E. Achtert, C. Böhm, P. Kröger, P. Kunath, A. Pryakhin et al., Efficient reverse k-nearest neighbor search in arbitrary metric spaces, Proceedings of the 2006 ACM SIGMOD international conference on Management of data , SIGMOD '06, pp.515-526, 2006.
DOI : 10.1145/1142473.1142531

D. Attali, A. Lieutier, and D. Salinas, EFFICIENT DATA STRUCTURE FOR REPRESENTING AND SIMPLIFYING SIMPLICIAL COMPLEXES IN HIGH DIMENSIONS, International Journal of Computational Geometry & Applications, vol.22, issue.04, pp.279-304, 2012.
DOI : 10.1142/S0218195912600060

URL : https://hal.archives-ouvertes.fr/hal-00785082

D. Attali, A. Lieutier, and D. Salinas, Vietoris???Rips complexes also provide topologically correct reconstructions of sampled shapes, Computational Geometry, vol.46, issue.4, pp.448-465, 2013.
DOI : 10.1016/j.comgeo.2012.02.009

URL : https://hal.archives-ouvertes.fr/hal-00579864

J. L. , B. , and R. Sedgewick, Fast algorithms for sorting and searching strings, SODA, pp.360-369, 1997.

J. Boissonnat, T. K. Dey, and C. Maria, The compressed annotation matrix: an efficient data structure for computing persistent cohomology
URL : https://hal.archives-ouvertes.fr/hal-00761468

J. Boissonnat, L. J. Guibas, and S. Oudot, Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes, Discrete & Computational Geometry, vol.33, issue.2, pp.37-70, 2009.
DOI : 10.1007/s00454-009-9175-1

URL : https://hal.archives-ouvertes.fr/hal-00488434

J. Boissonnat and C. Maria, The simplex tree: An efficient data structure for general simplicial complexes, ESA, pp.731-742, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01108416

E. Brisson, Representing geometric structures ind dimensions: Topology and order, Discrete & Computational Geometry, vol.5, issue.1, pp.387-426, 1993.
DOI : 10.1007/BF02189330

G. Carlsson, T. Ishkhanov, A. Vin-de-silva, and . Zomorodian, On the Local Behavior of Spaces of Natural Images, International Journal of Computer Vision, vol.265, issue.4, pp.1-12, 2008.
DOI : 10.1007/s11263-007-0056-x

F. Chazal and S. Oudot, Towards persistence-based reconstruction in euclidean spaces, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.232-241, 2008.
DOI : 10.1145/1377676.1377719

URL : https://hal.archives-ouvertes.fr/inria-00197543

V. De, S. , and G. Carlsson, Topological estimation using witness complexes, Eurographics Symposium on Point-Based Graphics. The Eurographics Association, 2004.

K. Tamal, F. Dey, Y. Fan, and . Wang, Computing topological persistence for simplicial maps. CoRR, abs, 1208.

H. Edelsbrunner and J. Harer, Computational Topology -an Introduction, 2010.

G. Jacobson, Space-efficient static trees and graphs, 30th Annual Symposium on Foundations of Computer Science, pp.549-554, 1989.
DOI : 10.1109/SFCS.1989.63533

A. B. Lee, K. S. Pedersen, and D. Mumford, The nonlinear statistics of high-contrast patches in natural images, International Journal of Computer Vision, vol.54, issue.1/2, pp.83-103, 2003.
DOI : 10.1023/A:1023705401078

P. Lienhardt, N-DIMENSIONAL GENERALIZED COMBINATORIAL MAPS AND CELLULAR QUASI-MANIFOLDS, International Journal of Computational Geometry & Applications, vol.04, issue.03, pp.275-324, 1994.
DOI : 10.1142/S0218195994000173

S. Martin, A. Thompson, E. A. Coutsias, and J. Watson, Topology of cyclo-octane energy landscape, The Journal of Chemical Physics, vol.132, issue.23, p.234115, 2010.
DOI : 10.1063/1.3445267

M. David, S. Mount, . Arya, and . Ann, Approximate Nearest Neighbors Library. http://www.cs.sunysb, 2009.

. Sgi, Standard template library programmer's guide

A. Zomorodian, The tidy set, Proceedings of the 2010 annual symposium on Computational geometry, SoCG '10, pp.257-266, 2010.
DOI : 10.1145/1810959.1811004