
HAL Id: hal-01108710
https://inria.hal.science/hal-01108710

Submitted on 23 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CliqueSquare in Action: Flat Plans for Massively
Parallel RDF Queries

Benjamin Djahandideh, François Goasdoué, Zoi Kaoudi, Ioana Manolescu,
Jorge-Arnulfo Quiané-Ruiz, Stamatis Zampetakis

To cite this version:
Benjamin Djahandideh, François Goasdoué, Zoi Kaoudi, Ioana Manolescu, Jorge-Arnulfo Quiané-
Ruiz, et al.. CliqueSquare in Action: Flat Plans for Massively Parallel RDF Queries. International
Conference on Data Engineering, Apr 2015, Seoul, South Korea. �hal-01108710�

https://inria.hal.science/hal-01108710
https://hal.archives-ouvertes.fr

CliqueSquare in Action: Flat Plans for Massively

Parallel RDF Queries

Benjamin Djahandideh1, François Goasdoué2,1, Zoi Kaoudi3,1, Ioana Manolescu1,4, Jorge-Arnulfo Quiané-Ruiz5,

Stamatis Zampetakis1,4

1INRIA, France first.last@inria.fr 2U. Rennes 1, France, fg@irisa.fr
3IMIS, Athena Research Center, Greece zoi@imis.athena-innovation.gr 4U. Paris Sud, France first.last@lri.fr

5Qatar Computing Research Institute (QCRI), Qatar jquianeruiz@qf.org.qa

Abstract—RDF is an increasingly popular data model for many
practical applications, leading to large volumes of RDF data;
efficient RDF data management methods are crucial to allow
applications to scale.

We propose to demonstrate CliqueSquare, an RDF data man-
agement system built on top of a MapReduce-like infrastructure.
The main technical novelty of CliqueSquare resides in its logical
query optimization algorithm, guaranteed to find a logical plan
as flat as possible for a given query, meaning: a plan having
the smallest possible number of join operators on top of each
other. CliqueSquare’s ability to build flat plans allows it to
take advantage of a parallel processing framework in order to
shorten response times. We demonstrate loading and querying
the data, with a particular focus on query optimization, and on
the performance benefits of CliqueSquare’s flat plans.

I. INTRODUCTION

The Resource Description Framework (RDF, in short) [1]

is a flexible data model for representing graph-structured data.

In a nutshell, an RDF dataset consists of triples of the form

(s, p, o), stating that a subject has a property whose value

is object. Nowadays, many applications use RDF in areas

ranging from the Semantic Web and scientific applications,

such as BioPAX1 and UniProt2, to Web 2.0 platforms, such

as RDFizers3. The RDF data model is accompanied by the

SPARQL query language. The efficient evaluation of SPARQL

queries is difficult though, due to the lack of structure and

regularity in RDF datasets, and because SPARQL queries

typically involve many joins between triple patterns.

Many algorithms and architectures have been proposed to

efficiently manage RDF data [2], [3], [4]. However, scaling

RDF query processing to very large data volumes is challeng-

ing. Prior research has also led to various distributed RDF

systems, in particular based on MapReduce [5]. Some of these

systems, such as [6], [7], have placed an important emphasis

on the data partitioning process, with the goal of making the

evaluation of certain shapes of queries parallelizable without

communications (or PWOC, in short). In a nutshell, a PWOC

query for a given data partitioning can be evaluated by taking

the union of the query results obtained on each node.

However, it is easy to see that no single partitioning can

guarantee that all queries are PWOC; in fact, most queries

1http://www.biopax.org
2http://dev.isb-sib.ch/projects/uniprot-rdf/
3http://smile.mit.edu/wiki/RDFizers

do require processing across multiple nodes and thus, data

shuffling across nodes. The more complex the query is, the

bigger will be the impact of evaluating the distributed part of

the query plan. Logical query optimization – deciding how to

decompose and evaluate an RDF query in a massively parallel

context – has thus also a crucial impact on performance.

As it is well-known in distributed data management [8], to

efficiently evaluate queries one should maximize parallelism

(both inter-operator and intra-operator) to take advantage

of the distributed processing capacity and thus reduce the

response time.

