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Construction of Quasi-Cyclic Product Codes

Alexander Zeh
Computer Science Department
Technion—Israel Institute of Technology
Haifa, Israel
alex@codingtheory.eu

Abstract—Linear quasi-cyclic product codes over finite fields
are investigated. Given the generating set in the form of a
reduced Grobner basis of a quasi-cyclic component code and
the generator polynomial of a second cyclic component code, an
explicit expression of the basis of the generating set of the quasi-
cyclic product code is given. Furthermore, the reduced Grobner
basis of a one-level quasi-cyclic product code is derived.

Index Terms—Cyclic code, Grobner basis, module minimiza-
tion, product code, quasi-cyclic code, submodule

I. INTRODUCTION

A linear block code of length ¢m over a finite field F,
is a quasi-cyclic code if every cyclic shift of a codeword
by ¢ positions, for some integer ¢ between one and {m,
results in another codeword. Quasi-cyclic codes are a natural
generalization of cyclic codes (where ¢/ = 1), and have a
closely linked algebraic structure. In contrast to cyclic codes,
quasi-cyclic codes are known to be asymptotically good (see
Chen—Peterson—-Weldon [1]). Several such codes have been
discovered with the highest minimum distance for a given
length and dimension (see Gulliver-Bhargava [2] as well as
Chen’s and Grassl’s databases [3], [4]). Several good LDPC
codes are quasi-cyclic (see e.g. [5]) and the connection to
convolutional codes was investigated among others in [6]-[8].

Recent papers of Barbier et al [9], [10], Lally—
Fitzpatrick [8], [11], [12], Ling-Solé [13]-[15], Semenov—
Trifonov [16], Giineri-Ozbudak [17] and ours [18] discuss
different aspects of the algebraic structure of quasi-cyclic
codes including lower bounds on the minimum Hamming
distance and efficient decoding algorithms.

The focus of this paper is on a simple method to combine
two given quasi-cyclic codes into a product code. More
specifically, we give a description of a quasi-cyclic product
code when one component code is quasi-cyclic and the second
one is cyclic.

The work of Wasan [19] first considers quasi-cyclic product
codes while investigating the mathematical properties of the
wider class of quasi-abelian codes. Some more results were
published in a short note by Wasan and Dass [20]. Koshy pro-
posed a so-called “circle” quasi-cyclic product codes in [21].

Our work considers quasi-cyclic product codes that gener-
alize the results of Burton—Weldon [22] and Lin—Weldon [23]
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(see also [24, Chapter 18]) based on the reduced Grobner basis
representation of Lally—Fitzpatrick [11] of the quasi-cyclic
component code. We derive a representation of the generating
set of a quasi-cyclic product code, where one component code
is quasi-cyclic and the other is cyclic (in Thm. 7) and we give a
reduced Grobner basis for the special class of one-level quasi-
cyclic product codes (in Thm. 8).

The paper is structured as follows. In Section II, we give
necessary preliminaries on quasi-cyclic codes over finite fields.
We outline relevant basics of the reduced Grobner basis rep-
resentation of Lally—Fitzpatrick [11]. Furthermore, the special
class of r-level quasi-cyclic codes is defined in this section.
Section III contains the main result on quasi-cyclic product
codes, where the row-code is quasi-cyclic and the column-
code is cyclic. Moreover, an explicit expression of the basis
of a 1-level quasi-cyclic product code is derived in Section IIL.
For illustration, we explicitly give an example of a binary 2-
quasi-cyclic product code in Section IV. Section V concludes
this paper.

II. PRELIMINARIES

Let F, denote the finite field of order ¢ and Fy[X] the
polynomial ring over IF, with indeterminate X. Let a,b with
b > a be two positive integers and denote by [a, b) the set of
integers {a,a + 1,...,b — 1} and by [b) = [0,b). A vector
of length n is denoted by a lowercase bold letter as v =
(vo v1 -+ v,—1) and an m X n matrix is denoted by a capital
bold letter as M = (mi’j)gg[[;)).

A linear [¢ - m,k,d]; code C of length ¢m, dimension k
and minimum Hamming distance d over F, is ¢-quasi-cyclic
if every cyclic shift by ¢ of a codeword is again a codeword
of C, more explicitly if:

Ct—1,m—-1) €C

(co,0 - €Ce—1,0 Co1cCo—11

=
€0,0 """ Ct—1,0

(CO,'m—l e C—1,m—1 CZ—I,m—Q) eC.

