbacks. The regis-
tration of the caudate was improved with respect to the accumbens area,and


















