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Abstract Using the theory of non-commutative rings, the delay identification prob-
lem of nonlinear time-delay systems with unknown inputs is studied. Necessary and
sufficient conditions are proposed to judge the identifiability of the delay, where
two different cases are discussed for the dependent and independent outputs, re-
spectively. After that, necessary and sufficient conditions are given to analyze the
causal and non-causal observability for nonlinear time-delay systems with unknown
inputs.

1 Introduction

Time-delay systems are widely used to model concrete systems in engineering sci-
ences, such as biology, chemistry, mechanics and so on [16, 26, 31]. Many results
have been reported for the purpose of stability and observability analysis, by assum-
ing that the delay of the studied systems is known. It makes the delay identification
be one of the most important topics in the field of time-delay systems. Up to now,
various techniques have been proposed for the delay identification problem, such
as identification by using variable structure observers [15, 35, 36], modified least
squares techniques [37], neural network algorithms [45], convolution approach [5],
algebraic fast identification technique [6,8] as initiated in [18], and so on (see [4,15]
for additional references). Note that most of the papers on identification in presence
of delays concern linear models. Another source of complexity comes from the pres-
ence of feedback loops involving the delays. Indeed, when the delay appears only on
the inputs or outputs, the system has the finite dimension. When the delays are in-
volved in a closed-loop manner, the resulting model has delayed states and become
a functional differential equation, which has the infinite dimension [7, 38].
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Besides identifiability, the observability property has been exhaustively studied
for nonlinear systems without delays. It has been characterized in [22, 27, 43] from
a differential point of view, and in [14] from an algebraic point of view. However,
when the system is subject to time delay, such analysis is more complicated (see
the surveys [38] and [41]). For linear time-delay systems, various aspects of the
observability have been studied in the literature, using different methods such as the
functional analytic approach [9] or the algebraic approach [10, 17, 42].

The aim of this paper is to firstly identify the time delay of nonlinear time-delay
system with unknown inputs and then study observability for this system with iden-
tified delay. The work of this paper is based on the theory of non-commutative rings,
which was firstly proposed in [30] for the disturbance decoupling problem of non-
linear time-delay system. Then this method was applied to study observability of
nonlinear time-delay systems with known inputs in [44], to analyze identifiability
of parameter for nonlinear time-delay systems in [47], and to study state elimination
and delay identification of nonlinear time-delay systems with known inputs in [1].
The motivation to study nonlinear time-delay system with unknown inputs is due to
the fact that there exist some cases, such as observer design for time-delay systems,
in which the inputs can be unknown [13, 25, 39, 46]. Moreover, some proposed un-
known input observer design methods do depend on the known delay, which should
be identified in advance. Motivated by this requirement, this paper investigates both
the delay identification problem and observability problem for nonlinear time-delay
systems with unknown inputs.

This paper is organized as follows. Section 2 recalls the algebraic framework
proposed in [44]. Notations and preliminary result are given in Section 3. Neces-
sary and sufficient conditions are discussed for identifying the delay in two differ-
ent cases: dependent outputs over the non-commutative rings, and then independent
ones. Section 5 deduces necessary and sufficient conditions of causal and non-causal
observability for nonlinear time-delay systems with unknown inputs, and the pro-
posed result is applied to identify the delay of a biological model in Section 6.

2 Algebraic framework

It is assumed that the delays are constant and commensurate, that is all of them are
multiples of an elementary unknown delay τ . Under this assumption, the considered
nonlinear time-delay system is described as follows:

ẋ = f(x(t− iτ)) +
∑s

j=0 g
j(x(t− iτ))u(t− jτ),

y = h(x(t− iτ)) = [h1(x(t− iτ)), . . . , hp(x(t− iτ))]T ,
x(t) = ψ(t), u(t) = φ(t), t ∈ [−sτ, 0],

(1)

where the constant delays iτ are associated to the finite set of integers i ∈ S− =
{0, 1, . . . , s}; x ∈ W ⊂ Rn refers to the state variables; u = [u1, . . . , um]T ∈ Rm

is the unknown input; y ∈ Rp is the measurable output; f , gj and h are meromorphic
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functions1; f(x(t− iτ)) = f(x, x(t− τ), . . . , x(t− sτ)); ψ : [−sτ, 0] → Rn and
φ : [−sτ, 0] → Rm denote unknown continuous functions of initial conditions.
Throughout this chapter, it is assumed that, for initial conditions ψ and φ, system
(1) admits a unique solution.