In a parallel RDF query evaluation setting, intra-operator

parallelism relies on join operators that process chunks of data

in parallel. To increase inter-operator parallelism one should

aim at building massively-parallel (flat) plans, having as few

(join) operators as possible on any root-to-leaf path in the

plan; this is because the processing performed by such joins

directly adds up into the response time. Prior works use binary

joins organized in bushy plans [9], n-ary joins (with n > 2)

only in the first level of the plans and binary joins in the next

levels [6], [7], or n-ary joins at all levels [10] but organized in

left-deep plans. Such methods lead to high (non-flat) plans and

hence high response times. HadoopRDF [11] is the only one

building bushy plans of n-ary joins, but it cannot guarantee

the plan is as flat as possible.

In this demo we present CliqueSquare, a distributed RDF

data management platform with a particular focus on the

logical optimization of RDF queries, seeking to build flat query

plans composed of n-ary (star) equality joins. In [12] we show

that CliqueSquare’s optimizer is guaranteed to build some of

the flattest possible plans for any input query.

The benefits of flat plans can be combined with many

orthogonal optimizations: e.g., the RDF partitioning model,

the RDF storage and processing facilities on each node, the

degree of parallelism of join evaluation as in [13]. Going

beyond RDF, flat plans are beneficial in any conjunctive

query processing setting based on n-ary (star) equality joins.

However, flat plans are of particular interest for RDF, since

(as also noted in [3], [14], [15]) RDF queries tend to involve

more joins than a relational query computing the same result.

This is because relations can have many attributes, whereas

in RDF each query triple pattern has only three, leading to

syntactically more complex queries.

BGP Query

Query Parser Logical OptimizerVariable Graph G

G1

· · ·

· · ·

· · ·

G2· · · · · · · · ·

· · · · · ·

Physical

Optimizer

Logical Plan

Job Translator

Physical Plan

CliqueSquare Query Processor

Hadoop MapReduce

Hadoop Distributed File System (HDFS)
Partitioned RDF data Intermediate/Final results

Fig. 1. Query evaluation workflow.

This demo will highlight the logical query optimization

of CliqueSquare. The audience will explore the internals of

different optimization algorithms by selecting and monitoring

in real time the execution process of different plans.

II. CLIQUESQUARE QUERY PROCESSING

Figure 1 shows the query evaluation steps in CliqueSquare:

The Query Parser takes a Basic Graph Pattern (BGP)

query q, i.e., a conjunctive SPARQL query, as input and

produces a variable graph G representing q. The Logical

Optimizer explores a set of logical plans based on graph

decompositions of this variable graph G, as we explain shortly.

Then, the Physical Optimizer translates a logical plan

into a physical plan based on a cost model. Finally, for a

physical plan, the Job Translator builds a sequence of

MapReduce jobs whose execution is delegated to Hadoop. We

explain these three main components of CliqueSquare in the

following.

A. Logical Optimizer

CliqueSquare optimizes queries based on variable graphs,

which it uses to encode both the incoming query and inter-

mediary query representations that it builds as it progresses

toward obtaining logical query plans. Formally:

Definition 2.1 (Variable graph): A variable graph GV of a

BGP query q is a labeled multigraph (N,E, V), where: V

is the set of variables from q; N is a set of nodes such that

each n ∈ N corresponds to a set of triple patterns in q; and

E ⊆ N ×V ×N is a set of labeled undirected edges. There is

an edge (n1, v, n2) ∈ E between two distinct nodes n1, n2 ∈
N iff their corresponding sets of triple patterns join on the

variable v ∈ V .

Figure 2 shows a query (Q1) and its variable graph. In this

example, every node represents a single triple pattern. Given

a variable graph, CliqueSquare first identifies variable cliques

within the variable graph. A variable clique is a set of nodes

connected among themselves with edges that are all labeled by

the same variable. We denote the set of all the nodes incident

to an edge with the same variable as a maximal variable

clique. For example, in variable graph G1, the maximal clique

SELECT

?x ?y ?z

WHERE {

?x type UndergraduateStudent

?y type FullProfessor

?z type Course

?x takesCourse ?z

?y teacherOf ?z

?x advisor ?y }

t1

t4 t6

t3 t2t5

x

x

x

z

z

z
y

y

y

Fig. 2. Query Q1 and its variable graph G1.

of x is {t1, t4, t6}. We term any non-empty subset of a

maximal clique as partial clique. Next, based on variable

graphs and cliques, CliqueSquare uses two main operations

during its optimization algorithm: clique decomposition and

clique reduction.