We can represent a codeword of an [¢-m, k, d], ¢-quasi-cyclic
code as ¢(X) = (co(X) c1(X) -+ c-1(X)) € F [X]5
where

=

m

Z cij X7, Yiell). (1)

de
=0

L

Then, the defining property of C is that each component ¢;(X)
of ¢(X) is closed under multiplication by X and reduction
modulo X — 1.



Lemma 1. Let (co(X) ¢1(X) -+ ¢co—1(X)) be a codeword of
an L-quasi-cyclic code C of length m{, where the components
are defined as in (1). Then a codeword in C represented as
one univariate polynomial of degree smaller than m/ is

-1
o(X) =) e(XHX". 2)
i=0
Proof. Substitute (1) into (2):
-1 —1m—1
oX) = Zci (XHX ZZC X9
=0 1=0 j=0
O

Lally and Fitzpatrick [11], [25] showed that this enables
us to see a quasi-cyclic code as an R-submodule of the
algebra RY, where R = F,[X]/(X™ — 1). The code C is
the image of an FF,[X]-submodule C of F,[X]¢ containing
K = ((X™ —1)ej,j € [¢)) (where e, is the standard basis
vector with one in position j and zero elsewhere) under the
natural homomorphism

¢: F,[X]" — R
(co(X) -+ cra (X)) = (co(X) +(X7-1) -
ce-1(X) + (X™-1)).
It has a generating set of the form {a;,¢ € [2),(X™—1)e;,j €
[0)}, where a; € Fo[X]* and z < ¢ (see e.g. [26, Chapter 5]

for further information). Therefore, its generating set can be
represented as a matrix with entries in F [X]:

ao,0(X) apa(X) -+ age—1(X)
a10(X) a1 (X) - are—1(X)
a/zfl:O(X) az71,'1(X) .. azfl,é;l(X)

T 3)

0

Every matrix M(X) as in (3) of the preimage C can be
transformed into a reduced Grobner basis (RGB) with respect
to the position-over-term order (POT) in Fy[X 1¢ (see [11],
[25]). This basis can be represented in the form of an upp_er-
triangular ¢ x ¢ matrix with entries in F,[X] as follows:

XxXm—1 O

Xm—1

90.0(X)  go1(X) go,e-1(X)
g1(X) - g1e-1(X)
G(X) = 0 y : . @
goe—1,0-1(X)
where the following conditions must be fulfilled:
1) gi;(X) =0, VO <j<i</d,
2) degg] l( ) < deggi,i(X)a v.] < Z7Z € [g)’
3) gia(X) | (X" -1),  Viell),
4) if g;;(X) =X"—1 then
gi;(X) =0, Vieli+1,4).

The rows of G(X) with g;;(X) # X™ — 1 (i.e., the rows
that do not map to zero under ¢) are called the reduced
generating set of the quasi-cyclic code C. A codeword of
C can be represented as ¢(X) = i(X)G(X) and it follows
that k = m{ — Zf;é deg g; ;(X). Let us recall the following
definition (see also [25, Thm. 3.2]).

Definition 2 (r-level Quasi-Cyclic Code). We call an (-quasi-

cyclic code C of length {m an r-level quasi-cyclic code if there

is an index r € [{) for which the RGB/POT matrix as defined

in (4) is such that gr_1,-1(X) # X™ — 1 and g,,(X) =
c=gem1-1(X)=X" -1

We recall [25, Corollary 3.3] for the case of a 1-level quasi-
cyclic code in the following.

Corollary 3 (1-level Quasi-Cyclic Code). The generator ma-
trix in RGB/POT form of a 1-level (-quasi-cyclic code C of
length ¢m is:

G(X) = (9(X) g(X)f1(X)
where g(X)|(X™ — 1) and f1(X),...

9(X)fi1 (X)),
s fe1(X) € Fo[X].
To describe quasi-cyclic codes explicitly, we need to recall
the following facts of cyclic codes. A g-cyclotomic coset M,ﬁ?
is defined as: M\ < {igy mod m|j € [a)}, where a is
the smallest positive integer such that ¢1¢® = ¢ mod m. The
minimal polynomial in F,[X] of the element o’ € F,- is

given by
H (X —af).

jeMms?