Based on the algebraic framework introduced in [44], consider the field K of
meromorphic functions of a finite number of the variables from {xj(t − iτ), j ∈
[1, n], i ∈ S−}. For the sake of simplicity, we introduce the delay operator δ, which
means, for i ∈ Z+:

δiξ(t) = ξ(t− iτ), ξ(t) ∈ K, (2)

δi (a(t)ξ(t)) = δia(t)δiξ(t)
= a(t− iτ)ξ(t− iτ).

(3)

Let K(δ] denote the set of polynomials in δ over K, of the form

a(δ] = a0(t) + a1(t)δ + · · ·+ ara(t)δ
ra (4)

where ai(t) ∈ K and ra ∈ Z+. The addition in K(δ] is defined as usual, but the
multiplication is given as:

a(δ]b(δ] =

ra+rb∑
k=0

i≤ra,j≤rb∑
i+j=k

ai(t)bj(t− iτ)δk. (5)

Considering (1) without input, differentiation of an output component hj(x(t −
iτ)) with regard to time t is defined as follows:

ḣj(x(t− iτ)) =
s∑

i=0

∂hj
∂x(t− iτ)

δif.

Thanks to the definition of K(δ], (1) can be rewritten in a more compact form: ẋ = f(x, δ) +G(x, δ)u = f(x, δ) +
∑m

i=1Gi(x, δ)ui(t)
y = h(x, δ)
x(t) = ψ(t), u(t) = φ(t), t ∈ [−sτ, 0],

(6)

where f(x, δ) = f(x(t − iτ)) and h(x, δ) = h(x(t − iτ)), with entries belonging
to K, u = u(t), and G(x, δ) = [G1, · · · , Gm] with Gi(x, δ) =

∑s
l=0 g

l
iδ

l.
With the standard differential operator d, denote by M the left module over K(δ]:

M = spanK(δ]{dξ, ξ ∈ K} (7)

where K(δ] acts on dξ according to (2) and (3). Note that K(δ] is a non-commutative
ring, however it is proved that it is a left Ore ring [24, 44], which enables to define
the rank of a left module over K(δ].

Define the vector space E over K:

1 means quotients of convergent power series with real coefficients [12, 44].
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E = spanK{dξ : ξ ∈ K}

E is the set of linear combinations of a finite number of elements from dxj(t− iτ)
with row vector coefficients in K. Since the delay operator δ and the standard dif-
ferential operator are commutative, the one-form of ω ∈ M can be written as: ω =∑n

j=1 aj(δ]dxj , where a(δ] ∈ K(δ]. For a given vector field β =
∑n

j=1 bj(δ]
∂

∂xj

with bj(δ] ∈ K(δ], the inner product of ω and β is defined as follows:

ωβ =

n∑
j=1

aj(δ]bj(δ] ∈ K(δ].

3 Notations and preliminary result

Some efforts have been made to extend the Lie derivative [23] to nonlinear time-
delay systems (see [11, 19–21, 32–34]) in the framework of commutative rings. In
what follows, we define the derivative and Lie derivative for nonlinear time-delay
systems from the non-commutative point of view.

For 0 ≤ j ≤ s, let f(x(t − jτ)) and h(x(t − jτ)) respectively be an n and p
dimensional vector with entries fr ∈ K for 1 ≤ r ≤ n and hi ∈ K for 1 ≤ i ≤ p.
Let

∂hi
∂x

=

[
∂hi
∂x1

, · · · , ∂hi
∂xn

]
∈ K1×n(δ], (8)

where, for 1 ≤ r ≤ n:

∂hi
∂xr

=

s∑
j=0

∂hi
∂xr(t− jτ)

δj ∈ K(δ].

Then, the Lie derivative for nonlinear systems without delays can be extended to
nonlinear time-delay systems in the framework of [44] as follows

Lfhi =
∂hi
∂x

(f) =
n∑

r=1

s∑
j=0

∂hi
∂xr(t− jτ)

δj (fr) (9)

and in the same way one can define LGihi.
Based on the above notations, the relative degree can be defined in the following

way.