Clique decomposition. Intuitively, a clique decomposition is

a way to “cover” the query with variable cliques; each clique

corresponds to an n-way logical join on intermediary query

results. Formally:

Definition 2.2 (Clique decomposition): Given a variable

graph GV = (N,E, V), a clique decomposition of GV is a set

of (partial or maximal) variable cliques of GV which covers

all nodes of N , i.e., each node n ∈ N appears in at least

one clique, such that the size of the decomposition is strictly

smaller than the number of nodes |N |.
For example, one clique decomposition in the variable

graph G1 is D1 = {{t1, t4, t6}, {t3, t4, t5}, {t5, t6, t2}};

this decomposition follows the distribution of colors on the

graph edges in Figure 2. Another decomposition for G1 is:

D2 = {{t1, t6}, {t3, t4}, {t2, t5}} etc.

It is worth noting that a variable graph has many decom-

positions. One may use partial cliques, or only maximal ones;

we may seek exact covers (where each node appears in only

one clique) or simple covers (where a node may be part of

several cliques). Furthermore, we say a clique decomposition

for a given graph is minimum if it has the lowest possible

number of cliques; we may consider only minimum cliques,

or also non-minimum ones.

Clique reduction. Given a clique decomposition, the opti-

mizer then applies a clique reduction: this corresponds to

shrinking the variable graph by collapsing all the nodes

from every clique of the decomposition, into a single node.

Formally:

Definition 2.3 (Clique reduction): Given a variable graph

GV = (N,E, V) and one of its clique decompositions D,

the reduction of GV based on D is the variable graph G′

V
=

(N ′, E′, V) such that: (i) every clique c ∈ D correspond to a

node n′ ∈ N ′, whose set of triple patterns is the union of the

nodes involved in c ⊆ N ; (ii) there is an edge (n′

1
, v, n′

2
) ∈ E′

between two distinct nodes n′

1
, n′

2
∈ N ′ iff their corresponding

sets of triple patterns join on the variable v ∈ V .

For example, given the above clique decomposition D1,

CliqueSquare reduces G1 into a variable graph of three nodes,

one for each clique in G1.

Algorithm 1: CliqueSquare optimization algorithm

CLIQUESQUARE (G, states)
Input : Variable graph G; queue of variable graphs states
Output: Set of logical plans QP

1 states = states ∪ {G};
2 if |G| = 1 then
3 QP ← CREATEQUERYPLAN (states);
4 else
5 QP ← ∅;
6 D ← CLIQUEDECOMPOSITIONS(G);
7 foreach D ∈ D do

8 G
′ ← CLIQUEREDUCTION(G,D);

9 QP ← QP ∪ CLIQUESQUARE (G′, states);
10 end
11 end
12 return QP ;

end

Query optimization. The CliqueSquare query optimization

algorithm (Algorithm 1) develops from the initial query graph,

possible sequences of clique decompositions followed by

clique reductions, until all the query predicates have been

applied. The algorithm takes as an input a variable graph G

and a list of variable graphs states, modeling the successive

evaluation steps that led to G. The algorithm outputs a set

of logical query plans QP , each of which is an alternative

way to evaluate the incoming query. In the initial query graph

G, each node consists of a single triple pattern, and states

is empty. At each recursive call, CLIQUEDECOMPOSITIONS

(line 6) returns a set of clique decompositions of G, which

is used by CLIQUEREDUCTION (line 8) to reduce G into G
′.

G
′ is in turn recursively processed, until it consists of a single

node. The optimizer builds the corresponding logical query

plan out of the list of variable graphs comprised in states

using CREATEQUERYPLAN function. A logical query plan p is

a rooted directed acyclic graph (DAG) whose nodes can either

scan triples from the store (Match operators), or be selections,

projections, or n-way equi-joins.

