
HAL Id: hal-01108705
https://hal.inria.fr/hal-01108705

Submitted on 23 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CliqueSquare: Flat Plans for Massively Parallel RDF
Queries

François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-Ruiz,
Stamatis Zampetakis

To cite this version:
François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-Ruiz, Stamatis Zampetakis.
CliqueSquare: Flat Plans for Massively Parallel RDF Queries. International Conference on Data
Engineering, Apr 2015, Seoul, South Korea. <hal-01108705>

https://hal.inria.fr/hal-01108705
https://hal.archives-ouvertes.fr

CliqueSquare: Flat Plans

for Massively Parallel RDF Queries

François Goasdoué1,2, Zoi Kaoudi2,3, Ioana Manolescu2,4, Jorge-Arnulfo Quiané-Ruiz5, Stamatis Zampetakis2,4

1U. Rennes 1, France, fg@irisa.fr 2INRIA, France first.last@inria.fr
3IMIS, Athena Research Center, Greece zoi@imis.athena-innovation.gr 4U. Paris Sud, France first.last@lri.fr

5Qatar Computing Research Institute (QCRI), Qatar jquianeruiz@qf.org.qa

Abstract—As increasing volumes of RDF data are being
produced and analyzed, many massively distributed architectures
have been proposed for storing and querying this data. These ar-
chitectures are characterized first, by their RDF partitioning and
storage method, and second, by their approach for distributed
query optimization, i.e., determining which operations to execute
on each node in order to compute the query answers.

We present CliqueSquare, a novel optimization approach
for evaluating conjunctive RDF queries in a massively parallel
environment. We focus on reducing query response time, and thus
seek to build flat plans, where the number of joins encountered on
a root-to-leaf path in the plan is minimized. We present a family
of optimization algorithms, relying on n-ary (star) equality joins
to build flat plans, and compare their ability to find the flattest
possibles. We have deployed our algorithms in a MapReduce-
based RDF platform and demonstrate experimentally the interest
of the flat plans built by our best algorithms.

I. INTRODUCTION

The Resource Description Framework (RDF) [1] is a flex-

ible data model introduced for the Semantic Web. RDF is

currently used in a broad spectrum of applications ranging

from the Semantic Web [2], [3] and scientific applications

(e.g., BioPAX1, Uniprot2) to Web 2.0 platforms [4] and

databases [5]. While its query language, SPARQL3, comprises

many powerful features such as aggregation and optional

clauses, the most frequently used dialect is that of conjunctive

queries, a.k.a. Basic Graph Pattern queries (or BGP, in short),

typically featuring many equality joins.

Given the popularity of RDF, large volumes of RDF data

are created and published, in particular in the context of

the Linked Data movement. Thus, distributing the data and

the computations across several nodes has been investigated

in prior research, which has lead to large-scale, distributed

systems for storing and querying RDF data [6]. Conceptually,

each RDF database can be seen as a directed labelled graph.

Thus, building a distributed RDF database requires addressing

two main issues: how to distribute the graph data across the

nodes; and how to split the query evaluation across the nodes.

Clearly, data distribution has an important impact on query

performance. Accordingly, many previous works on distributed

RDF query evaluation, such as [7], [8], [9], [10], have

placed an important emphasis on the data partitioning process

(workload-driven in the case of [9], [10]), with the goal of

1http://www.biopax.org
2http://www.uniprot.org/
3http://www.w3.org/TR/rdf-sparql-query/

making the evaluation of certain shapes of queries paral-

lelizable without communications (or PWOC, in short). In a

nutshell, a PWOC query for a given data partitioning can be

evaluated by taking the union of the query results obtained on

each node.

However, it is easy to see that no single partitioning can

guarantee that all queries are PWOC; in fact, most queries

do require processing across multiple nodes and thus, data re-

distribution across nodes, a.k.a. shuffling. The more complex

the query is, the bigger will be the impact of evaluating the

distributed part of the query plan. Logical query optimization

– deciding how to decompose and evaluate an RDF query

in a massively parallel context – has thus also a crucial

impact on performance. As it is well-known in distributed data

management [11], to efficiently evaluate queries one should

maximize parallelism (both inter-operator and intra-operator)

to take advantage of the distributed processing capacity and

thus, reduce the response time.

In a parallel RDF query evaluation setting, intra-operator

parallelism relies on join operators that process chunks of data

in parallel. To increase inter-operator parallelism one should

aim at building massively-parallel (flat) plans, having as few

(join) operators as possible on any root-to-leaf path in the plan;

this is because the processing performed by such joins directly

adds up into the response time. Prior works have binary joins

organized in bushy plans [9], n-ary joins (with n > 2) only in

the first level of the plans and binary joins in the next levels [7],

[8], [10], or n-ary joins at all levels [12] but organized in left-

deep plans. Such methods lead to high (non-flat) plans and

hence high response times. HadoopRDF [13] is the only one

building bushy plans of n-ary joins, but it cannot guarantee a

plan as flat as possible.

In this paper, we focus on the logical query optimization of

BGP queries, seeking to build flat query plans composed of

n-ary (star) equality joins. Flat plans are most likely to lead

to shorter response time in distributed/parallel settings, such

as in MapReduce-like systems. The core of our study, thus,

is independent of (and orthogonal to): the chosen partitioning

model; storage and query facilities on each node; physical

join algorithms; increasing the parallelism of join evalua-

tion as in [14]; and the cost model characterizing execution

performance. For validation, we implement concrete choices

along each of these dimensions, but other options can be

combined with our optimization algorithms to improve the

overall performance of parallel RDF query evaluation.

Contributions We present CliqueSquare, a novel approach

for the logical optimization of BGP queries over large RDF

graphs distributed in a massively parallel environment, such

as MapReduce. We make the following contributions:

(1) We describe a search space of logical plans obtained by

relying on n-ary (star) equality joins. The interest of such

joins is that by aggressively joining many inputs in a single

operator, they allow building flat plans.

(2) We provide a novel generic algorithm, called CliqueSquare,

for exhaustively exploring this space, and a set of three

algorithmic choices leading to eight variants of our algorithm.

We present a thorough analysis of these variants, from the

perspective of their ability to find one of (or all) the flattest

possible plans for a given query. We show that the variant we

call CliqueSquare-MSC is the most interesting one, because it

develops a reasonable number of plans and is guaranteed to

find some of the flattest ones.

(3) We have fully implemented our algorithms and validate

through experiments their practical interest for evaluating

queries on very large distributed RDF graphs. For this, we

rely on a set of relatively simple parallel join operators and a

generic RDF partitioning strategy, which makes no assumption

on the kinds of input queries. We show that CliqueSquare-

MSC makes the optimization process efficient and effective

even for complex queries leading to robust query performance.

It is worth noting that our findings in (1)-(2) are not specific

to RDF, but apply to any conjunctive query processing setting

based on n-ary (star) equality joins. However, they are of

particular interest for RDF, since (as noted e.g., in [15], [16],

[17]) RDF queries tend to involve more joins than a relational

query computing the same result. This is because relations can

have many attributes, whereas in RDF each query atom has

only three, leading to syntactically more complex queries.

The paper is organized as follows. We cover the necessary

background and state-of-the-art in Section II. Section III

introduces the logical model used in CliqueSquare for queries

and query plans and describes our generic logical optimization

algorithm. In Section IV, we present our algorithm variants,

their search spaces, and analyze them from the viewpoint of

their ability to produce flat query plans. Section V shows

how to translate and execute our logical plans to MapReduce

jobs, based on a generic RDF partitioning strategy. Section VI

experimentally demonstrates the effectiveness and efficiency of

our logical optimization approach and Section VII concludes

our findings.

II. BACKGROUND AND STATE-OF-THE-ART

We briefly recall RDF and SPARQL, before discussing

works closely related to our query optimization approach.

RDF and SPARQL. RDF data is organized in triples of

the form (s p o), stating that the subject s has the property

(a.k.a. predicate) p whose value is the object o. Unique

Resource Identifiers (URIs) are central in RDF: one can use

URIs in any position of a triple to uniquely refer to some entity

or concept. Notice that literals (constants) are also allowed in

the o position. Formally, given two disjoint sets of URIs and

literals4, U and L, a well-formed triple is a tuple (s p o) from

U ×U × (U ∪L). RDF admits a natural graph representation,

with each (s p o) triple seen as an p-labeled directed edge

from the node identified by s to the node identified by o. A

set of triples, i.e., an RDF dataset, is called an RDF graph.