Definition 1. (Relative degree) System (6) has the relative degree (ν1, · · · , νp) in
an open set W ⊆ Rn if the following conditions are satisfied for 1 ≤ i ≤ p:

1. for all x ∈W , LGjL
r
fhi = 0 for all 1 ≤ j ≤ m and 0 ≤ r < νi − 1;

2. there exists x ∈W such that ∃j ∈ {1, · · · ,m}, LGjL
νi−1
f hi ̸= 0.



Identifiability and observability of nonlinear time-delay system with unknown inputs 5

If the first condition is satisfied for all r ≥ 0 and some i ∈ {1, · · · , p}, we set
νi = ∞.

Moreover, for system (6), one can also define observability indices introduced
in [27] over non-commutative rings. For 1 ≤ k ≤ n, let Fk be the following left
module over K(δ]:

Fk := spanK(δ]

{
dh, dLfh, · · · , dLk−1

f h
}
.

It was shown that the filtration of K(δ]-module satisfies F1 ⊂ F2 ⊂ · · · ⊂ Fn, then
define d1 = rankK(δ]F1, and dk = rankK(δ]Fk − rankK(δ]Fk−1 for 2 ≤ k ≤ n.
Let ki = card {dk ≥ i, 1 ≤ k ≤ n}, then (k1, · · · , kp) are the observability indices.
Reorder, if necessary, the output components of (6) so that

rankK(δ]{∂h1

∂x , · · · ,
∂L

k1−1

f h1

∂x , · · · , ∂hp

∂x , · · · ,
∂L

kp−1

f hp

∂x }
= k1 + · · ·+ kp.

Based on the above definitions, let us define the following notations, which will
be used in the sequel. For 1 ≤ i ≤ p, denote by ki the observability indices, νi the
relative degree for yi of (6), and

ρi = min {νi, ki} .

Without loss of generality, suppose
∑p

i=1 ρi = j, thus {dh1, · · · , dLρ1−1
f h1, · · · ,

dhp, · · · , dL
ρp−1
f hp} are j linearly independent vectors over K(δ]. Then note:

Φ = {dh1, · · · , dLρ1−1
f h1, · · · , dhp, · · · , dL

ρp−1
f hp} (10)

and
£ = spanR[δ]

{
h1, · · · , Lρ1−1

f h1, · · · , hp, · · · , L
ρp−1
f hp

}
, (11)

where R[δ] is the commutative ring of polynomials in δ with coefficients belonging
to the field R, and let £(δ] be the set of polynomials in δ with coefficients over £.
The module spanned by element of Φ over £(δ] is defined as follows:

Ω = span£(δ] {ξ, ξ ∈ Φ} . (12)

Define
G = spanR[δ]{G1, . . . , Gm},

where Gi is given in (6), and its left annihilator:

G⊥ = span£(δ]{ω ∈ M | ωβ = 0, ∀β ∈ G}, (13)

where M is defined in (7).
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After having defined the relative degree and observability indices via the ex-
tended Lie derivative for nonlinear time-delay systems in the framework of non-
commutative rings, now an observable canonical form can be derived.

Theorem 1. Consider the system (6) with outputs (y1, · · · , yp) and the correspond-
ing (ρ1, · · · , ρp) with ρi = min{ki, νi} where ki and νi are the observability in-
dices and the relative degree indices, respectively. There exists a change of coordi-
nates ϕ(x, δ) ∈ Kn×1, such that (6) is transformed into the following form:

żi,j = zi,j+1 (14)

żi,ρi = Vi(x, δ) = Lρi

f hi(x, δ) +
m∑
j=1

LGjL
ρi−1
f hi(x, δ)uj (15)

yi = Cizi = zi,1 (16)

ξ̇ = α(z, ξ, δ) + β(z, ξ, δ)u (17)

where zi = (zi,1, · · · , zi,ρi)
T

=
(
hi, · · · , Lρi−1

f hi

)T

∈ Kρi×1, α ∈ Kµ×1, β ∈

Kµ×1(δ] with µ = n−
p∑

j=1

ρj and Ci = (1, 0, · · · , 0) ∈ R1×ρi .

Moreover, if ki < νi , one has Vi(x, δ) = Lρi

f hi = Lki

f hi. ⊓⊔

Proof. See [48].

