
HAL Id: hal-01109881
https://inria.hal.science/hal-01109881

Submitted on 27 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adjoints by Automatic Differentiation
Laurent Hascoët

To cite this version:
Laurent Hascoët. Adjoints by Automatic Differentiation. Advanced Data Assimilation for Geosciences,
Oxford University Press, 2014, 978-0-19-872384-4. �hal-01109881�

https://inria.hal.science/hal-01109881
https://hal.archives-ouvertes.fr

Adjoints by Automatic Differentiation

L. Hascoët

INRIA

Contents

0.1 Introduction 1
0.2 Elements of AD 1
0.3 Application of adjoint AD to Data Assimilation 9
0.4 Improving the adjoint AD code 12
0.5 AD tools 14
0.6 Conclusion 15

References 18

0.1 Introduction

Computing accurate derivatives of a numerical model is a crucial task in many do-
mains of Scientific Computing, and in particular for gradient-based minimization. We
present Automatic Differentiation1 (AD), a software technique to obtain derivatives
of functions provided as programs (Griewank and Walther, 2008; Corliss et al., 2001;
Bücker et al., 2005; Bischof et al., 2008). Given a numerical model F : IRn → IRm

implemented as a program P, AD adapts or transforms P into a new program that
computes derivatives of F .

In the context of this summer school on Data Assimilation, the interest of Auto-
matic Differentiation lies mainly with its so-called adjoint mode, that computes gra-
dients efficiently. These notes focus on the aspects of AD related to the adjoint mode.
In particular, an efficient adjoint mode will probably require AD by source program
transformation. These notes intend to remain at the level of the principles of adjoint
AD and of the software techniques that make it efficient. They are not intended to
advocate one particular AD tool, although the AD tool that we are developing (Tape-
nade) is used at places for illustration.

Section 0.2 presents the principles of AD leading to its adjoint mode. Section 0.3
briefly presents the mathematical adjoint approach to compute gradients, underlining
similarities and differences with the AD adjoint approach. It presents two application
cases in Oceanography. Section 0.4 focuses on the software techniques from compiler
theory (Aho et al., 1986) that modern AD tools use to produce better adjoint code.
Section 0.5 presents and contrasts the existing AD tools that are most likely to be
useful for Data Assimilation.

0.2 Elements of AD

Given a computer algorithm P (identified with a piece of program) that implements a
function F : X ∈ IRn 7→ Y ∈ IRm, AD builds a new algorithm (a program piece) P′ that
computes derivatives of F by computing the analytical derivative of each elementary
mathematical operation in P. The fundamental observation is that any run-time trace
of the algorithm P

{I1; I2; . . . Ip; }

computes the composition of elementary mathematical functions, one per instruction
Ik,

fp ◦ fp−1 ◦ · · · ◦ f1 ,

which we can identify to F . This is of course assuming that P is a correct implemen-
tation of F , i.e. the discretization and approximation employed in P are sufficiently
accurate and do not introduce non-differentiability.

Let us clarify the correspondence between the mathematical variables (X, Y . . .)
and the program variables found in P. As imperative programs classically overwrite

1A warning for French-speaking readers. In these notes:

AD = Automatic Differentiation 6= Assimilation de Données

DA = Data Assimilation 6= Différentiation Automatique

✷ Contents

their variables to save memory space, let us call V the collection of all the program
variables of P and consider that each instruction Ik (partly) overwrites V. With these
conventions (this run-time trace of) P is indeed the program:

original program P

Initialize V with X
(I1) V := f1(V)

...
(Ik) V := fk(V)

...
(Ip) V := fp(V)

Retrieve Y from V

At any given location in P, the program variables V correspond to one particular
set, or vector, of mathematical variables. We will call this vector Xk for the location
between instructions Ik and Ik+1. The set V is actually large enough to accomodate X,
Y , or each successive Xk. At each location, V may thus “contain” more than the Xk

but only the Xk play a role in the semantics of the program. The program instruction
V := fk(V) actually means taking from V the mathematical variables Xk−1 before the
instruction and applying fk(Xk−1) to obtain Xk. After Ik, V corresponds to Xk. The
Initialize with and Retrieve from instructions in the program sketch define X0 = X
and identify Y to Xp.

