Stability of Delaunay-type structures for manifolds - Archive ouverte HAL Access content directly
Conference Papers Year : 2012

Stability of Delaunay-type structures for manifolds

(1) , (1) , (1)
1
Jean-Daniel Boissonnat
  • Function : Author
  • PersonId : 935453
Ramsay Dyer
  • Function : Author
  • PersonId : 938488
Arijit Ghosh
  • Function : Author
  • PersonId : 865421

Abstract

We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $\delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulations under perturbations of the metric and of the vertex positions. We then show that, for any sufficiently regular submanifold of Euclidean space, and appropriate $\epsilon$ and $\delta$, any sample set which meets a localized $\delta$-generic $\epsilon$-dense sampling criteria yields a manifold intrinsic Delaunay complex which is equal to the restricted Delaunay complex.
Vignette du fichier
bound_height.png (75.46 Ko) Télécharger le fichier
Vignette du fichier
bound_height.jpg (38.86 Ko) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)

Dates and versions

hal-01108449 , version 1 (22-01-2015)

Identifiers

Cite

Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh. Stability of Delaunay-type structures for manifolds: Extended abstract. Proceedings of the twenty-eighth annual symposium on Computational geometry, Jun 2012, The University of North Carolina at Chapel Hill, United States. pp.229-238, ⟨10.1145/2261250.2261284⟩. ⟨hal-01108449⟩

Collections

INRIA INRIA2
141 View
6 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More