SPARQL is the W3C standard for querying RDF graphs. We

consider the BGP dialect of SPARQL, i.e., its conjunctive

fragment allowing to express the core Select-Project-Join

database queries. In such queries, the notion of triple is gener-

alized to that of triple pattern (s p o) from (U∪V)×(U∪V)×
(U∪L∪V), where V is a set of variables. The normative syn-

tax of BGP queries is SELECT ?v1 · · · ?vm WHERE {t1 · · · tn},

where t1, . . . , tn are triple patterns and ?v1, . . . , ?vm are

distinguished variables occurring in {t1 · · · tn}, which define

the output of the query. We consider BGP queries with no

cartesian products (×). One can simply decompose a query

with a cartesian product in ×-free subqueries, process them

independently, and combine their results at the end.

The evaluation of a BGP query q: SELECT

?v1 · · · ?vm WHERE {t1 · · · tn} on an RDF graph

G is: eval(q) = {µ(?v1 · · · ?vm) | µ: var(q) →
val(G) is a function s.t. {µ(t1), · · · , µ(tn)} ⊆ G}, with

var(q) the set of variables in q, val(G) the set of URIs

and literals occurring in G, and µ a function replacing any

variable with its image in val(G). By a slight abuse of

notation, we denote by µ(ti) the triple obtained by replacing

the variables of the triple pattern ti according to µ.

Centralized RDF query optimization. Centralized RDF

databases such as RDF-3X [15] typically rely on a Dynamic

Programming (DP) algorithm to produce logical plans. This

may lead to large plan spaces and thus long optimization time

for large SPARQL queries. In more recent works such as [17],

DP is avoided and plans are heuristically built relying solely on

the shape of the query, without using cardinality estimations

etc. In [18], a SPARQL query is decomposed into chain and

star subqueries, and DP is applied on each subquery. Overall,

designed for a centralized context, these approaches build only

binary logical plans, and do not guarantee flat plans. As our

experiments show, flat bushy plans built with n-ary joins bring

important performance advantages in a parallel environment.

MapReduce-based query optimization. Many recent mas-

sively parallel data management systems leverage MapReduce

in order to build scalable query processors for both rela-

tional [19] and RDF [6] data.

Early works on relational data mainly focus on selection

and projection push-down [20], while [21] relies on other

classical distributed database techniques [11]. The authors

in [22] propose a cost-based approach for deciding how to split

a query into a set of fragments; they use an n-ary repartition

join [23] to join each fragment. Then, the authors consider

4RDF allows some form of incomplete information through blank nodes,
standing for unknown constants or URIs. All our results apply in the presence
of blank nodes; we omit them from the presentation for simplicity.

possible ways to combine the fragment results through binary

joins. They consider both left-deep and bushy plans, and avoid

a very large search space by cost-based pruning. In contrast

with [22], our approach relies on n-ary joins at all levels and

hence it develops some logical plans that [22] does not.

Most MapReduce-based RDF engines mainly focus on

improving data access for optimizing query performance. Data

access performance depends on how the data is partitioned

across nodes and the data layout on each node (e.g., key-

value representation, column layout, indexes). Previous works

have focused on RDF data partitioning strategies, such as [7],

[8], [24], [9], [10], with the goal of making the first-level

joins (those applied directly on the input data) PWOC. In-

dependently, aggressive indexing and compression of RDF

data has been studied in [12]. However, none of these works

focus on the logical query optimization nor on fully exploiting

parallelism during query evaluation.

The performance of the joins after the first-level ones is

determined by (i) the available physical operators, and (ii) the

join plan built by the optimizer. Prior works have binary joins

organized in bushy plans [9], n-ary joins (with n > 2) only in

the first level of the plans and binary joins in the next levels [7],

[8], [10], or n-ary joins at all levels [12] but organized in

left-deep plans. Such methods lead to high (non-flat) plans

and hence longer response times. HadoopRDF is the only one

proposing some heuristics to produce flat plans [13], but it has

two major disadvantages: (i) it produces a single plan that can

be inefficient; (ii) it does not guarantee that the plan will be

as flat as possible.

In this work, we focus on the logical optimization of BGP

queries for massively parallel environments. In contrast to

prior work, we use n-ary star equi-joins at all the levels of a

query plan; we provide algorithms guaranteed to find at least

some of the flattest possible plans. We show experimentally

that our plans lead to efficient query evaluation even for large,

complex queries.

III. LOGICAL QUERY MODEL

This section describes the CliqueSquare approach for pro-

cessing queries based on a notion of query variable graphs.

We introduce these graphs in Section III-A and present the

CliqueSquare optimization algorithm in Section III-B.

A. Query model

We model a SPARQL BGP query as a set of n-ary rela-

tions connected by joins. Specifically, we rely on a variable

(multi)graph representation, inspired from the classical rela-

tional Query Graph Model (QGM5), and use it to represent

incoming queries, as well as intermediary query representa-

tions that we build as we progress toward obtaining logical

query plans. Formally:

Definition 3.1 (Variable graph): A variable graph GV of

a BGP query q is a labeled multigraph (N,E, V), where V

is the set of variables from q, N is the set of nodes, and

E ⊆ N × V × N is a set of labeled undirected edges such

5http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

SELECT ?a ?b

WHERE {

?a p1 ?b

?a p2 ?c

?d p3 ?a

?d p4 ?e

?l p5 ?d

?f p6 ?d

?f p7 ?g

?g p8 ?h

?g p9 ?i

?i p10 ?j

?j p11 "C1"}

t4

t5

t3

t6

d

d
d d

d

d

t1

t2

a

a

a

t7

t8

t9

g
g

gf

t10 t11
i j

Fig. 1. Query Q1 and its variable graph G1.

that: (i) each node n ∈ N corresponds to a set of triple patterns

in q; (ii) there is an edge (n1, v, n2) ∈ E between two distinct

nodes n1, n2 ∈ N iff their corresponding sets of triple patterns

join on the variable v ∈ V .

Figure 1 shows a query and its variable graph, where every

node represents a single triple pattern. More generally, one

can also use variable graphs to represent (partially) evaluated

queries, in which some or all the joins of the query have been

enforced. A node in such a variable graph corresponds to a

set of triple patterns that have been joined on their common

variables, as the next section illustrates.

B. Query optimization algorithm

The CliqueSquare process of building logical query plans

starts from the query variable graph (where every node corre-

sponds to a single triple pattern), treated as an initial state, and

repeatedly applies transformations that decrease the size of the

graph, until it is reduced to only one node; a one-node graph

corresponds to having applied all the query joins. On a given

graph (state), several transformations may apply. Thus, there

are many possible sequences of states going from the query

(original variable graph) to a complete query plan (one-node

graph). Out of each such sequence of graphs, CliqueSquare

creates a logical plan. In the sequel of Section III, we detail

the graph transformation process, and delegate plan building

to Section IV.

Variable cliques. At the core of query optimization in

CliqueSquare lies the concept of variable clique, which we

define as a set of variable graph nodes connected with edges

having a certain label. Intuitively, a clique corresponds to an

n-ary (star) equi-join. Formally:

Definition 3.2 (Maximal/partial variable clique): Given a

variable graph GV = (N,E, V), a maximal (resp. partial)

clique of a variable v ∈ V , denoted cℓv , is the set (resp. a

non-empty subset) of all nodes from N which are incident to

an edge e ∈ E with label v.

For example, in the variable graph G1 of query Q1 (see Fig-

ure 1), the maximal variable clique of d, cℓd is {t3, t4, t5, t6}.

Any non-empty subset is a partial clique of d, e.g., {t3, t4, t5}.