Based on Theorem 1, noting ρi = min {νi, ki} for 1 ≤ i ≤ p where the ki
represent the observability indices and νi stands for the relative degree of yi for (6),
the following equality can be derived:

H(x, δ) = Ψ(x, δ) + Γ (x, δ)u, (18)

with
H(x, δ) =

(
h
(ρ1)
1 , · · · , h(ρp)

p

)T

,

Ψ(x, δ) =
(
Lρ1

f h1, · · · , L
ρp

f hp

)T

,

and

Γ (x, δ) =

LG1
Lρ1−1
f h1 · · · LGm

Lρ1−1
f h1

...
. . .

...
LG1L

ρp−1
f hp · · · LGmL

ρp−1
f hp

 , (19)

where H(x, δ) ∈ Kp×1, Ψ(x, δ) ∈ Kp×1 and Γ (x, δ) ∈ Kp×m(δ]. Assume that
rankK(δ]Γ = m. Since Γ ∈ Kp×m(δ] with m ≤ p, according to Lemma 4 in [29],
there exists a matrix Ξ ∈ Kp×p(δ] such that:

ΞΓ =
[
Γ̄T ,0

]T
, (20)
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where Γ̄ ∈ Km×m(δ] has full rank m. With the compact equation (18), identifiabil-
ity and observability will be analyzed separately in Sections 4 and 5.

4 Identifiability

In order to study the delay identifiability of (6), let us firstly introduce the following
definition of the identifiability of time delay, which is an adaptation of Definition 2
in [1].

Definition 2. For system (6), an equation with delays, containing only the output
and a finite number of its derivatives:

α(h, ḣ . . . , h(k), δ) = 0, k ∈ Z+

is said to be an output delay equation (of order k). Moreover, this equation is
said to be an output delay-identifiable equation2 for (6) if it cannot be written as
α(h, ḣ . . . , h(k), δ) = a(δ]α̃(h, ḣ . . . , h(k)) with a(δ] ∈ K(δ].

As stated in [1], if there exists an output delay-identifiable equation for (6) (i.e.
involving the delay in an essential way), then the delay can be identified for almost
all3 y by numerically finding zeros of such an equation. For this issue, the interested
reader can refer to [3] and the references therein. Thus, delay identification for (6)
boils down to the research of such an output delay equation.

4.1 Dependent outputs over K(δ]

Let us firstly consider the most simple case for identifying the delay for (6), i.e.,
from only the outputs of (6), which is stated in the following result.

Theorem 2. There exists an output delay-identifiable equation (of order 0) α(h, δ)
for (6) if and only if

rankK(δ]
∂h

∂x
< rankK

∂h

∂x
. (21)

⊓⊔

Proof. see [48].

Example 1. Consider the following dynamical system:

2 in [1], this equation is stated to involve the delay in an essential way.
3 i.e., singularity of the delay identification exists for a countable set of y, which case is excluded
in this chapter.
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y1 = x1,
y2 = x1δx1 + x21.

(22)

It can be seen that
∂h

∂x
=

(
1, 0

δx1 + 2x1 + x1δ, 0

)
which yields rankK(δ]

∂h
∂x = 1 and rankK ∂h

∂x = 2. Thus Theorem 2 is satisfied, and
the delay of system (32) can be identified.

In fact, a straightforward calculation gives:

y2 = y1δy1 + y21 ,

which permits to identify the delay δ by applying an algorithm to detect zero-
crossing when varying δ. ⊓⊔

Inequality (21) implies that the outputs of (6) are dependent over K(δ]. Theorem
2 can be seen as a special case of Theorem 2 in [1]. However, as it will be shown in
the next section, this condition is not necessary for the case where the output of (6)
is independent over K(δ].

4.2 Independent outputs over K(δ]

Theorem 2 has analyzed the case where the outputs of (6) are dependent over K(δ].
In the contrary case (independence over K(δ]), the dynamics of system (6) have to
be involved in order to deduce some output delay equations, which might be used
to identify the delay. In the following, it will be firstly given the sufficient condi-
tion for the existence of a delay output equation for system (6) when the output is
independent over K(δ]. Then a necessary and sufficient condition will be provided.
Based on the deduction of (18), we can state the following result.