Since we identify F with a composition of functions, the chain rule of calculus gives
the first-order full derivative, i.e. the Jacobian:

F ′(X) = f ′

p(Xp−1) × f ′

p−1(Xp−2) × . . . × f ′

1(X0) .

It is thus possible in theory to adapt algorithm P so that it computes F ′(X) in addition
to F (X). This can be done simply by extending instruction I1 that computes X1 =
f1(X0) with a piece of code that computes J1 = f ′

1(X0)×Id, and by extending likewise
every instruction Ik by a piece of code that computes Jk = f ′

k(Xk−1) × Jk−1. This
transformation is local to each instruction Ik. It is not limited to straight-line code
and can be applied to any program P with control. The extended algorithm P′ just
reproduces the control decisions taken by P. Of course, derivatives are valid only if the
control does not change in an open neighborhood around X. Otherwise, the risk is that
AD may return a derivative in cases where F is actually non-differentiable. Keeping
this caveat in mind, the adapted algorithm can return Jp, the complete Jacobian
F ′(X). However, the Jk are matrices whose height and width are both of the order of
the number of variables in the original P, and may require too much memory space.

To work around this difficulty, we observe that the derivative object that is needed
for the target application is seldom the full Jacobian matrix, but rather one of the two
projections

F ′(X)× Ẋ or Y × F ′(X)

where Ẋ is some vector in IRn whereas Y is some row-vector in IRm. Moreover when
F ′(X) is needed explicitly, it is very often sparse and can therefore be retrieved from a
relatively small number of the above projections. This motivates the so-called tangent
and adjoint modes of AD:

Elements of AD ✸

• Tangent mode: evaluate Ẏ = F ′(X)× Ẋ, the directional derivative of F along
direction Ẋ. It expands as

Ẏ = f ′

p(Xp−1) × f ′

p−1(Xp−2) × . . . × f ′

1(X0) × Ẋ . (0.1)

Since Ẋ is a vector, this formula is most efficiently evaluated from right to left
i.e., using mathematical variables:

X0 = X

Ẋ0 = Ẋ

X1 = f1(X0)

Ẋ1 = f ′

1(X0)× Ẋ0

. . .

Xk = fk(Xk−1)

Ẋk = f ′

k(Xk−1)× Ẋk−1

. . .

Xp = fp(Xp−1)

Ẋp = f ′

p(Xp−1)× Ẋp−1

Y = Xp

Ẏ = Ẋp

An algorithm Ṗ for this evaluation is relatively easy to construct, as the derivative
instructions follow the order of the original instructions. Keeping the original
program variables V to hold the successive Xk, and introducing a set of new
program variables V̇ of the same size as V to hold the successive Ẋk, Ṗ writes:

tangent differentiated program Ṗ

Initialize V with X and V̇ with Ẋ

(İ1) V̇ := f ′

1(V)× V̇
(I1) V := f1(V)

...

(İk) V̇ := f ′

k(V)× V̇
(Ik) V := fk(V)

...

(İp) V̇ := f ′

p(V)× V̇
(Ip) V := fp(V)

Retrieve Y from V and Ẏ from V̇

Notice that each derivative statement İk now precedes Ik, because Ik overwrites
V.

• Adjoint mode: evaluate X = Y × F ′(X), the gradient of the scalar function
Y × F (X) derived from F and weights Y . It expands as

X = Y × f ′

p(Xp−1) × f ′

p−1(Xp−2) × . . . × f ′

1(X0) . (0.2)

Since Y is a (row) vector, this formula is most efficiently evaluated from left to
right i.e., with mathematical variables:

✹ Contents

X0 = X

X1 = f1(X0)

. . .

Xk = fk(Xk−1)

. . .

Xp = fp(Xp−1)

Y = Xp

Xp = Y

Xp−1 = Xp × f ′

p(Xp−1)

. . .