Clique Decomposition. The first step toward building a

query plan is to decompose (split) a variable graph into

several cliques. From a query optimization perspective, clique

decomposition corresponds to identifying partial results to

A1

[t1, t2, t3]
A3

[t6, t7]
A5

[t9, t10]

A2

[t3, t4, t5, t6]
A4

[t7, t8, t9]
A6

[t10, t11]

Fig. 2. Clique reduction G2 of Q1’s variable graph (shown in Figure 1).

be joined, i.e., for each clique in the decomposition output,

exactly one join will be built. Formally:

Definition 3.3 (Clique decomposition): Given a variable

graph GV = (N,E, V), a clique decomposition D of GV

is a set of variable cliques (maximal or partial) of GV which

covers all nodes of N , i.e., each node n ∈ N appears in at

least one clique, such that the size of the decomposition |D|
is strictly smaller than the number of nodes |N |.

Consider again our query Q1 example in Figure 1. One

clique decomposition is d1 = {{t1, t2, t3}, {t3, t4, t5, t6},

{t6, t7}, {t7, t8, t9}, {t9, t10},{t10, t11}}; this decomposition

follows the distribution of colors on the graph edges in

Figure 1. A different decomposition is for instance d2 =
{{t1, t2}, {t3, t4, t5}, {t6, t7}, {t8, t9}, {t10, t11}}; indeed,

there are many more decompositions. We discuss the space

of alternatives in the next section.

Observe that we do not allow a decomposition to have more

cliques than there are nodes in the graph. This is because a

decomposition corresponds to a step forward in processing

the query (through its variable graph), and this advancement

is materialized by the graph getting strictly smaller.

Based on a clique decomposition, the next important step

is clique reduction. From a query optimization perspective,

clique reduction corresponds to applying the joins identified

by the decomposition. Formally:

Definition 3.4 (Clique Reduction): Given a variable graph

GV = (N,E, V) and one of its clique decompositions D,

the reduction of GV based on D is the variable graph G′
V =

(N ′, E′, V) such that: (i) every clique c ∈ D corresponds to a

node n′ ∈ N ′, whose set of triple patterns is the union of the

nodes involved in c ⊆ N ; (ii) there is an edge (n′
1, v, n

′
2) ∈ E′

between two distinct nodes n′
1, n

′
2 ∈ N ′ iff their corresponding

sets of triple patterns join on the variable v ∈ V .

For example, given the query Q1 in Figure 1 and the above

clique decomposition d1, CliqueSquare reduces its variable

graph G1 into the variable graph G2 shown in Figure 2. Ob-

serve that in G2, the nodes labeled A1 to A8 each correspond

to several triples from the original query: A1 corresponds to

three triples, A2 to four triples, etc.

CliqueSquare algorithm. Based on the previously introduced

notions, the CliqueSquare query optimization algorithm is

outlined in Algorithm 1. CliqueSquare takes as an input a

variable graph G corresponding to the query with some of the

predicates applied (while the others are still to be enforced),

and a list of variable graphs states tracing the sequence

of transformations which have lead to G, starting from the

original query variable graph. The algorithm outputs a set of

logical query plans QP , each of which encodes an alternative

Algorithm 1: CliqueSquare algorithm

CLIQUESQUARE (G, states)
Input : Variable graph G; queue of variable graphs states
Output: Set of logical plans QP

1 states = states ∪ {G};
2 if |G| = 1 then
3 QP ← CREATEQUERYPLANS (states);
4 else
5 QP ← ∅;
6 D ← CLIQUEDECOMPOSITIONS(G);
7 foreach d ∈ D do

8 G′ ← CLIQUEREDUCTION(G, d);
9 QP ← QP ∪ CLIQUESQUARE (G′, states);

10 end
11 end
12 return QP ;

end

way to evaluate the query.

The initial call to CliqueSquare is made with the variable

graph G of the initial query, where each node consists of a

single triple pattern, and the empty queue states. At each

(recursive) call, CLIQUEDECOMPOSITIONS (line 6) returns a

set of clique decompositions of G. Each decomposition is

used by CLIQUEREDUCTION (line 8) to reduce G into the

variable graph G′, where the n-ary joins identified by the

decomposition have been applied. G′ is in turn recursively

processed, until it consists of a single node. When this is the

case (line 2), CliqueSquare builds the corresponding logical

query plan out of states (line 3), as we explain in the next

section. The plan is added to a global collection QP , which

is returned when all the recursive calls have completed.

IV. QUERY PLANNING

We describe CliqueSquare’s logical operators, plans, and

plan spaces (Section IV-A) and how logical plans are generated

by Algorithm 1 (Section IV-B). We then consider a set

of alternative concrete clique decomposition methods to use

within the CliqueSquare algorithm, and describe the resulting

search spaces (Section IV-C). We introduce plan height to

quantify its flatness, and provide a complete characterization

of the CliqueSquare algorithm variants w.r.t. their ability to

build the flattest possible plans (Section IV-D).

A. Logical CliqueSquare operators and plans

Let V al be an infinite set of data values, A be a finite set

of attribute names, and R(a1, a2, . . . , an), ai ∈ A, 1 ≤ i ≤ n,

denote a relation over n attributes, such that each tuple t ∈ R

is of the form (a1:v1, a2:v2, . . . , an:vn) for some vi ∈ V al,

1 ≤ i ≤ n. In our context, we take V al to be a subset of U∪L,

and A = var(tp) to be the set of variables occuring in a triple

pattern tp, A ⊆ V . Every mapping µ(tp) from A = var(tp)
into U ∪L leads to a tuple in a relation which we denote Rtp.

To simplify presentation and without loss of generality, we

assume var(tp) has only those tp variables which participate

in a join.

We consider the following logical operators, where the

output attributes are identified as (a1, . . . , an):

Mt1(a) Mt2(a) Mt3(da) Mt4(d) Mt5(d) Mt6(fd) Mt7(fg) Mt8(gh) Mt9(gi) Mt10(ij) Mt11(j)

Ja(ad) Jd(adf) Jf (dfg) Jg(fgi) Ji(gij) Jj(ij)

Jd(adfg) Jf (adfgi) Jg(dfgij) Ji(fgij)

Jf,g(adfgij)

Fig. 3. Sample logical plan built by CliqueSquare for Q1 (Figure 1).

• Match, Mtp(a1, . . . , an), is parameterized by triple pat-

tern tp and outputs a relation comprising the triples

matching tp in the store.

• Join, JA(op1, . . . , opm)(a1, . . . , an), takes as input a set

of m logical operators such that A is the intersection of

their attribute sets, and outputs their join on A.

• Select, σc(op)(a1, . . . , an), takes as input the operator

op and outputs those tuples from op which satisfy the

condition c (a conjunction of equalities).

• Project, πA(op)(a1, . . . , an), takes as input op and out-

puts its tuples restricted to the attribute set A.

A logical query plan p is a rooted directed acyclic graph

(DAG) whose nodes are logical operators. Node loi is a parent

of loj in p iff the output of loi is an input of loj . Furthermore,

a subplan of p is a sub-DAG of p.

The plan space of a query q, denoted as P(q), is the set of

all the logical plans computing the answer to q.

B. Generating logical plans from graphs

We now outline the CREATEQUERYPLANS function used

by Algorithm 1 to generate plans. When invoked, the queue

states contains a list of variable graphs, the last of which

(tail) has only one node and thus corresponds to a completely

evaluated query.

First, CREATEQUERYPLANS considers the first graph in

states (head), which is the initial query variable graph; let

us call it Gq. For each node in Gq (query triple pattern tp), a

match (M) operator is created, whose input is the triple pattern

tp and whose output is a relation whose attributes correspond

to the variables of tp. We say this operator is associated to tp.

For instance, consider node t1 in the graph G1 of Figure 1:

its associated operator is Mt1(a, b).
Next, CREATEQUERYPLANS builds join operators out of the

following graphs in the queue. Let Gcrt be the current graph

in states (not the first). Each node in Gcrt corresponds to a

clique of node(s) from the previous graph in states, let’s call

it Gprev.

For each Gcrt node n corresponding to a clique made of a

single node m from Gprev, CREATEQUERYPLANS associates

to n the operator already associated to m.

For each Gcrt node n corresponding to a clique of several

nodes from Gprev, CREATEQUERYPLANS creates a JA join

operator and associates it to n. The attributes A of JA are the

variables defining the respective clique. The parent operators

of JA are the operators associated to each Gprev node m

from the clique corresponding to n; since states is traversed

from the oldest to the newest graph, when processing Gcrt,

we are certain that an operator has already been associated to

each node from Gprev and the previous graphs. For example,

consider node A1 in G2 (Figure 2), corresponding to a clique

on the variable a in the previous graph G1 (Figure 1); the join

associated to it is Ja(abcd).
Further, if there are query predicate which can be checked

on the join output and could not be checked on any of its

inputs, a selection applying them is added on top of the join.