Theorem 3. There exists an output delay equation for (6), if there exists a non zero

ω =
∑n

c=1

∑p
j=1 qj

∂L
ρj−1

f hj

∂xc
dxc, with qj ∈ K(δ] for 1 ≤ j ≤ p, such that ω ∈

G⊥ ∩Ω and ωf ∈ £, where G⊥ is defined in (13), Ω in (12), and £ in (11). ⊓⊔

Proof. Denote Q = [q1, · · · , qp] as 1 × p vector with qj ∈ K(δ] for 1 ≤ j ≤ p.
Because of the associativity law over K(δ], one has:

QΓ = Q

LG1L
ρ1−1
f h1 · · · LGmL

ρ1−1
f h1

...
. . .

...
LG1L

ρp−1
f hp · · · LGmL

ρp−1
f hp

 = Q


∂L

ρ1−1

f h1

∂x
...

∂L
ρp−1

f hp

∂x

 [G1, · · · , Gm]

Then, according to the definition in (8), one gets:
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QΓ = ω [G1, · · · , Gm] = ωG,

where ω =
∑n

c=1

∑p
j=1 qj

∂L
ρj−1

f hj

∂xc
dxc.

Moreover, one can check that:

ωf =

Q


∂L

ρ1−1
f

h1

∂x
...

∂L
ρp−1

f
hp

∂x


 f = Q




∂L
ρ1−1
f

h1

∂x
...

∂L
ρp−1

f
hp

∂x

 f

 = Q


Lρ1
f h1

...
L
ρp
f hp

 = QΨ.

According to (18), one has:

QH = Q(Ψ + Γu) = ωf + ωGu, (23)

where H =
[
y
(ρ1)
1 , · · · , y(ρp)

p

]T
. Thus, if ω ∈ G⊥ ∩Ω and ωf ∈ £, which implies

there exists Q with entries belonging to £(δ], one has

QΓ = ωG = 0

and
QH = ωf ∈ £.

Finally, one obtains the following relation:

Q(H− Ψ) = 0, (24)

which is exactly the output delay equation, since it contains only the output, its
derivatives and delays. ⊓⊔

If, in addition, the deduced output delay equation (24) is an output delay-
identifiable equation, i.e. containing the delay δ in an essential way, then the de-
lay of (6) can be identified (at least locally) by detecting zero-crossing of (24). The
following will give necessary and sufficient conditions guaranteeing the essential
involvement of δ in (24). But before this, let us define:

Y =
(
h1, . . . , L

ρ1−1
f h1, . . . , hp, . . . , L

ρp−1
f hp

)T

,

and denote by K0 ⊂ K the field of meromorphic functions of x, which will be used
in the following theorem (also involving Ψ defined in (18)).

Theorem 4. The output delay equation (24) is an output delay-identifiable equation
if and only if

rankK(δ]
∂Y
∂x

< rankK
∂{Y, Ψ}
∂x

(25)

or for any element qj of Q ∈ K1×p(δ] , @a(δ] ∈ K(δ] such that

qj = a(δ]q̄j , with q̄j ∈ K0, 1 ≤ j ≤ p (26)
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and

rankK(δ]
∂Y
∂x

= rankK
∂{Y, Ψ}
∂x

. (27)

⊓⊔

Proof. See [48].

Remark 1. It is clear that Theorem 2 is a special case of Theorem 4, since the output
delay-identifiable equation stated in Theorem 2 does not contain any derivative of
the output.

In [1], a condition similar to (25) of Theorem 4 is stated as a necessary and suf-
ficient condition for delay identification for nonlinear systems with known inputs.
However, as we proved above, in the case of unknown inputs, this condition is suf-
ficient, but not necessary.

5 Observability

Similarly to the observability definitions given in [22] and [14] for nonlinear delay-
free systems, it has been given in [28] a definition of observability for nonlinear
time-delay systems. The following gives a more generic definition of observability
in the case of systems with unknown inputs.

Definition 3. System (6) is locally observable if the state x(t) can be expressed as a
function of the output and a finite number of its time derivatives with their backward
and forward shifts. A locally observable system is locally causally observable if its
state can be written as a function of the output and its derivatives with their backward
shifts only. Otherwise, it is locally non-causally observable (and it depends also on
the forward shifts).

In the same way, the following definition is given of systems with unknown in-
puts.