Xk−1 = Xk × f ′

k(Xk−1)

. . .

X0 = X1 × f ′

1(X0)

X = X0

However, an algorithm that evaluates these formula is not immediate to construct,
as the derivative instructions will follow the inverse order of the original instruc-
tions. Similarly to the tangent mode, we want the adjoint program to use only the
original program’s variables V plus a corresponding set of new program variables
V, of the same size as V, to hold the successive Xk. In that case, we see that e.g.
Xk−1 contained in V will be overwritten by Xk and thus lost, before it is needed
to evaluate Xk × f ′

k(Xk−1). We will see later how this problem is solved, but let
us keep in mind that there is a fundamental penalty attached to the adjoint mode

that comes from the need of a data-flow (and control-flow) reversal.

Let us compare the run-time costs of the tangent and adjoint modes. Each run of
the tangent differentiated algorithm Ṗ costs only a small multiple of the run-time of
the original P. The ratio, that we will call Rt, varies slightly depending on the given
P. Typical Rt ranges between 1 and 3. Using a simplified cost model that only counts
the number of costly arithmetical operations (only *,/, and transcendentals), Rt is
always less than 4. Similarly, for the adjoint differentiated algorithm P, the run-time
is only a small multiple of the run-time of P. The ratio, that we will call Ra, varies
slightly depending on the given P. In the simplified cost model that only counts costly
arithmetical computations, Rt and Ra are identical, but in practice P suffers from the
extra penalty coming from the data-flow reversal. Typical Ra range between 5 and
10. Let us compare, with the help of figure 0.1, the costs of computing the complete
Jacobian F ′(X), using no sparsity property, by employing either the tangent mode or
the adjoint mode.

• With the tangent mode, we obtain F ′(X) column by column by setting Ẋ suc-
cessively to each element of the Cartesian basis of the input space IRn. The run
time for the full Jacobian is thus n×Rt × runtime(P).

• With the adjoint mode, we obtain F ′(X) row by row by setting Y successively
to each element of the Cartesian basis of the output space IRm. The run time for

Elements of AD ✺

()[

]n inputs

m outputs

Adjoint

Tangent

Fig. 0.1 Elements of the Jacobian computable by tangent AD and adjoint AD

the full Jacobian is thus m×Ra × runtime(P).

When n is much larger than m, the adjoint mode is recommended. In particular, this is
the case when gradients are needed, e.g. in optimization or in inverse problems. There
are typically very few optimization criteria (often m = 1), and on the other hand n is
often large as the optimization parameters may be functions, shapes, or other complex
objects. In that case, no matter Ra being higher than Rt, the adjoint mode of AD
is the only reasonable option. This is the most flagrant situation where adjoint AD
can outperform all other strategies, in particular divided differences (i.e. evaluating
(F (X + hẊ)− F (X))/h) or even tangent AD.

Considering the design and implementation of AD tools, there are two principal
ways to code the algorithms Ṗ and P namely, operator overloading and program trans-

formation.

• Operator Overloading: if the language of P permits, we can replace the types
of the floating-point variables with a new type that contains additional derivative
information, and overload the arithmetic operations for this new type so as to
propagate this derivative information along. Schematically, the AD tool boils down
to a library that defines the overloaded type and arithmetic operations. This
approach is both elegant and powerful. The overloaded library can be quickly
redefined to compute higher-order derivatives, Taylor expansions, intervals. . . By
nature, evaluation of the overloaded operations will follow the original order of
P. This is fine for the tangent mode, but requires some acrobacy for the adjoint
mode, bearing severe consequences on performance and/or loosing a part of the
elegance of the approach.