&)

The following fact is used in Section III.

Fact 4. Let four nonzero integers y, a,, m be such that
y=al mod ml

holds. Then ¢ |y and y/¢ = a mod m.

III. QuasI-CycLic PrRobDuUCT CODE

Throughout this section we consider a linear product code
A ® B, where A is the row-code and B the column-code,
respectively. Furthermore, w.1.o.g. let Abe an [(-m 4, k4, dalg
{-quasi-cyclic code with reduced Grobner basis in POT form
as defined in (4):

gél,o(X) 96:,1()() 962271()()
X X

GA(X): 091,1( ) 91,15—:1( ) )
92471,471()()

and let B be an [mp,kp,dp], cyclic code with generator
polynomial g (X) of degree mp — kp.

Throughout the paper, we assume that gcd(dma, mp) =1
and we furthermore assume that the two integers a and b are
such that

alma +bmp = 1.

)

We recall the lemma of Wasan [19], that generalizes the result
of Burton—Weldon [22, Theorem I] for cyclic product codes to



the case of an /-quasi-cyclic product code of an /-quasi-cyclic

code A and a cyclic code B. A codeword of A® B represented

as univariate polynomial ¢(X) can then be obtained from the
. . C\J€lma) .

matrix representation (mi;);c(,, )" as follows:

mp—14ma—1

o(X) = Z Z m,;7jX“(i’j) mod Xmame _ 1 (8)
=0 7=0

where

(i, g) def ialmal + jbmp mod fmamp. 9)

Lemma 5 (Mapping to a Univariate Polynomial [19]). Let A
be an (-quasi-cyclic code of length {m 4 and let B be a cyclic
code of length mp. The product code A ® B is an (-quasi-
cyclic code of length fmamp if gcd(fma, mp) = 1.
Proof. Let (m; ;)] g[[f:r;f)‘) be a codeword of the product code
A ® B, where each row is a codeword of A and each column
is a codeword of B. The entry m; ; is the coefficient c,,(; ;)
of the codeword Y, c;X* as in (8). In order to prove that
A® B is {-quasi-cyclic it is sufficient to show that a shift by ¢
positions of a codeword serialized to a univariate polynomial
by (9) of A® B is again a codeword of A ® B.

A shift by £ in each row and a shift by one each column
clearly gives a codeword in A® B, because A is £-quasi-cyclic
and B is cyclic. With

i +1,5+0)

=(i+ Dalmal + (j+ bmp mod ¢mamp
= ialmal + jbmp + L(abma + bmp)
= u(i,j) + ¢ mod fmamp,

mod fmamp

we obtain an /-quasi-cyclic shift of the univariate codeword
obtained by (8) and (9). O]

Instead of representing a codeword of A ® B as one
univariate polynomial as in (8), we want to represent it as
¢ univariate polynomials as defined in (1).

Lemma 6 (Mapping to ¢ Univariate Polynomials). Let A be an
{-quasi-cyclic code of length {m 4 and let B be a cyclic code
of length mp. Let the matrix (mm)gg[[fn";’;) be a codeword
of A ® B, where each row is in A and each column is in
B. The { univariate polynomials of the corresponding code-
word (co(X) ¢1(X) -+ cp—1(X)), where each component is
defined as in (1), are given by:

mp—1ma—1

cp(X) = Xizama) Z Z mingJthﬁ(i’j)

i=0  j=0 (10)
mod X™A™E — 1. Vh e [(),
where
(i,7) =ialma + jbmp mod mamp. (11)

Proof. From Fact 4 we have for the exponents in (10):

(i, 7) + h(—ama) =ialma + jbmp mod mamp

&
C(7i, §) + h(—am.a))

= L(ialma + jbmp + h(—amy)) mod mamp. (12)

With —almy = bmp — 1, we can rewrite (12):
K(ﬁ(%]) + h(_amA)) = Zﬁ(laj) + Eh(_amA)
= (7i(i, §) + hbmp — h,
and this gives with 7(, §) as in (11) and p(4,j) as in (9):
(i, j) + hbmp — h
= {l(iafmy + jbmp) + hbmp — h
= liabma + (j¢ + h)bmp —h mod ¢mamp