Definition 4. The unknown input u(t) can be locally estimated if it can be written
as a function of the output and a finite number of its time derivatives with back-
ward and forward shifts. The input can be locally causally estimated if u(t) can be
expressed as a function of the output and its time derivatives with backward shifts
only. Otherwise, it can be non causally estimated (and it depends also on the forward
shifts).

Theorem 5. Consider the system (6) with outputs (y1, · · · , yp) and their corre-
sponding (ρ1, · · · , ρp) with ρi = min{ki, νi} where ki and νi are the observability
indices and the relative degree indices, respectively. Consider Φ and Γ̄ defined in
(10) and (20), respectively.

If rankK(δ]Φ = n,, then there exists a change of coordinates ϕ(x, δ) such that
(6) can be transformed into (14-17) with dim ξ = 0.
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Moreover, if the change of coordinates is locally bicausal over K, then the state
x(t) of (6) is locally causally observable; if, in addition, Γ̄ ∈ Km×m(δ] is unimodu-
lar over K(δ], then the unknown input u(t) of (6) can be locally causally estimated.
⊓⊔

Proof. According to Theorem 1, (6) can be transformed into (14-17) by using
the change of coordinates (z, ξ) = ϕ(x, δ). Hence, if rankK(δ]Φ = n, one has∑p

j=1 ρj = n, which implies that (6) can be transformed into (14-17) with dim ξ =

0 and the change of coordinates is given by z = ϕ(x, δ) where z = (zTi , · · · , zTp )T

and zi = (hi, · · · , Lρi−1
f hi)

T .
Moreover, if ϕ(x, δ) ∈ Kn×1 is locally bicausal over K, one can write x as a

function of yi, its derivative and backward shift, which implies state x is locally
causally observable.

Concerning the reconstruction of the unknown inputs, rewrite (18) as follows

Γu = H(x, δ)− Ψ(x, δ) = Υ (x, δ). (28)

Since rankK(δ]Φ = n and x is causally observable, then Υ (x, δ) is a vector of
known meromorphic functions belonging to K.

If Γ̄ ∈ Km×m(δ] is unimodular over K(δ], then there exists a matrix Γ̄−1 ∈
Km×m(δ] such that

[
Γ̄−1 0

]
ΞΓ = Im×m and u =

[
Γ̄−1 0

]
ΞΥ . Since Γ̄−1 ∈

Km×m(δ], Ξ ∈ Kp×p and Υ ∈ Kp×1, then u is also causally observable. ⊓⊔

For the case where the condition rankK(δ]Φ = n in Theorem 5 is not satisfied,
a constructive algorithm was proposed in [2] to solve this problem for nonlinear
systems without delays. In the following we are going to extend this idea to treat the
observation problem for time-delay systems with unknown inputs. The objective is
to generate additional variables from the available measurement and unaffected by
the unknown input such that an extended canonical form similar to (14)-(15) can be
obtained for the estimation of the remaining state ξ.

Theorem 6. Consider the system (6) with outputs y = (y1, · · · , yp)T and the corre-
sponding (ρ1, · · · , ρp) with ρi = min{ki, νi} where ki and νi are the observability
indices and the relative degree indices, respectively. Suppose rankK(δ]Φ < n where
Φ is defined in (10). There exist l new independent outputs over K suitable to the
causal estimation problem if and only if rankKL = l where

L = spanR[δ]{ω ∈ G⊥ ∩Ω | ωf /∈ £} (29)

with f defined in (6), £ defined in (11), Ω defined in (12) and G⊥ defined in (13).
Moreover, the l additional outputs, denoted as ȳi, 1 ≤ i ≤ l, are given by:

ȳi = ωif mod £

where ωi ∈ L. ⊓⊔

Proof. See [49].
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Remark 2. Theorem 6 gives a constructive way to treat the case where rankK(δ]Φ <
n. Once additional new outputs are deduced according to Theorem 6, it enables to
define a new Φ. If rankK(δ]Φ = n, Theorem 5 can then be applied. Otherwise,
if rankK(δ]Φ < n and if Theorem 6 is still valid, then one can still deduce new
outputs for the studied system. Thus a “Check-Extend” procedure is iterated until
rankK(δ]Φ = n is obtained.