• Program Transformation: We can instead decide to explicitly build a new
source code that computes the derivatives. This implies parsing the original P and
build an internal representation, and from it build the differentiated Ṗ or P. This
approach allows the tool to apply some global analysis on P, for instance data-flow,
to produce more efficient differentiated code. This is very similar to a compiler,
except that it produces source code. This approach is more development-intensive
than Operator Overloading, which is one reason why Operator Overloading AD
tools appeared earlier and are more numerous. It also explains why Program
Transformation AD tools are perhaps slightly more fragile and need more effort
to follow the continuous evolution of programming constructs and styles. On the
other hand, the possibility of global analysis makes Program Transformation the

✻ Contents

time

I I I I I

I
I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Fig. 0.2 Data-flow reversal with the Recompute-All approach. Big black dot represents

storage of X0, big white dots are retrievals

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Fig. 0.3 Data-flow reversal with the Store-All approach. Small black dots represent values

being recorded before overwriting. Small white dots represent corresponding restorations.

choice approach for the adjoint mode of AD, which requires control-flow and
data-flow reversal and where global analysis is essential to produce efficient code.

These elements of AD are about all the background we need to describe a tangent
mode AD tool. For the adjoint mode however, we need to address the question of
data-flow reversal. We saw that the equations of the adjoint mode do not transpose
immediately into a program because the values Xk are overwritten before they are
needed by the derivatives. In the context of Operator Overloading, the natural stategy
for the adjoint mode is to have the overloaded operations write on a unique “tape” the
long log of program variables being read, combined with differentiable operations, and
overwritten. In compiler terminology, this is a kind of three-address code. Later, this
tape is read from end to beginning by a special code that computes the derivatives. This
is indeed a recording not only of the data-flow, but also of every arithmetic operation
done. There are variations from this scheme but the tape remains very large. In the
context of Program Transformation, only the data-flow need be reversed. There are
two ways to solve this problem, and a variety of combinations between them.

• Recompute-All: For each derivative instruction
←−
Ik , we recompute the Xk−1 that

it requires by a repeated execution of the original code, for the stored initial state
X0 to instruction Ik−1 that computes Xk−1. This is sketched on figure 0.2. The
extra cost in memory is only the storage of X0. On the other hand, the extra cost
in run time is quadratic in p.

• Store-All: Each time instruction Ik overwrites a part of V, we record this part of V
into a stack just before overwriting. Later, we restore these values just before exe-

cuting
←−
Ik This is sketched on figure 0.3. The extra cost in memory is proportional

to p, whereas the extra cost in run time comes from stack manipulation, usually

Elements of AD ✼

minimal and proportional to p. We sketch a program P that uses the Store-All
approach, using push and pop primitives for stack manipulations, and definining
out(Ik) to be the subset of the variables V that are effectively overwritten by Ik.

We see two successive sweeps in P. The forward sweep
−→
P is essentially a copy of P

augmented with storage of overwritten values. The backward sweep
←−
P is the com-

putation of the derivatives, in reverse order, augmented with retrieval of recorded
values. Due to retrievals, the exit V does not contain the original result Y .

adjoint differentiated program P (Store-All)

Initialize V with X and V with Y
push(out(I1))

(I1) V := f1(V)
...
push(out(Ik))

(Ik) V := fk(V)
...
push(out(Ip−1))

(Ip−1) V := fp−1(V)

(
←−

Ip) V := V× f ′

p(V)
pop(out(Ip−1))
...
pop(out(Ik))

(
←−

Ik) V := V× f ′

k(V)
...
pop(out(I1))

(
←−

I1) V := V× f ′

1(V)
Retrieve X from V̇

These data-flow reversal strategies can be adapted to programs P that are no longer
straight-line, but that use control. This implies that the control decisions of the original
code (branch taken, number of iterations, . . .) or equivalently of the forward sweep,
must be made available in reverse for the backward sweep. In a Store-All context, this
can be done just like for data: control-flow decisions must be recorded at the exit of
the control structure (conditional, loop,. . .) and then retrieved in the backward sweep
to control the backward execution. This can use the same stack as data-flow reversal.
The conjunction of the recorded control and data values is called the trajectory.

In practice, neither pure Recompute-All nor pure Store-All can be applied to large
programs, because of their respective cost in run-time or memory space. This problem
occurs also with overloading-based AD, which behaves like Store-All in this respect.
Trade-offs are needed, and the classical trade-off is called checkpointing.