Finally, a projection operator π is created to return just the

distinguished variables part of the query result, then projec-

tions are pushed down etc. A logical plan for the query Q1

in Figure 1, starting with the clique decomposition/reduction

shown in Figure 2, appears in Figure 3.

C. Clique decompositions and plan spaces

The plans produced by Algorithm 1 are determined by

variable graphs sequences; in turn, these depend on the clique

decompositions returned by CLIQUEDECOMPOSITIONS. Many

clique decomposition methods exist.

First, they may use partial cliques or only maximal ones

(Definition 3.2); maximal cliques correspond to systematically

building joins with as many inputs (relations) as possible,

while partial cliques leave more options, i.e., a join may

combine only some of the relations sharing the join variables.

Second, the cliques may form an exact cover of the variable

graph (ensuring each node belongs to exactly one clique), or

a simple cover (where a node may be part of several cliques).

Exact covers lead to tree-shaped query plans, while simple

covers may lead to DAG plans. Tree plans may be seen as

reducing total work, given that no intermediary result is used

twice; on the other hand, DAG plans may enable for instance

using a very selective intermediary result as an input to two

joins in the same plan, to reduce their result size.

Third, since every clique in a decomposition corresponds to

a join, decompositions having as few cliques as possible are

desirable. We say a clique decomposition for a given graph

is minimum among all the other possible decompositions if it

contains the lowest possible number of cliques. Finding such

decompositions amounts to finding minimum set covers [25].

Decomposition and algorithm acronyms. We use the

following short names for decomposition alternatives. XC

decompositions are exact covers, while SC decompositions are

simple covers. A + superscript is added when only maximal

cliques are considered; the absence of this superscript indicates

covers made of partial cliques. Finally, M is used as a prefix

when only minimum set covers are considered.

We refer to the CliqueSquare algorithm variant using a

decomposition alternative A (one among the eight above) as

CliqueSquare-A.

CliqueSquare-MSC example. We illustrate below the work-

ing of the CliqueSquare-MSC variant (which, as we will show,

is the most interesting from a practical perspective), on the

Mt1(a) Mt2(a) Mt3(da) Mt4(d) Mt5(d) Mt6(fd) Mt7(fg) Mt8(g) Mt9(gi) Mt10(ij) Mt11(j)

Ja(a) Jd(adf) Jg(fgi) Jj(ij)

Ja(adf) Ji(fgij)

Jf (adfgij)

Fig. 4. Logical plan built by CliqueSquare-MSC for Q1 (Figure 1).

A1

[t1, t2]
A2

[t3, t4, t5, t6]
A3

[t7, t8, t9]
A4

[t10, t11]
a f i

(a) 1st call: graph G3

B1

[A1, A2]
B2

[A3, A4]
f

(b) 2nd call: graph G4

C1

[B1, B2]

(c) 3rd call: graph G5

Fig. 5. Variable graphs after each call of CliqueSquare-MSC.

PMXC+

PXC+ PMSC+ PMXC

PSC+ PMSCPXC

PSC

Fig. 6. Inclusions between the plan spaces of CliqueSquare variants.

query Q1 of Figure 1. CliqueSquare-MSC builds out of the

query variable graph G1 of Figure 1, successively, the graphs

G3, then G4 and G5 shown in Figure 5. At the end of the

process, states comprises [G1,G3,G4,G5]. CliqueSquare

plans are created as described in Section IV-B; the final plan

is shown in Figure 4.

The set of logical plans developed by CliqueSquare-A for

a query q is termed plan space of A for q and we denote it

PA(q); clearly, this must be a subset of P(q). We analyze the

variants’ plan spaces below.

Relationships between plan spaces. We have completely

characterized the set inclusion relationships holding between

the plan spaces of the eight CliqueSquare variants. Figure 6

summarizes them: an arrow from option A to option A′

indicates that the plan space of option A includes the one of

option A′. For instance, CliqueSquare-SC (partial cliques, all

set covers) has the largest search space PSC which includes

all the others. We have shown [26]:

Theorem 4.1 (Plan spaces inclusions): All the inclusion

relationships shown in Figure 6 hold.

The inclusion relationships can be understood by noting

that: (i) exact covers are a subset of simple covers, thus

any plan space of the form PαXβ is included in PαSβ , this

corresponds to the four vertical arrows in Figure 6; (ii) the +
denotes a restriction to maximum cliques only, thus any Pα

includes Pα+ ; this corresponds to the four parallel right-to-

left arrows, and (iii) space PMα is included in Pα for any α,

since using minimum set covers only is a restriction. This is

reflected by the four left-to-right arrows in Figure 6.

Optimization algorithm correctness. A legitimate ques-

tion concerns the correctness of the CliqueSquare-SC, which

has the largest search space: for a given query q, does

CliqueSquare-SC generate only plans from P(q), and all the

plans from P(q)?
We first make the following remark. For a given query q and

plan p ∈ P(q), it is easy to obtain a set of equivalent plans

p′, p′′, . . . ∈ P(q) by pushing projections and selections up

and down. CliqueSquare optimization should not spend time

enumerating p and such variants obtained out of p, since for

best performance, σ and π should be pushed down as much

as possible, just like in the traditional setting. Thus, without

loss of generality, we focus on match and join operators only,

assuming that two plans are equivalent if one can be obtained

from the other by pushing up or down its σ and π operators.

The following result holds:

Theorem 4.2 (CliqueSquare-SC correctness): For any

query q, CliqueSquare-SC outputs the set of all the logical

plans computing the answers to q: PSC(q) = P(q).
The proof can be found in [26]. In short, soundness (the fact

that CliqueSquare-SC only produces plans from P(q)) directly

follows from our plan generation method (Section IV-B) and

the semantics of our clique decompositions.

To show completeness, we start by defining:

Definition 4.1 (Plan height): The height of a logical plan

p, denoted h(p), is the largest number of joins that can be

found on a path from the root of p to one of its leaf operators.

The proof that any plan p ∈ P(q) is built by CliqueSquare-

SC is by induction over the height of p. We show that for any

level l between 0 and the height of p, CliqueSquare-SC builds

a plan identical to p up to level l.

Complexity of the CliqueSquare algorithms. We study the

complexity of the CliqueSquare algorithm variants by focusing

on the total number of clique reductions performed, since

this measure dictates the overall optimization effort. A clique

reduction can be performed for each clique decomposition;

thus, we count the decompositions available to each algorithm

at each step, and sum them up over the successive invocations.

Proposition 4.1 (CliqueSquare complexity): The upper

bounds on the number of decompositions performed by

CliqueSquare variants shown in Figure 7 hold.

The detailed derivations can be found in [26]. In Figure 7,
{

n
k

}

is the number of ways to partition a set of n objects

into k non-empty subsets, also known as the Stirling partition

number of the second kind. The worst-case queries are not the

same across variants, and in practice rarely occur; more insight

is provided by our optimization experiments in Section VI-B.

D. Height optimality and associated algorithm properties

To decrease response time in our parallel setting, we are

interested in flat plans, i.e., having few join operators on

top of each other. First, this is because flat plans enjoy the

known parallelism advantages of bushy trees. Second, while

MXC+ MSC+ MXC MSC XC+ SC+ XC SC
(

n+1

⌈n/2⌉

) (

2n+1

⌈n/2⌉

) {

n
⌈n/2⌉

} (

2
n−1

⌈n/2⌉

)
∑n−1

k=1

(

n+1

k

) (

2n+1

⌈n/2⌉

)
∑n−1

k=0

{

n
k

}
∑n−1

k=1

(

2
n−1

k

)

Fig. 7. Upper bounds on the complexity of CliqueSquare variants on a query of n nodes.