5.1 Non-causal observability

The previous results can be extended to the case of non-causal observations of the
state and the unknown inputs, which can be very useful in some applications. For
instance, some proposed delay feedback control methods can be applied for stabi-
lizing nonlinear time-delay systems [40]. Furthermore, other applications, such as
cryptography based on chaotic system, do not require real-time estimation, hence
non-causal observations can still play an important role in those applications.

In order to treat the non-causal case, let us introduce the forward time-shift oper-
ator ∇, similarly to the backward time-shift operator δ defined in Section 2:

∇f(t) = f(t+ τ)

and, for i, j ∈ Z+ :

∇iδjf(t) = δj∇if(t) = f (t− (j − i)τ) .

Following the principle of Section 2, denote by K̄ the field of meromorphic func-
tions of a finite number of variables from {xj(t − iτ), j ∈ [1, n], i ∈ S} where
S = {−s, · · · , 0, · · · , s} is a finite set of relative integers. One has K ⊆ K̄. Denote
by K̄(δ,∇] the set of polynomials of the form:

a(δ,∇] = ārā∇rā + · · ·+ ā1∇
+a0(t) + a1(t)δ + · · ·+ ara(t)δ

ra ,
(30)

with ai(t) and āi(t) belonging to K̄. Keep the usual definition of addition for
K̄(δ,∇] and define the multiplication as follows:

a(δ,∇]b(δ,∇] =
ra∑
i=0

rb∑
j=0

aiδ
ibjδ

i+j +
ra∑
i=0

rb̄∑
j=1

aiδ
ib̄jδ

i∇j

+
rā∑
i=1

rb∑
j=0

āi∇ibj∇iδj +
rā∑
i=1

rb̄∑
j=1

āi∇ib̄j∇i+j .

(31)

It is clear that K(δ] ⊆ K̄(δ,∇] and that the ring K̄(δ,∇] possesses the same prop-
erties as K(δ]. Thus, a module M̄ can be also defined over K̄(δ,∇], as follows:
M̄ = spanK̄(δ,∇]{dξ, ξ ∈ K̄}.

Given the above definitions, Theorem 5 is now extended so to deal with non-
causal observability for nonlinear time-delay systems.



Identifiability and observability of nonlinear time-delay system with unknown inputs 13

Theorem 7. Consider the system (6) with outputs (y1, · · · , yp) and the correspond-
ing (ρ1, · · · , ρp) with ρi = min{ki, νi} where ki and νi are the observability in-
dices and the relative degree indices, respectively. If rankK(δ]Φ = n, where Φ is
defined in (10), then there exists a change of coordinates ϕ(x, δ) such that (6) can
be transformed into (14-17) with dim ξ = 0.

Moreover, if the change of coordinates is locally bicausal over K̄, then the state
x(t) of (6) is at least locally non-causally observable; if, in addition, Γ̄ ∈ Km×m(δ]
is unimodular over K̄(δ,∇], then the unknown input u(t) of (6) can be at least
locally non-causally estimated. ⊓⊔
Proof. See [49].

6 Illustrative example

The following example aims at highlighting the proposed results in the case of delay
identification and causal observability. Consider: ẋ1 = −δx21 + δx4u1, ẋ2 = −x21δx3 + x2 + x1δx4u1,

ẋ3 = x4 − x21δx4u1, ẋ4 = x5 + δx1, ẋ5 = δx1δx3 + u2,
y1 = x1, y2 = x2, y3 = x1δx1 + x3.

(32)

One can check that ν1 = k1 = ν2 = k2 = 1, ν3 = 1, k3 = 3, yielding ρ1 = ρ2 =
ρ3 = 1 and Φ = {dx1, dx2, (δx1 + x1δ)dx1 + dx3}. One has rankK(δ]Φ = 3 < n.

Set G =spanR[δ]{G1, · · · , Gm}, then one has:

G⊥ = spanR[δ]

{
x1dx1 − dx2, x

2
1dx1 + dx3, dx4

}
.

Since rankK(δ]Φ = 3, thus £ = spanR[δ] {x1, x2, x1δx1 + x3} and

Ω = span£(δ] {dx1, dx2, dx3} ,

which yields:

Ω ∩ G⊥ = span£(δ]

{
x1dx1 − dx2, x

2
1dx1 + dx3

}
.

In the following, identifiability and observability will be successively checked
for (32).