• In the Recompute-All approach, checkpointing means choosing a part C of P and
storing the state upon exit from this part. Recomputing can then start from
this state instead of the initial state. This is sketched on the top-left part of
figure 0.4. At the cost of storing one extra state, the run-time penalty has been
divided roughly by two. Checkpoints can be nested to further reduce the run-time
penatly, as shown on the bottom-left of figure 0.4.

• In the Store-All approach, checkpointing means choosing a part C of P and not

recording the overwritten values during C. Before the backward sweep reaches
←−
C ,

C is run again from a stored state this time with recording. This is sketched on the

✽ Contents

time

C{

time

time

C{
time

Fig. 0.4 Checkpointing with the Recompute-All (left) and Store-All (right) approaches. The

shaded areas reproduce the basic pattern of the chosen approach. Top: single checkpointing,

bottom nested checkpointing.

top-right part of figure 0.4. At the cost of storing one extra state and of running
C twice, the peak memory used to record overwritten data is divided roughly by
two. Checkpoints can be nested to further reduce the peak memory consumption,
as shown on the bottom-right of figure 0.4.

Notice on figure 0.4 that the execution scheme at the bottom, for nested check-
points, become very similar. Recompute-All and Store-All are the two ends of a spec-
trum, with optimal checkpointing scheme(s) lying somewhere in between. A good
placement of (nested) checkpoints is crucial for efficient adjoint differentiation of large
codes. Natural candidates to become a checkpointed part are procedure calls and loop
bodies, but any piece of code with a single entry point and a single exit point can be
chosen. There is no formula nor efficient algorithm to find this optimal placement of
checkpoints, except in the case (Griewank, 1992) of a loop with a known number of
iterations all of the same cost. A good enough default strategy is to apply checkpoint-
ing at the level of each procedure call. In practice, it is important to give the end-user
the freedom to place checkpoints by hand. Good placements of checkpoints perform
similarly: their memory and run-time costs grow with the logarithm of the run-time
of P or more precisely:

• the peak memory size during execution, to store states and record data, grows
like the logarithm of the run-time of P.

• the maximum number of times a checkpointed piece of the program is re-executed,
which approximates the slowdown factor of P compared to P, also grows like the
logarithm of the run-time of P. This explains why the slowdown ratio Ra of P
compared to P can be larger by a few units than the ratio Rt of Ṗ compared to P.

Actually, we do not need to store the entire memory state to checkpoint a program
piece C. What must be stored is called the snapshot. In a Store-All context, we can see
that a variable need not be in the snapshot if it is not used by C. Likewise, a variable
need not be in the snapshot if it is not overwritten between the initial execution of C
and the execution of its adjoint C.

Application of adjoint AD to Data Assimilation ✾

0.3 Application of adjoint AD to Data Assimilation

Assume we have a physical model that represents the way some unknown values de-
termine some measurable values. When this model is complex, its inverse problem is
nontrivial. From this physical model we get a mathematical model, which is in general
a set of partial differential equations. Let us also assume that by discretization and
resolution of the mathematical model, we get a program that computes the measurable
values from the unknown values.

Using the formalism of optimal control theory (le Dimet and Talagrand, 1986),
we are studying the state W of some system, W is defined for every point in space,
and also – if time is involved – for every instant in an observation period [0, T]. The
mathematical model relates the state W to a number of external parameters, which
are the collection of initial conditions, boundary conditions, model parameters, etc,
i.e. all the values that determine the state. Some of these parameters, that we call γ,
are the unknown of our inverse problem. This relation between W and γ is implicit in
general. It is a set of partial differential equations that we write:

Ψ(γ,W) = 0 (0.3)

Equation (0.3) takes into account all external parameters, but we are only concerned
here by the dependence on γ. In optimal control theory, we would call γ our control
variable. Any value of γ thus determines a state W (γ). We can extract from this state
the measurable values, and of course there is very little chance that these values exactly
match the values actually measured Wobs. Therefore we start an optimization cycle
to modify the unknown values γ, until the resulting measurable values match best. We
thus define a cost function that measures the discrepancy on the measurable values in
W (γ). In practice, not all values in W (γ) can be measured in Wobs, but nevertheless
we can define this cost function J as the sum at each instant of some squared norm
of the discrepancy of each measured value ‖W (γ)−Wobs‖