= u(i, 50+ h) — h. (13)
Inserting (13) in (2) of Lemma 1 leads to:
-1
o(X) =) en(Xx"
h=0
-1 mB—l mA—l
SO0 S SETERENELT
h=0 i=0 j=0
mp—14fma—1
= D D mXrD, (14)
i=0  j=0
which equals (8). 0
The mapping 7(i,j) from (11) of the ¢ subma-
Jjelma) j€[ma jelma)

trices (mi’jé)ie[mg) s (mi,jprl)ie[mB), ey (mi’j[+g,1)ie[m3)
to the ¢ univariate polynomials co(X), c1(X),...,co—1(X) is
the same as the one used to map the codeword of a cyclic
product code from its matrix representation to a polynomial
representation (see [22, Thm. 1]).

In Fig. I, we illustrate the p(i,j) as in (9) for a = 1,
£ =2 my =17 and b = —11, mp = 3. Subfigure 1(a)
shows the values of p(7, 7). The two submatrices (m;_j2) and
(my jo+1) fori € [3) and j € [17) are shown in Subfigure 1(b).
Subfigure 1(c) contains the coefficients of the two univariate
polynomials ¢g(X) and ¢;(X), where (co(X) ¢1(X)) is a
codeword of the 2-quasi-cyclic product code of length 102.

The following theorem gives the basis representation of a
quasi-cyclic product code, where the row-code is quasi-cyclic
and the column-code is cyclic.

Theorem 7 (Quasi-Cyclic Product Code). Let A be an
[0 -ma,ka,dalq C-quasi-cyclic code with generator matrix
GA(X) € F [ X]*¢ as in (6) and let B be an [mp, kp,dg],
cyclic code with generator polynomial gB(X) € F,[X].

Then the (-quasi-cyclic product code ARB has a generating
matrix of the following (unreduced) form:

)= (i)
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(a) The 3 x (2-17) codeword matrix (m;_ ;) of the 2-quasi-cyclic product code A ® B. Each entry contains the index of the coefficient

¢; of the univariate polynomial ¢(X) = 3,20 ¢; X' € A® B.

. Sike i€
(b) The two submatrices (miyzj)ng) [

DEOE n () [z o e w]w]w )

mana

T L

(c) The left submatrix contains the coefficients cg ; of the univariate polynomials cg (

Figure 1.

representation. The product code A ® B is 2-quasi-cyclic. The row-code A is 2-quasi-cyclic and has length ¢m 4 =

and (m;, 27+1)ze[3)) with entries that are the coefficients of co(X?) and Xc1(X?2).

Eanas

<7
Beaanen

X)) (the right one contains ¢ ; of ¢1(X), respectively).

Senen

Ilustration of the mapping p(,5) (as defined in (9)) from a codeword of a quasi-cyclic product code represented as matrix to a polynomial

2 - 17 and the column-code B is

cyclic and has length mp = 3 (Subfigure 1(a), here a = 1 and b = —11). The mapping (¢, j) (as in (11)) to two univariate polynomials is illustrated in

Subfigure 1(b) and Subfigure 1(c).

where
G'O(X): B(XalmA)_
géo(Xme) gél(Xme) géé—l(Xme)
giq,l(Xme) gfl,e—l(Xme)

924—1,2—1 (Xme)
-diag (1, X—oma, X ~2ama X~ ((=Dama
(16)

and

GHX) = (Xmams _ 1)y, (17)

where 1y is the ¢ x { identity matrix.

Proof. We first give an explicit expression for each com-
ponent of a codeword (co(X) c1(X) c—1(X)) in
A ® B depending on the components of a codeword
(ao(X) a1(X) -+ ap—1(X)) of the row-code A and depend-
ing the column-code B based on the expression of Lemma 6.
Let the mp X ¢m4 matrix (m; ;) be a codeword of the /-
quasi-cyclic product code A ® B and let the polynomial

ma—1
def i .
a; n(X) = Z mi je+nX’, Vhe[l),ie[mp) (18)
=0
denote  the hth  component of a  codeword