Notice that, depending on the chosen clique decomposition

method (maximal or partial cliques, exact or simple covers,

restricted to minimum covers or not), eight different instanti-

ations of Algorithm 1 are possible [12]. We have shown that

the most interesting are those called MSC (maximal simple

covers), MSC+ (the same, restricted to minimum covers) and

MXC (maximal exact covers) are guaranteed to find some

of the flattest possible plans, while exploring plan set of

reasonable size and giving interesting plans to chose from,

within a reasonable optimization time.

B. Physical Optimizer

The physical optimizer translates a logical plan into a phys-

ical one taking into account the physical storage (partitioning)

of the data within the Hadoop Distributed File System (HDFS),

and the available physical operators.

CliqueSquare storage. We use a simple partitioning scheme

which allows all first level joins to be evaluated locally at

each node (PWOC, also termed co-located joins), in order to

reduce query response time. Our partitioner exploits the fact

that most of the existing distributed file systems replicate a

dataset at least three times for fault-tolerance reasons. Thus,

we store three full partitions of the RDF data, each organized

differently, and group the triples at each system node to enable

fine-granularity data access. RDF data is stored in three steps:

(1) We place each triple in three partitions, based on its

subject, property and object values. Triples with the same

value of s, p, or o are located within the same compute node.

(2) Then, we partition triples within each compute node based

on their placement (s, p, or o) attribute. We call these partitions

subject, property, and object partition. Notice that given a type

of join, e.g., subject-subject join, this local partitioning leads

to directly reading the relevant triples only.

(3) We further split each partition within a compute node by

the value of the property in their triples4. This property-based

grouping resembles the well-known vertical RDF partitioning

proposed for centralized RDF stores. Finally, we store each

resulting partition into an HDFS file.

CliqueSquare physical operators. CliqueSquare relies on the

following set of physical operators: (a) Map Scan; (b) Filter;

(c) Map Shuffler; (d) Map Join; (e) Reduce Join; (f) Project.

The translation from a logical plan to a physical plan is almost

1 to 1. An exception is the logical join operator which is

translated either to a Map Join, if the join can be performed

locally, or to a Reduce Join in any other case. As a Reduce

Join cannot be performed directly on the output of another

reduce join, a map shuffler operator is added, if needed.

C. Job Translator

The physical plan is mapped to a MapReduce programs

as follows: (i) projections and filters are always part of the

same MapReduce task as their parent operator; (ii) map joins

along with all their ancestors are executed in the same (map or

reduce) task; (iii) any other operator is executed in a task of its

own. Then, the MapReduce tasks are grouped in MapReduce

jobs in a bottom-up traversal of the task tree; each job has at

least one map task, and zero or more reduce tasks.

III. DEMONSTRATION

During the demo, the audience is invited to interact with the

system to compose queries, explore the internals of different

optimization algorithms, select and monitor the execution

process of plans in two available clusters.

A. Setup

We use a cluster of 8 nodes, where each node has one

2.93GHz Quad Core Xeon processors, 4×4GB of main mem-

ory, 2×600GB SAS hard disks configured in RAID 1, 1

Gigabit network, and Linux CentOS release 6.4. We divide

this cluster into two equal-size sub-clusters to directly compare

different CliqueSquare’s techniques in the following scenarios.

B. Demo Scenarios

We showcase the system by walking the demo attendees

through the following scenarios based on the popular LUBM

benchmark [16], featuring students, courses, universities etc.

4Special treatment is given to the rdf:type property; for details, see [12].

Fig. 3. Snapshots of the CliqueSquare graphical user interface.

0

200

400

600

800

1000

Q1 Q2 Q3 Q4 Q5

T
im

e
 (
se
co
n
d
s)

MSC‐Best Plan BB‐Best Plan BL‐Best Plan

Fig. 4. Query evaluation time for three optimization strategies on LUBM10K.

1) Scenario 1: one-clique queries: First, we consider the

following queries: (Q1) retrieves all the graduate students and

their courses; (Q2) retrieves the name, the address, and the

research interest of every full professor in a specific university;

(Q3) is similar to Q2 but does not specify the university. These

queries have only one variable clique, thus the optimization

algorithm solves them with a single n-ary join and thus there is

only one plan. Thanks to CliqueSquare’s partitioning scheme,

the queries run in a single map-only job.

2) Scenario 2: complex queries: Three queries are used.