HO-complete SC

HO-partial SC+, MSC+, MSC

HO-lossy MXC+, XC+, MXC, XC

Fig. 8. HO properties of CliqueSquare algorithm variants.

the exact translation of logical joins into physical MapReduce-

based ones (and thus, in MapReduce jobs) depends on the

available physical operators, and also (for the first-level joins)

on the RDF partitioning, it is easy to observe that overall,

the more joins need to be applied on top of each other, the

more successive MapReduce jobs are likely to be needed by

the query evaluation. We define:

Definition 4.2 (Height optimal plan): Given a query q, a

plan p ∈ P(q) is height-optimal (HO in short) iff for any

plan p′ ∈ P(q), h(p) ≤ h(p′).

We classify CliqueSquare algorithm variants according to

their ability to build height optimal plans. Observe that

the height of a CliqueSquare plan is exactly the number

of graphs (states) successively considered by its function

CREATEQUERYPLANS, which, in turn, is the number of

clique decompositions generated by the sequence of recursive

CliqueSquare invocations which has lead to this plan.

Definition 4.3 (HO-completeness): CliqueSquare-A is

height optimal complete (HO-complete in short) iff for any

query q, the plan space PA(q) contains all the HO plans of q.

Definition 4.4 (HO-partial and HO-lossy): CliqueSquare-

A is height optimal partial (HO-partial in short) iff for any

query q, PA(q) contains at least one HO plan of q. An

algorithm CliqueSquare-A which is not HO-partial is called

HO-lossy.

An HO-lossy optimization algorithm may find no HO plan

for a query q1, some HO plans for another query q2 and

all HO plans for query q3. In practice, an optimizer should

provide uniform guarantees for any input query. Thus, only

HO-complete and HO-partial algorithms are of interest.

The main result of our logical optimization study is:

Theorem 4.3: The properties stated in Figure 8 hold.

The proof appears in [26]; we sketch the main ideas below.

SC’s HO-completeness follows from Theorem 4.2.
t1 t3t2

t4

x y
w

Fig. 9. Query on which XC CliqueSquare variants are HO-lossy.

The reason for the four HO-lossy claims is illustrated by

the query shown in Figure 9. An exact cover (XC) algorithm

cannot find an HO plan for this query. This is because the

redundant processing introduced by considering simple (as

opposed to exact) set covers may reduce plan height. For

instance, using MSC+, one can evaluate the query in Figure 9

with two join levels: in the first, the cliques {t1, t2}, {t2, t3},

{t2, t4} are processed; in the second, the results are joined on

the common variables xyz. In contrast, any plan built only

from exact covers requires an extra level: t2 is joined with the

nodes of only one of its cliques, and thus, there is no common

variable among the rest of the triple patterns, requiring an extra

join level in order to finish processing the query.

The most interesting results are those concerning HO-

partial algorithms; this is because, as Figure 7 and our

experiments show, the complete space is sometimes too large

to be explored. We start by showing why the algorithms are

not HO complete; then we demonstrate that they are each

guaranteed to build some HO plans.

That SC+is not HO-complete can be seen on the query in

Figure 10. SC+ finds only one plan for this query, joining

{t1, t2}, and {t2, t3} at the first level and then joining their

results. It cannot build the HO plan based on the decomposi-

tion {{t1, t2}, {t3}}, because {t3} is a partial clique.

t1 t3t2x y

Fig. 10. Query for which CliqueSquare-SC+misses an HO plan.

That MSC is not HO-complete is illustrated in Figure 11.

For this query, MSC only finds the plan shown at the bottom

of the figure, without the node and edges shown within the

shaded rectangle. However, the plan shown in Figure 11

including these node and edges is also HO, but cannot be

built by MSC, because its first-level decomposition has three

cliques (corresponding to its three first-level joins) whereas

the minimum-size decomposition has just two.

t1 t2 t3 t4x y z

Mt1(x) Mt2(xy) Mt3(yz) Mt4(z)

Jx(xy) Jy(xyz) Jz(yz)

Jy(xyzw)

Fig. 11. Example of CliqueSquare-MSC missing an HO plan.

Given that MSC is not HO-complete, and that the search

space of MSC+ is included in that of MSC (Theorem 4.1),

MSC+is not HO-complete, either.

Finally, we show that SC+, MSC+ and MSC find some HO

plan(s) for any query q.

The proof for SC+ is based on the HO-completeness of

SC: for any HO plan p produced by SC, we build a plan

p′ replacing each non-maximal clique decomposition with

a maximal one, possibly introducing some projections. p′

computes the same answer as p, has the same height, and

is based on maximal clique decompositions only.

The proof for MSC also starts from an HO plan p built by

SC. Observe that the leaves of all plans built by a CliqueSquare

algorithm variant are the same, thus p is identical to any HO

plan for the same query q at least at the level of the leaf

(match) operators. Starting from the leaves and moving up,

we group the join operators of p in levels, i.e., the Match

operators are at level 0, the first-level joins at level 1 and so

on. Now assume p’s operators could have been obtained from

MSC optimization up to a level l, 0 < l < h(p). We build a

plan p′ as a copy of p in which the joins at level l have been

replaced with a set of joins resulting from an MSC clique

decomposition; there exists at least one, by reduction to the

minimum set cover problem.

For a Join operator op at level l in a plan p:

• let par(op) be the parents of op, for 1 < l ≤ h(p), that

is: the set of operators from level l − 1 that beget op,

i.e., that are reachable from op within p.

• let gp(op) be the grandparents of op, for 2 < l ≤ h(p),
that is: the set of operators from level l−2 that beget op,

i.e., that are reachable from op within p.

plan p

l − 1

l

l + 1
op

plan p′

l − 1

l

l + 1
op

Fig. 12. Modified operators (black nodes) related to op, between p and p
′.

For every operator op in p′ at level l+1, which is identical

to that of p, we connect op to a minimal subset of operators

from level l in p′, such that gp(op) in p is a subset of gp(op)
in p′ (Figure 12). It can be shown [26] that p′ computes the

same result as p; further, p′ has the same height, and results

from MSC decompositions up to level l+1. By repeating this

procedure, we obtain an HO plan resulting completely from

MSC decompositions. This completes the proof that some HO

plans are found by MSC for any query.

The fact that MSC+ is also guaranteed to find an HO plan

for any query is based on MSC having this property; the proof

is similar to that of SC+ based on SC.

We end by noting that for some queries, CliqueSquare

based on the MXC+ and XC+ fails to find any plan. The

query in Figure 10 is an example: the only maximal clique

decomposition is {t1, t2}, {t2, t3}, out of which no exact cover

of the query nodes can be found. Thus, CliqueSquare-MXC+

and CliqueSquare-XC+ find no plan at all.

V. PLAN EVALUATION ON MAPREDUCE

We now discuss the MapReduce-based evaluation of our

logical plans. We first present the data storage scheme we

adopt (Section V-A), based on which queries are evaluated.

We then present the translation of logical plans into physical

plans (Section V-B), then show how a physical plan is mapped

to MapReduce jobs (Section V-C) and finally introduce our

cost model (Section V-D).

A. Data partitioning

Our main goal is to split and place RDF data so that first-

level joins can be evaluated locally at each node (PWOC,

also termed co-located joins [27]), in order to reduce query

response time. In the context of RDF, a single SPARQL query

typically involves various joins types, e.g., subject-subject (s-

s), subject-object (s-o), property-object (p-o) joins etc..

Our partitioner exploits the fact that most of the existing

distributed file systems replicate a dataset at least three times

for fault-tolerance reasons. Thus, we store RDF data in three

different ways and group the triples at each compute node to

enable fine-granularity data access. In more detail, we proceed

to store input RDF datasets in three main steps:

(1) We partition each triple and place it according to its subject,

property and object values, as in [28]. Triples that share the

same value in any position (s, p, o) are located within the

same compute node.

(2) Then, unlike [28], we partition triples within each compute

node based on their placement (s, p, o) attribute. We call

these partitions subject, property, and object partition. Notice

that given a type of join, e.g., subject-subject join, this local

partitioning allows for accessing fewer triples.

(3) We further split each partition within a compute node by

the value of the property in their triples. This property-based

grouping has been first advocated in [13] and also resembles

the vertical RDF partitioning proposed in [29] for centralized

RDF stores. Finally, we store each resulting partition into

an HDFS file. By using the value of the property as the

filename, we benefit from a finer-granularity data access during

query evaluation. It is worth noting that most RDF datasets

contain many triples whose property is rdf:type, which in

turn translates into a very large property partition. Thus, we

further split the property partition of rdf:type into several

smaller partitions, according to their object value. This enables

working with finer-granularity partitions.

