Adaptive Statistical Utterance Phonetization for French

Gwénolé Lecorvé 1 Damien Lolive 1
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : Traditional utterance phonetization methods concatenate pronunciations of uncontextualized constituent words. This approach is too weak for some languages, like French, where transitions between words imply pronunciation modifications. Moreover, it makes it difficult to consider global pronunciation strategies, for instance to model a specific speaker or a specific accent. To overcome these problems, this paper presents a new original phonetization approach for French to generate pronunciation variants of utterances. This approach offers a statistical and highly adaptive framework by relying on conditional random fields and weighted finite state transducers. The approach is evaluated on a corpus of isolated words and a corpus of spoken utterances.
Type de document :
Communication dans un congrès
Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. 5 p., 2 columns
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01109757
Contributeur : Gwénolé Lecorvé <>
Soumis le : vendredi 3 juillet 2015 - 10:59:00
Dernière modification le : lundi 16 juillet 2018 - 16:40:04
Document(s) archivé(s) le : mardi 25 avril 2017 - 22:38:09

Fichier

phonetization.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01109757, version 1

Citation

Gwénolé Lecorvé, Damien Lolive. Adaptive Statistical Utterance Phonetization for French. Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. 5 p., 2 columns. 〈hal-01109757〉

Partager

Métriques

Consultations de la notice

498

Téléchargements de fichiers

94