(ai70(X) ai,l(X) ai7(_1(X)) in A in the ith row
of the matrix (m; ;). Denote a codeword b;(X) of B in the
jth column by

mel

> mi X V)€ [tma), (19)

respectively. From (10), we have for the hth component of a
codeword of the product code A ® B:

mp—1ma—1

cn(X) = X h(—ama) Z Z mz‘,ju-hXﬁ(i’j)
i=0  j=0
mod X™MA™E — 1

(20)
Vh e [0),

and with 7i(i,j) as in (11) of Lemma 6 we can write (20)
explicitly:

mp—1mag—1

= Xh(fam,q) E § m; je+hXiaZmA+jme
i=0 =0
mod X™MAa™ME — 1,

Ch(X

~—

Vh e [0). 21
We define a shifted component:
(X)) = ep(X)XPama) mod X™mAamB_1 Vh e [0). (22)

Since

mp—1ma—1

E E mi,j2+hXZaemA+meB

=0 j5=0
mp—1 ma—1
— § : XmémA § : mi,j€+hX]me
=0 7=0
mp—1
= Y X“mag,(XPE), Vhe o),
=0

and from (22) and in terms of the components of the row-code
as defined in (18), we obtain:

cn(X) = qu(X)(XTA™mE
mel
D xiemag, , (XPE), Vhe [0),
=0

— 1)+
(23)



for some ¢,(X) € Fy[X]. Therefore ¢;,(X) is a multiple
of S e(X)gh, (XPmE) for some ¢(X) € Fg[X]. A
codeword b;(X) in B in the jth column of (m; ;) is a multiple
of gZ(X) and we obtain:

mp—14ma—1
Z Z miijiaZmAJrjme
i=0  j=0
Ima—1 mp—1

E jb § : ial
_ X ibme mz_,ij ma
j=0 =0

Ima—1
_ Z ijmB bj(XaémA),
j=0
and therefore ¢, (X) is a multiple of ¢Z(X%™4) modulo
Xmame 1,

Similar to the proof of [22, Thm. III], it can be shown that
every shifted component ¢, (X) is a multiple of the product of
gP(Xma) and 31 eigfh, (XP™2) modulo (X™A™2 — 1),
Therefore, we can represent each codeword in A ® B as:

(Co(X) Cl(X) s Cg_l(X))
= (io(X) i1(X) -+ ip-1(X))G(X),
where G(X) is as in (15). O

The following theorem gives the reduced Grobner basis (as
defined in (4)) representation of the quasi-cyclic product code
from Thm. 7, where the row-code is a 1-level quasi-cyclic
code.

Theorem 8 (1-Level Quasi-Cyclic Product Code). Let A be
an [0-ma, ka,dalq I-level (-quasi-cyclic code with generator
matrix in RGB/POT form:

G*(X)

= (gél,o(X) 95‘,1()() 964,271()())

= (¢M(X) M (X)FA(X) g (X fL(X) @4
as shown in Corollary 3. Let B be an [mp,kp,dp], cyclic
code with generator polynomial gP(X) € F,[X].

Then a generator matrix of the 1-level £-quasi-cyclic prod-
uct code in RGB/POT form is:

G(X) =(g(X) g(X)fi'(x"") g(X) [, (X""E))
-diag (1, X ~@ma X ~2ema X~ (=Dama)
where
g(X) = ged (XmAmB — 1,gA(Xme)gB(X“emA)). (25)
Proof. Let two polynomials ug(X),vo(X) € F,[X] be such
that:
g(X) _ uO(X)gA(Xme)gB(XaémA)
+ vp(X)(X™Aa™E — 1),
We show now how to reduce the basis representa-
tion to the RGB/POT form. We denote a new Row
i by R[i]'. For ease of notation, we omit the term

diag(1, X ~@ma X —2ema  x—(=Dama) and denote by
Y = X5 and Z = X4,

(26)

We write the basis of the submodule in unreduced form (as
in (15)):
9*Mg®(2) (V) N(Y)gP(2)

Xmams 1

Xmamp _ 27

0

— R[0)" = uo(X)R[0] + vo(X)R[1] + vo(X) fi* (Y)R[2]
+--- 4+ UO(X)ffA—l(Y)R[é]

9(X) 9(X) (Y
9" ¥V)g?(2) (V) f{(YV)g"(2)
Xmame _ | mams 1 , (28)

0

where the ith entry in new row O was obtained using:
uo(X)g™ (Y) [ (Y)g"(Z) + o (X) [ (Y) (X ™42 — 1)
= f{1(Y) (uo(X)g (Y)g" (2)
+ v (X)(XmAamE — 1)),
and with (26) we obtain from (29)

flA(Y)(“‘J(X)gA(Y)gB(Z) + Uo(X)(XmAmB _ 1))
= [ (Y)g(X).