In contrast e.g., to Co-Hadoop [30], which considers a single

attribute for co-locating triple, our partitioner co-locates them

on the three attributes (one for each data replica). This allows

us to perform all first-level joins in a plan (s-s, s-p, s-o etc.)

locally in each compute node during query evaluation.

B. From logical to physical plans

We define a physical plan as a rooted DAG such that (i) each

node is a physical operator and (ii) there is a directed edge

from op1 to op2 iff op1 is a parent of op2. To translate a logical

plan, we rely on the following physical MapReduce operators:

• Map Scan, MS [FS], parameterized by a set of HDFS files

FS, outputs one tuple for each line of every file in FS.

• Filter, Fcon(op), where op is a physical operator, outputs

the tuples produced by op that satisfy logical condition con.

• Map Join, MJA(op1, . . . , opn), is a directed join [31] that

joins its n inputs on their common attribute set A.

• Map Shuffler, MFA(op), is the repartition phase of a

repartition join [31] on the attribute set A; it shuffles each

tuple from op on A’s attributes.

• Reduce Join, RJA(op1, . . . , opn), is the join phase of

a repartition join [31]. It joins n inputs on their common

attribute set A by (i) gathering the tuples from op1, . . . , opn
according to the values of their A attributes, (ii) building on

each compute node the join results.

• Project, πA(op), is a simple projection (vertical filter) on

the attribute set A.

We translate a logical plan pl into a physical plan, operator

by operator, from the bottom (leaf) nodes up, as follows.

match: Let Mtp be a match operator (a leaf in pl), having

k ≥ 1 outgoing (parent-to-child) edges. (1) For each such

outgoing edge ej of Mtp, 1 ≤ j ≤ k, we create a map scan

MAP

REDUCE

MAP

REDUCE
J
o

b
1

J
o

b
2

MS [*p7-O]

MS [*p8-S]

MS [*p9-S]

MS [*p10-O] MS [*p11-S]

FO=“C1”

MJ g MJ i

RJ i

MF f(. . .)

RJ f

π{a,b}

Fig. 13. Part of Q1 physical plan and its mapping to MapReduce jobs.

operator matching the appropriate files names fj in HDFS.

(2) If the triple pattern tp has a constant in the subject and/or

object, a filter operator Fcon is added on top of MS [fj], where

con is a predicate constraining the subject and/or object as

specified in tp. Observe the filter on the property, if any, has

been applied through the computation of the fj file name.

join: let JA be a logical join; two cases may occur. (1) If

all parent nodes of JA are match operators, then JA is

transformed into a map join MJA. (2) Otherwise, we build

a reduce join RJA. As a reduce join cannot be performed

directly on the output of another reduce join, a map shuffler

operator is added, if needed.

select: is mapped directly to the F physical operator.

project: is mapped directly to the respective physical operator.

For illustration, Figure 13 depicts the physical plan of Q1

built from its logical plan shown in Figure 4. Only the right

half of the plan is detailed since the left side is symmetric.

C. From physical plans to MapReduce jobs

As a final step, we map a physical plan to MapReduce

programs as follows: (i) projections and filters are always

part of the same MapReduce task as their parent operator;

(ii) map joins along with all their ancestors are executed in

the same MapReduce task (either map or reduce task), (iii) any

other operator is executed in a MapReduce task of its own.

The MapReduce tasks are grouped in MapReduce jobs in a

bottom-up traversal of the task tree; each job has at least one

map task and zero or more reduce tasks. Figure 13 shows

how the physical plan of Q1 is transformed into a MapReduce

program (i.e., a set of MapReduce jobs); rounded boxes show

the grouping of physical operators into MapReduce tasks.

D. Cost model

We now define the cost c(p) of a MapReduce query plan p,

which allows us choosing a query plan among others, as an

estimation of the total work tw(p), required by the MapReduce

framework, to execute p: c(p) = tw(p). The total work

accounts for (i) scan costs, (ii) join processing costs, (iii) I/O

incurred by the MapReduce framework writing intermediary

results to disk, and (iv) data transfer costs.

Observe that for full generality, our cost model takes into

account many aspects (and not simply the plan height). Thus,

while some of our algorithms are guaranteed to find plans as

flat as possible, priority can be given to other plan metrics if

they are considered important. In our experiments, the selected

plans (based on this general cost model) were HO for all the

queries but one (namely Q14).

While MapReduce program performance can be modeled at

much finer granularity [32], [33], the simple model above has

been sufficient to guide our optimizer well, as our experiments

demonstrate next.

VI. EXPERIMENTAL EVALUATION

We have implemented the CliqueSquare optimization algo-

rithms together with our partitioning scheme, and the physical

MapReduce-based operators in a prototype we onward refer

to as CSQ. First, we perform an in-depth evaluation of the

different optimization algorithms presented in Section IV-C

to identify the most interesting ones. We then time the exe-

cution of the best plans recommended by our CliqueSquare

optimization algorithms, and compare it with the runtime of

plans as created by previous systems: linear or bushy, but based

on binary joins. Finally, we compare CSQ query evaluation

times with those of two state-of-the-art MapReduce-based

RDF systems and show the query robustness of CSQ.

A. Experimental setup

Cluster. Our cluster consists of 7 nodes, where each node

has: one 2.93GHz Quad Core Xeon processor with 8 threads;

4×4GB of memory; two 600GB SATA hard disks configured

in RAID 1; one Gigabit network card. Each node runs CentOS

6.4. We use Oracle JDK v1.6.0 43 and Hadoop v1.2.1 for all

experiments with the HDFS block size set to 256MB.

Dataset and queries. We rely on the LUBM [34] bench-

mark, since it has been extensively used in similar works

such as [13], [7], [35], [12]. We use the LUBM10k dataset

containing approximately 1 billion triples (216 GB). The

LUBM benchmark features 14 queries, most of which return

an empty answer if RDF reasoning (inference) is not used.

Since reasoning was not considered in prior MapReduce-based

RDF databases [7], [12], [8], to evaluate these systems either

the queries were modified, or empty answers were accepted;

the latter contradicts the original benchmark query goal.

We modified the queries as in [12] replacing generic types

(e.g., <Student>, of which no explicit instance exists in the

database) with more specific ones (e.g., <GraduateStudent>

of which there are some instances). Further, the benchmark

queries are relatively simple; the most complex one consists

of only 6 triple patterns. To complement them, we devised

other 11 LUBM-based queries with various selectivities and

complexities, and present them next to a subset of the original

ones to ensure variety across the query set. The complete

workload can be found in [26].

B. Plan spaces and CliqueSquare variant comparison

We compare the 8 variants of our CliqueSquare algorithms

w.r.t. : (i) the total number of generated plans, (ii) the number

of height-optimal (HO) plans, (iii) their running time, and (iv)

the number of duplicate plans they produce.

Option Chain Dense Thin Star

MXC+ 0.4 0.4 0.4 1

XC+ 0.4 0.4 0.4 1

MSC+ 2.1 1.1 2.1 1

SC+ 764.6 1.2 764.6 1

MXC 5.4 6.47 5.4 1

XC 52451.97 166944.57 51522.67 175273.80

MSC 18.2 26 18.2 1

SC 58948.33 23871.90 58394.27 54527.63

Fig. 14. Average number of plans per algorithm and query shape.

Option Chain Dense Thin Star

MXC+ 40% 40% 40% 100%

XC+ 40% 40% 40% 100%

MSC+ 100% 100% 100% 100%

SC+ 71.9% 100% 71.9% 100%

MXC 100% 100% 100% 100%

XC 34.8% 24.0% 34.8% 22.8%

MSC 100% 100% 100% 100%

SC 32.6% 21.5% 32.6% 21.5%

Fig. 15. Average optimality ratio per algorithm and query shape.

Setup. We use the generator of [16] to build 120 synthetic

queries whose shape is either chain, star, or random, with

two variants thin or dense for the latter: dense ones have

many variables in common across triples, while thin ones have

significantly less, thus they are close to chains. The queries

have between 1 and 10 (5.5 on average) triple patterns. Each

algorithm was stopped after a time-out of 100 seconds.