2.

j(γ) = J(W (γ)) =
1

2

∫ T

t=0

‖W (γ)(t)−Wobs(t)‖
2dt (0.4)

Therefore the inverse problem is to find the value of γ that minimizes j(γ), i.e. such
that j′(γ) = 0. If we use a gradient descent algorithm to find γ, we need to find j′(γ)
for each γ. To this end, the mathematical approach first applies the chain rule to
equation (0.4), yielding:

j′(γ) =
∂J(W (γ))

∂γ
=

∂J

∂W

∂W

∂γ
(0.5)

The derivative of W with respect to γ comes from the state implicit equation (0.3),
which we differentiate with respect to γ to get:

∂Ψ

∂γ
+

∂Ψ

∂W

∂W

∂γ
= 0 (0.6)

Assuming this can be solved for ∂W
∂γ

, we can then substitute it into equation (0.5) to
get:

✶✵ Contents

j′(γ) = −
∂J

∂W

∂Ψ

∂W

−1 ∂Ψ

∂γ
(0.7)

Now is the time to take complexity into account. Equation (0.7) involves one system
resolution and then one product. Nowadays both Ψ and W are discretized with millions
of dimensions. ∂Ψ

∂W
is definitely too large to be computed explicitly, and therefore its

inverse cannot be computed nor stored either. We notice that ∂Ψ

∂γ
has many columns,

whereas ∂J
∂W

has only one row. Therefore the most efficient way to compute the gradient

j′(γ) is the adjoint method: first compute ∂J
∂W

, then run an iterative resolution for

∂J

∂W

∂Ψ

∂W

−1

(0.8)

and then multiply the result (called the adjoint state Π) by ∂Ψ

∂γ
.

Recall now that we already have a resolution program, i.e. a procedure PΨ which,
given γ, returns Wγ , and a procedure Pj which, given a W , evaluates the cost function,
i.e. the discrepancy between W and the observed Wobs. Adjoint AD of the program
that computes

j = Pj(PΨ(γ))

directly gives the gradient of j, i.e. the desired j′(γ). This is indeed very close to the
mathematical resolution with the adjoint state. In both cases, ∂J

∂W
is computed first,

thus guaranteeing that no large square matrix is stored. Things differ a little for the
following stage, because a program is by essence explicit and therefore the resolution
for Π and multiplication with ∂Ψ

∂γ
are done jointly. Apart from that, adjoint AD can

really be considered as the discrete equivalent (on programs) of the above adjoint
method.

As a first application, we considered the oceanography code OPA 9.0 (Madec et al.,
1998) on a simple configuration known as GYRE. It simulates the behavior of a rect-
angular basin of water put on the tropics between latitudes 15o and 30o, with the wind
blowing to the East. Our control variables γ are the temperature field in the complete
domain, and our cost function j(γ) is the discrepancy with respect to measurements
of the heat flux across some boundary at the northern angle 20 days later. Figure 0.5
shows one gradient j′(γ) computed by adjoint AD. This system is discretized with
32× 22× 31 nodes and 4320 time steps. The original simulation takes 26 seconds, and
the differentiated program computes the gradient above in 205 seconds, which is only
7.9 times as long. Of course checkpointing is absolutely necessary to reverse this long
simulation, yielding several recomputations of the same program steps, but neverthe-
less the factor 7.9 is much better than what tangent AD would require. Checkpointing
and storage of the trajectory use a stack that reaches a peak size of 481 Mbytes.