(Q4) returns the undergraduate students whose advisor is an as-

sociate professor and teaches a course they take. (Q5) requests

(i) the undergraduate students of “University 3” whose advisor

is a full professor, (ii) the courses they attend, and (iii) their

advisors’ email address. (Q6) asks for graduate students of

a department, which belongs to the university from which

the students hold a degree from. Answering these complex

queries requires multiple jobs, whose exact number depends

on the flatness of the plan. CliqueSquare’s MSC optimization

algorithm is guaranteed to find some of the flattest plans

possible, thus leading to short response time even for such

complex queries.

As to the system performance, Figure 4 (taken from [12])

shows the execution times for 5 representative queries, of the

best plan generated with the CliqueSquare-MSC algorithm,

together with the with BB (the best binary bushy plan) and

BL (the best binary linear plan). We used the demo’s proposed

cluster set-up, and a 1 billion triples LUBM dataset. The

results show the superiority of CliqueSquare-MSC in all cases.

C. Demo Interaction

CliqueSquare comes with an interactive graphical user in-

terface, illustrated by the snapshots in Figure 3. Specifically,

through the GUI, the leftmost snapshot in the Figure shows

how a demo attendee may: (i) select and/or modify one of

the predefined queries; (ii) inspect the initial variable graph

created by CliqueSquare for each such query. The central

snapshot demonstrates how users may (iii) select one clique

decomposition option to use with CliqueSquare – among

MSC, MSC+ and MXC – or the BB or BL algorithms;

(iv) visualize the logical and physical plan built, as well as

the resulting MapReduce script; (v) select a plan and explore

all variable graphs produced by the recursive calls of the

Algorithm 1 understanding how the logical plan is constructed

from the subsequent graphs; (vi) review the estimated costs

for the plans and manually select one to run on each cluster.

Finally, the rightmost snapshot shows how demo attendees can

monitor the progress of the MapReduce programs computing

query results; in particular this will allow seeing the benefits

of flat plans for reduced response times.

REFERENCES

[1] P. Hayes, “RDF Semantics,” W3C Recommendation, February 2004,
http://www.w3.org/TR/rdf-mt/.

[2] D. J. Abadi, A. Marcus, and B. Data, “Scalable Semantic Web Data
Management using Vertical Partitioning,” in VLDB, 2007.

[3] T. Neumann and G. Weikum, “The RDF-3X Engine for Scalable
Management of RDF Data,” VLDBJ, vol. 19, no. 1, 2010.

[4] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple Indexing
for Semantic Web Data Management,” PVLDB, vol. 1, no. 1, 2008.

[5] Z. Kaoudi and I. Manolescu, “RDF in the Clouds: A Survey,” The VLDB
Journal, 2014.

[6] J. Huang, D. J. Abadi, and K. Ren, “Scalable SPARQL Querying of
Large RDF Graphs,” PVLDB, vol. 4, no. 11, 2011.

[7] K. Lee and L. Liu, “Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning,” PVLDB, vol. 6, no. 14, Sep. 2013.

[8] M. T. Özsu and P. Valduriez, Distributed and Parallel Database Systems

(3rd. ed.). Springer, 2011.
[9] L. Galarraga, K. Hose, and R. Schenkel, “Partout: A Distributed Engine

for Efficient RDF Processing,” CoRR abs/1212.5636, 2012.
[10] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and N. Koziris,

“H2RDF+: High-performance Distributed Joins over Large-scale RDF
Graphs,” in IEEE BigData, 2013.

[11] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M. Thu-
raisingham, “Heuristics-Based Query Processing for Large RDF Graphs
Using Cloud Computing,” IEEE TKDE, vol. 23, no. 9, Sep. 2011.

[12] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zam-
petakis, “CliqueSquare: Flat plans for massively parallel RDF queries,”
in ICDE, 2015.

[13] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald, “TriAD: a Dis-
tributed Shared-Nothing RDF Engine based on Asynchronous Message
Passing,” in SIGMOD, 2014.

[14] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu, “View selection
in semantic web databases,” PVLDB, vol. 5, no. 1, 2012.

[15] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and P. A.
Boncz, “Heuristics-based query optimisation for SPARQL,” in EDBT,
2012.

[16] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” J. Web Sem., vol. 3, no. 2-3, 2005.