Comparison. Figure 14 shows the search space size for

each algorithm variant and query type. The total number of

generated plans is measured for each query and algorithm;

we report the average per query category. As illustrated in

Section IV-C, MXC+and XC+ fail to find plans for some

queries (thus the values smaller than 1). SC and XC return

an extremely large number of plans, whose exploration is

impractical. For these reasons, MXC+, XC+, XC, and SC are

not viable alternatives. In contrast, MSC+, SC+, MXC, and

MSC produce a reasonable number of plans to choose from.

Figure 15 shows the average optimality ratio defined as the

number of HO-plans divided by the number of all produced

plans. We consider this ratio to be 0 for queries for which no

plan is found. While the ratio for MSC+, MXC, and MSC

is 100% for this workload (i.e., they return only HO plans),

this is not guaranteed in general. SC+ has a smaller optimality

ratio but still acceptable. On the contrary, although XC finds

some optimal plans, its ratio is relatively small.

Options MSC+, MXC, and MSC lead to the shortest op-

timization time as shown in Figure 16. MSC is the slowest

among these three algorithms, but it is still very fast especially

compared to a MapReduce program execution, providing an

answer in less than 1s.

Given that our optimization algorithm is not based on

dynamic programming, it may end up producing the same

plan more than once. In Figure 17 we present the average

uniqueness ratio, defined as the number of unique plans

divided by the total number of produced plans. Dense queries

are the most challenging for all algorithms, since they allow

more sequences of decompositions which, after a few steps,

Option Chain Dense Thin Star

MXC+ 2.80 0.17 0.83 0.1

XC+ 0.63 0.07 0.20 0.13

MSC+ 3.73 0.10 4.30 0.10

SC+ 1836.47 0.17 1833.57 0.03

MXC 42.03 1.77 40.77 0.43

XC 13046.43 32023.50 12942.5 33442.73

MSC 197.5 4.73 195.47 0.43

SC 41095.07 53859.87 41262.33 61714.77

Fig. 16. Average optimization time (ms) per algorithm and query shape.

Option Chain Dense Thin Star

MXC+ 100% 100% 100% 100%

XC+ 100% 100% 100% 100%

MSC+ 100% 100% 100% 100%

SC+ 99.95% 98.89% 99.67% 100%

MXC 100% 86.18% 100% 100%

XC 97.80% 80.17% 98.63% 91.01%

MSC 100% 91.50% 100% 100%

SC 99.55% 62.89% 99.68% 93.81%

Fig. 17. Average uniqueness ratio per algorithm and query shape.

can converge to the same (and thus, build the same plan

more than once). However, in practice, as demonstrated in the

figure, our dominant decomposition methods, MSC+, MXC,

and MSC produce very few duplicate plans.

Summary. Based on our analysis, the optimization algorithms

based on MSC+, MXC, and MSC return sufficiently many

HO plans to chose from (with the help of a cost model),

and produce these plans quite fast (in less than one second,

negligible in an MapReduce environment). However, Theo-

rem 4.3 stated that MXC is HO-lossy; therefore, we do not

recommend relying on it in general. In addition, recalling

(from Theorem 4.1) that the search space of MSC is a superset

of those of MSC+, and given that the space of CliqueSquare-

MSC is still of reasonable size, we consider it the best

CliqueSquare algorithm variant, and we rely on it exclusively

for the rest of our evaluation.

C. CliqueSquare plans evaluation

We now measure the practical interest of the flat plans with

n-ary joins built by our optimization algorithm.

Setup. We compare the plan chosen by our cost model among

those built by CliqueSquare-MSC, against the best binary

bushy plan and the best binary linear plan for each query. To

find the best binary linear (or bushy) plan, we build them all,

and then select the cheapest using the cost function described

in Section V-D. We translate all logical plans into MapReduce

jobs as described in Section V and execute them on our CSQ

prototype.

Comparison. Figure 18 reports the execution times (in sec-

onds) for 14 queries (ordered from left to right with increasing

number of triple patterns). In the x-axis, we report, next to

the query name, the number of triples patterns followed (after

the | character) by the number of jobs that are executed for

each plan (where M denotes a map only job). For example,

Q3(3|M11) describes query Q3, which is composed of 3 triple

patterns, and for which MSC needs a map only job while the

bushy and linear plans need 1 job each. The optimization time

is not included in the execution times reported. This strongly

favors the bushy and linear approaches, because the number

of plans to produce and compare is bigger than that for MSC.

For all queries, the MSC plan is faster than the best bushy

plan and the best linear plan, by up to a factor of 2 (for query

Q9) compared to the binary bushy ones, and up to 16 (for

query Q8) compared to the linear ones. The three plans for

Q1 (resp. Q2) are identical since the queries have 2 triple

patterns. For Q8, the plan produced with MSC is the same

as the best binary bushy plan, thus the execution times are

almost identical. As expected the best bushy plans run faster

than the best linear ones, confirming the interest of parallel

(bushy) plans in a distributed MapReduce environment.

Summary. CliqueSquare-MSC plans outperform the bushy

and linear ones, demonstrating the advantages of the n-ary

star equality joins it uses.

D. CSQ system evaluation

We now analyze the query performance of CSQ with

the MSC algorithm and run it against comparable massively

distributed RDF systems, based on MapReduce. While some

memory-based massively distributed systems have been pro-

posed recently [14], [35], we chose to focus on systems

comparable with CSQ in order to isolate as much as possible

the impact of the query optimization techniques that are the

main focus of this paper.

Systems. We pick SHAPE [8] and H2RDF+ [12], since they

are the most efficient RDF platforms based on MapReduce;

the previous HadoopRDF [13] is largely outperformed by

H2RDF+ [12] and [7] is outperformed by [8]. H2RDF+ is open

source, while we used our own implementation of SHAPE.

SHAPE explores various partitioning methods, each with

advantages and disadvantages. We used their 2-hop forward

partitioning (2f) since it has been shown to perform the best

for the LUBM benchmark.

Comparison. While CSQ stores RDF partitions in simple

HDFS files, H2RDF+ uses HBase, while SHAPE uses RDF-

3X [15]. Thus, SHAPE and H2RDF+ benefit from index access

locally on each compute node, while our CSQ prototype

can only scan HDFS partition files. We consider two classes

of queries: selective queries (which on this 1 billion triple

database, return less than 0.5× 106 results) and non-selective

ones (returning more than 7.5× 106 results).

Figure 19 shows the running times: selective queries at the

left, non-selective ones at the right. As before, next to the

query name we report the number of triple patterns followed

by the number of jobs that the query needs in order to be

executed in each system (M denotes one map only job).

H2RDF+ sometimes uses map-only jobs to perform first-level

joins, but it performs each join in a separate MapReduce job,

unlike CSQ (Section V).

Among the 14 queries of the workload, 4 (Q2, Q4, Q9,

Q10) are PWOC for SHAPE (not for CSQ) and 1 (Q3) is

PWOC for CSQ (not for SHAPE). These five queries are

selective, and, as expected, perform better in the system which

allows them to be PWOC. For the rest of the queries, where

the optimizer plays a more important role, CSQ outperforms

SHAPE for all but one query (Q11 has an advantage with

2f partitioning since a larger portion of the query can be

pushed inside RDF-3X). The difference is greater for non-

selective queries since a bad plan can lead to many MapReduce

jobs and large intermediary results that affect performance.

Remember that the optimization algorithm of SHAPE is based

on heuristics without a cost function and produces only one

plan. The latter explains why even for selective queries (like

Q13 and Q14 which are more complex than the rest) CSQ

performs better than SHAPE.

We observe that CSQ significantly outperforms H2RDF+

for all the non-selective queries and for most of the selective

ones, by 1 to more than 2 orders of magnitude. For instance,

Q7 takes 4.8 hours on H2RDF+ and only 1.3 minutes on

CSQ. For queries Q1 and Q8 we had to stop the execu-

tion of H2RDF+ after 5 hours, while CSQ required only

3.6 and 11 minutes, respectively. For selective queries the

superiority of CSQ is less but it still outperforms H2RDF+

by an improvement factor of up to 5 (for query Q9). This is

because H2RDF+ builds left-deep query plans and does not

fully exploit parallelism; H2RDF+ requires more jobs than

CSQ for most of the queries. For example, for query Q12

H2RDF+ initiates 4 jobs one after the other. Even if the first

two jobs are map-only, H2RDF+ still needs to read and write

the intermediate results produced and pay the initialization

overhead of these MapReduce jobs. In contrast, CSQ evaluates

Q12 in a single job.