Clearly, g(X) divides g4 (Y)g®(Z) and it is easy to check that
Row 1 of the matrix in (28) can be obtained from Row 0 by
multiplying by ¢*(Y)g®(Z)/g(X). Therefore, we can omit
the linearly dependent Row 1 in (28) and write the reduced

basis as:

(9(X) g(X)fL(XPme)),

where we omitted the matrix
diag(1, X —ema X —2ema  x—(=Dama) for the first row
during the proof, but it will only influence the row-operations
by a factor. O

(29)

g(X) fH(XPme)

Note that (25) is exactly the generator polynomial of a cyclic
product code. A 1-level ¢-quasi-cyclic product has rate greater
than (¢ — 1)/¢ and is therefore of high practical relevance.
The explicit RGB/POT form of the 1-level quasi-cyclic product
code as in Thm. 8 allows statements on the minimum distance
and to develop decoding algorithms.

IV. EXAMPLE

We consider a 2-quasi-cyclic product code with the same
parameters as the one illustrated in Fig. IIL. In this section we
investigate a more explicit example to be able to calculate the
basis as given in Thm. 8.

Let A be a binary 2-quasi-cyclic code of length {m4 =
217 = 34 and let B be a cyclic code of length mp = 3.
We have X17— 1 = m{"" (X)m{™ (X)mi!™ (X), where the
minimal polynomials are as defined in (5). Let the generator



matrix of A in RGB/POT form as in (4) be GA(X) =
(9600(X)  g541(X)) where

17
g0(X) = m{'" (X)
=X+ X"+ XO 4 X X2+ X 41,
17
gi 1 (X) = m{"(X) -mo(X)? - (X° + X2+ 1)

:)(14_"_)(13_|_)(12_"_)(11_’_)(8_’_17
and A is a [17-2,9,11]5 2-quasi-cyclic code. Let « be a 17th
root of unity in Fos [ X] = Fo[X]/(X® + X4+ X3 4+ X2 4+ 1).
Let gB(X) = mé3> (X) = X + 1 be the generator polynomial
of the [3,2,2]5 cyclic code B and let a = 1 and b = —11 be
such that (7) holds. We have
51 51 51 51 51
= mg’ (X)my™ (Omg™ (X)m? (X)ymg™ (X)
51 51 51
miy? (XOmi7? (X)mis" (X).

X5 -1

According to Thm. 8, we calculate
FAXTI9) = f (X19) = mo(X1%)P - (X 4 X0 41)
= (X +1)° (X X0 4 1)
:X108+X54+X18+1
=X+ X0+ X*+1 mod (X +1),
G(X) =

and we obtain the generator matrix

(g0,0(X) go,1(X)) of A® B, where:
51 51 51 51 51
g0.0(X) = mF (X)m{PV (X)mP (X)mP (X)mP (X)
— X33 +X32 +X30 +X27+X25 +X23 +X20
+ X X4 X104 X1 X X0 X
+ X0+ X3+ X +1.
With Thm. 8, we obtain:

90.1(X) = a (X3 go 0(X)
= XSO +X48 +)(45 +X43 +)(41 +X39 +){36
—|—X34 +X32 —|—X29 —|—X27 —|—X26 —|—X25 +X23
+X22 +X21 +X19 +X18 +X17+X16 +X15
+ XM X2 x4 X0 x4 XT 4 XO
+X*4+ X mod (X° 41).

V. CONCLUSION AND OUTLOOK

Based on the RGB/POT representation of an ¢-quasi-cyclic
code A and the generator polynomial of a cyclic code B, a
basis representation of the ¢-quasi-cyclic product code A ® B
was proven. The reduced basis representation of the special
case of a 1-generator quasi-cyclic product code was derived.

The general case of the basis representation of an ¢4¢p-
quasi cyclic product code from an ¢ -quasi-cyclic code A
and an /p-quasi-cyclic code B as well as the reduction of the
basis remains an open future work. Furthermore, a technique
to bound the minimum distance of a given quasi-cyclic code
by embedding it into a product code similar to [27] seems to
be realizable.
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