Identifiability analysis:
Following Theorem 1, one has:

H = [ẏ1, ẏ2, ẏ3]
T
,

Ψ =
[
−δx21,−x21δx3 + x2, x4

]T
,

and
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Γ =

 δx4, 0
x1δx4, 0
−x21δx4, 0

 .
Thus, by choosing Q = [x1,−1, 0], a non zero one-form can be found, such as:

ω = x1dx1 − dx2 ∈ Ω ∩ G⊥,

satisfying
ωf = −x1δx21 + x21δx3 − x2 ∈ £.

According to Theorem 3, the following equation is an output delay equation:

Q (H− Ψ) = 0, (33)

since it contains only the output, its derivatives and delays.
Since Y = (x1, x2, x1δx1 + x3)

T , one has:

∂Y
∂x

=

 1, 0, 0, 0, 0
0, 1, 0, 0, 0

δx1 + x1δ, 0, 1, 0, 0

 ,

and
∂Ψ

∂x
=

 −2δx1δ, 0, 0, 0, 0
−2x1δx3, 1, −x21δ, 0, 0

0, 0, 0, 1, 0

 .

Thus, one obtains:

rankK(δ]
∂Y
∂x

= 3 < rankK
∂{Y, Ψ}
∂x

= 6.

Theorem 4 is satisfied and (33) involves δ in an essential way. A straightforward
calculation gives:

y1ẏ1 − ẏ2 = −y1δy21 + y21δy3 − y21δy1δ
2y1 − y2,

which permits to identify the delay.

Observability analysis:
From the definition of L in (29), one can check that rankKL = 1, which gives

the one-form ω = x21dx1+dx3, satisfying ω ∈ Ω∩G⊥ and ωf = −x21δx21+x4 /∈ £.
Thus, according to Theorem 6, a new output ȳ1 = h4 is given by:

ȳ1 = h4 = ωf mod £ = x4 = y21 ẏ1 + ẏ3 + y21δy
2
1 . (34)

For the new output ȳ1, one has ki = νi = 1 for 1 ≤ i ≤ 3, k4 = ν4 = 2, thus
ρi = 1 for 1 ≤ i ≤ 3 and ρ4 = 2. Finally, one obtains the new Φ as follows:
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Φ = {dx1, dx2, (δx1 + x1δ)dx1 + dx3, dx4, δdx1 + dx5}.

It can be checked that rankK(δ]Φ = 5 = n, and the new £ is:

£ = spanR[δ]{x1, x2, x1δx1 + x3, x4, x5 + δx1}.

This gives the following change of coordinates:

z = ϕ(x, δ) = (x1, x2, x1δx1 + x3, x4, x5 + δx1)
T
.

It is easy to check that it is bicausal over K(δ], since:

x = ϕ−1 = (z1, z2, z3 − z1δz1, z4, z5 − δz1)
T
.

When t ≥ τ , one gets the following estimations of states:{
x1 = y1, x2 = y2, x3 = y3 − y1δy1,
x4 = ȳ1, x5 = −δy1 + ˙̄y1,

with ȳ1 defined in (34).
Moreover, the matrix Γ with the new output ȳ1 can be obtained as follows:

Γ =


δx4, 0
x1δx4, 0
x21δx4, 0

0, 1

 ,

with rankK(δ]Γ = 2. One can find matrices Ξ =


1 0 0 0
0 0 0 1
x1 −1 0 0
x21 0 1 0

, Γ̄ =

(
δx4 0
0 1

)
,

and Γ̄−1 =

(
1

δx4
0

0 1

)
such that

[
Γ̄−1 0

]
ΞΓ = I2×2. Consequently, according to

Theorem 5, u1 and u2 can be causally estimated. When t ≥ 3τ , a straightforward
computation yields the following estimates for the unknown inputs:{

u1 =
ẏ1+δy2

1

δȳ1
,

u2 = ¨̄y1 − δẏ1 − δy1δy3 + δy21δ
2y1.

7 Conclusion

This chapter has studied identifiability and observability for nonlinear time-delay
systems with unknown inputs. Concerning the identification of the delay, dependent
and independent outputs over the non-commutative rings have been analyzed. Con-
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cerning the observability, necessary and sufficient conditions have been deduced
for both causal and non-causal cases. The causal and non-causal estimations of un-
known inputs of the studied systems have been analyzed as well.
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