Summary. While SHAPE and H2RDF+ focus mainly on data

access paths techniques and thus perform well on selective

queries, CSQ performs closely (or better in some cases), while

it outperforms them significantly for non-selective queries.

CSQ evaluates our complete workload in 44 minutes, while

SHAPE and H2RDF+ required 77 min and 23 hours, respec-

tively. We expect that such systems can benefit from the logical

query plans built by CliqueSquare to obtain fewer jobs and

thus, lower query response times.

VII. CONCLUSION

Numerous distributed platforms have been proposed to

handle large volumes of RDF data [6], in particular based on

parallel processing frameworks such as MapReduce. In this

context, our work focused on the logical optimization of large

conjunctive (BGP) SPARQL queries, featuring many joins.

We are interested in building flat logical plans to diminish

query response time, and investigate the usage of n-ary (star)

equality joins for this purpose.

We have presented CliqueSquare, a generic optimization

algorithm and eight variants thereof, which build tree- or

DAG-shaped plans using n-ary star joins. We have formally

characterized their ability to find the flattest possible plans.

Finally, we have put these algorithms to task in a complete

MapReduce-based RDF data management platform [36]. Our

experiments demonstrate that CliqueSquare-MSC is the most

interesting alternative; it is guaranteed to find some of the

0

200

400

600

800

1000

Q1(2
|MMM)

Q2(2
|MMM)

Q3(3
|M11)

Q4(4
|122

)

Q5(5
|123

)

Q6(5
|123

)

Q7(5
|123

)

Q8(5
|223

)

Q9(6
|134

)

Q10(
6|13

4)

Q11(
8|23

6)

Q12(
9|14

7)

Q13(
9|14

7)

Q14(
10|3

58)

T
im

e
 (
se
co
n
d
s)

MSC‐Best Plan Best Binary Bushy Plan Best Binary Linear Plan

Fig. 18. Plan execution time (in seconds) comparison between MSC-plans, bushy-plans, and linear plans for LUBM10k.

1

10

100

1000

10000

100000

Q2(2
|M00)

Q3(3
|M10)

Q4(4
|100

)

Q9(6
|103

)

Q10
(6|1

02)

Q11
(8|2

12)

Q13
(9|1

11)

Q14
(10|

324
)

Q1(2
|M11)

Q5(5
|113

)

Q6(5
|113

)

Q7(5
|113

)

Q8(5
|113

)

Q12
(9|1

14)

T
im

e
 (
se
co
n
d
s)

CSQ SHAPE‐2f H2RDF+

Fmeout Fmeout

Fig. 19. Query evaluation time comparison: CSQ, SHAPE and H2RDF+.

flattest plans which, as shown in our experiments, outperform

previous comparable systems, especially for complex queries

where optimization plays an important role. More generally,

our logical optimization approach can be used in any massively

parallel conjunctive query evaluation setting, contributing to

shorten query response time.

REFERENCES

[1] P. Hayes, “RDF Semantics,” W3C Recommendation, February 2004,
http://www.w3.org/TR/rdf-mt/.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives, “DBpedia: A Nucleus for a Web of Open Data,” in ISWC, 2007.

[3] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of
Semantic Knowledge,” in WWW, 2007.

[4] D. Huynh, S. Mazzocchi, and D. R. Karger, “Piggy Bank: Experience
the Semantic Web inside your web browser,” J. Web Sem., vol. 5, no. 1,
2007.

[5] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan, “An Efficient SQL-
based RDF Querying Scheme,” in VLDB, 2005.

[6] Z. Kaoudi and I. Manolescu, “RDF in the Clouds: A Survey,” The VLDB
Journal, 2014.

[7] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” PVLDB, vol. 4, no. 11, 2011.

[8] K. Lee and L. Liu, “Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning,” PVLDB, vol. 6, no. 14, Sep. 2013.

[9] L. Galarraga, K. Hose, and R. Schenkel, “Partout: A Distributed Engine
for Efficient RDF Processing,” Technical Report: CoRR abs/1212.5636,
2012.

[10] K. Hose and R. Schenkel, “WARP: Workload-Aware Replication and
Partitioning for RDF,” in DESWEB, 2013.

[11] M. T. Özsu and P. Valduriez, Distributed and Parallel Database Systems

(3rd. ed.). Springer, 2011.

[12] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and N. Koziris,
“H2RDF+: High-performance Distributed Joins over Large-scale RDF
Graphs,” in IEEE BigData, 2013.

[13] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M. Thu-
raisingham, “Heuristics-Based Query Processing for Large RDF Graphs
Using Cloud Computing,” IEEE TKDE, vol. 23, no. 9, Sep. 2011.

[14] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, “TriAD: a Dis-
tributed Shared-Nothing RDF Engine based on Asynchronous Message
Passing,” in SIGMOD, 2014.

[15] T. Neumann and G. Weikum, “The RDF-3X Engine for Scalable
Management of RDF Data,” VLDBJ, vol. 19, no. 1, 2010.

[16] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu, “View selection
in semantic web databases,” PVLDB, vol. 5, no. 1, 2012.

[17] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. A.
Boncz, “Heuristics-based query optimisation for SPARQL,” in EDBT,
2012.

[18] A. Gubichev and T. Neumann, “Exploiting the query structure for
efficient join ordering in SPARQL queries,” in EDBT, 2014.

[19] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, “Distributed data management
using MapReduce,” ACM Comput. Surv., vol. 46, no. 3, p. 31, 2014.

[20] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using Hadoop,” in ICDE, 2010.

[21] A. Gates, J. Dai, and T. Nair, “Apache Pig’s optimizer,” IEEE Data Eng.

Bull., vol. 36, no. 1, 2013.
[22] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, “Query Optimization for

Massively parallel Data Processing,” in SOCC, 2011.
[23] F. N. Afrati and J. D. Ullman, “Optimizing Joins in a Map-Reduce

Environment,” in EDBT, 2010.
[24] X. Zhang, L. Chen, Y. Tong, and M. Wang, “EAGRE: Towards Scalable

I/O Efficient SPARQL Query Evaluation on the Cloud,” in ICDE, 2013.
[25] R. Karp, “Reducibility among combinatorial problems,” in Complexity

of Computer Computations, 1972, pp. 85–103.
[26] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and

S. Zampetakis, “CliqueSquare: Flat Plans for Massively Parallel RDF
Queries,” Research Report RR-8612, Oct. 2014. [Online]. Available:
https://hal.inria.fr/hal-01071984

[27] R. Ramakrishnan and J. Gehrke, Database Management Systems (3rd.

ed.). McGraw-Hill, 2003.
[28] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor, “A Subscribable

Peer-to-Peer RDF Repository for Distributed Metadata Management,”
Journal of Web Semantics, vol. 2, no. 2, pp. 109–130, 2004.

[29] D. J. Abadi, A. Marcus, and B. Data, “Scalable Semantic Web Data
Management using Vertical Partitioning,” in VLDB, 2007.

[30] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson, “CoHadoop: Flexible Data Placement and Its Exploitation
in Hadoop,” PVLDB, 2011.

[31] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing in MapReduce,” in
SIGMOD, 2010.

[32] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapreduce:
An in-depth study,” PVLDB, vol. 3, no. 1, 2010.

[33] H. Herodotou, F. Dong, and S. Babu, “MapReduce Programming and
Cost-based Optimization? Crossing this Chasm with Starfish,” PVLDB,
vol. 4, no. 12, 2011.

[34] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” J. Web Sem., vol. 3, no. 2-3, 2005.

[35] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A Distributed Graph
Engine for Web Scale RDF Data,” in PVLDB 2013.

[36] B. Djahandideh, F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz,
and S. Zampetakis, “CliqueSquare in action: Flat plans for massively
parallel RDF queries,” in ICDE, 2015.