In a second, larger application we considered the NEMO configuration of OPA (2o

grid cells, one year simulation) for the north Atlantic. Figure 0.6 shows the gradient
of the discrepancy to measurements of the heat flux across the 29th parallel, with
respect to the temperature field one year before. With this discretization, there are
9100 control parameters in γ. The adjoint code that computes the gradient with respect
to these 9100 parameters takes 6.5 times as long as the original code. The size of the

Application of adjoint AD to Data Assimilation ✶✶

Influence of T at -300 metre

on the heat flux 20 days later

across north section

30o North

15o North

❅❅❅❅
✲

❍❍❍❍❍❨

Kelvin wave

❍❍❍❍❍❍❍❨

Rossby wave

Fig. 0.5 Oceanography gradient by adjoint AD on OPA Gyre

29 N 29 N

Fig. 0.6 Oceanography gradient by adjoint AD on OPA Nemo

stack that stores the trajectory and the snapshots for checkpointing reaches a peak of
1591 Mbytes.

✶✷ Contents

0.4 Improving the adjoint AD code

AD tools will produce AD adjoints automatically, following the principles described in
section 0.2. The resulting adjoint code can be easily criticized: a skilled programmer
can always write a more efficient code, at least in theory, using long and careful work.

Nevertheless, AD tool developers constantly observe what skilled adjoint program-
mers do, and try to generalize the improvements, model them, and incorporate them
into the AD tools. In other situations, the AD tool can be extended with options to let
the end-user request a predefined improvement at a given location. We will illustrate
here only a few such improvements.

Activity analysis is systematic in many Program Transformation AD tools. It is
useful for both tangent and adjoint AD. Assume that the user has specified the set
of independents, i.e. the input variables with respect to which differentiation must be
done, and the set of dependents, i.e. the output variables that must be differentiated.
Activity analysis propagates forward the varied variables, i.e. those that depend on
some independent in a differentiable way. It also propagates backwards the useful

variables, i.e. those that influence some dependent in a differentiable way. At each
given location in the code, the derivative variable of an original variable needs to be
mentioned only if this original variable is both varied and useful. In all other situations,
the derivative is either certainly null or certainly useless, and therefore need not appear
in the differentiated code. Activity analysis is just one of the many data-flow analyses
that AD tools use, applying techniques from compiler theory. Figure 0.7 illustrates

original program tangent AD adjoint AD
x = 1.0
z = x*y
t = y**2
IF (t .GT. 100) ...

x = 1.0
zd = x*yd
z = x*y
t = y**2
IF (t .GT. 100) ...

x = 1.0
z = x*y
t = y**2
IF (t .GT. 100) ...
...
yb = yb + x*zb

Fig. 0.7 Instructions simplifications due to Activity Analysis

the benefits of activity analysis. x immediately becomes not varied, and t is useless.
Therefore, the AD tool knows that xd and tb are null and can be simplified. In some
situations, we can even choose not to set them explicitly to zero.

TBR analysis is systematic, and specific to Store-All adjoint AD. The Store-All
approach says that the value that is being overwritten by an assignment must be (1)
stored just before this assignment in the forward sweep and (2) restored before the
adjoint of this assignment in the backward sweep. However, TBR analysis can detect
that a particular value is actually not used in the derivative computations. To put it
short, this is the case for every value that is used only in linear computations. It is
not necessary to store and restore these values, and this saves a significant amount of
trajectory in the stack memory. In the example of figure 0.8, TBR analysis could prove
that neither x nor y were needed by the differentiated instructions, and therefore these
variables need not be PUSH’ed on nor POP’ed from the stack.

Improving the adjoint AD code ✶✸

original program adjoint mode: adjoint mode:
näıve backward sweep backward sweep TBR

x = x + EXP(a)
y = x + a**2
a = 3*z

CALL POPREAL4(a)
zb = zb + 3*ab
ab = 0.0
CALL POPREAL4(y)
ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0
CALL POPREAL4(x)
ab = ab + EXP(a)*xb

CALL POPREAL4(a)
zb = zb + 3*ab
ab = 0.0

ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0

ab = ab + EXP(a)*xb

Fig. 0.8 Removing unnecessary storage through TBR analysis

Binomial checkpointing is the optimal way to organize checkpointing for a spe-
cial class of loops that essentially correspond to time-stepping iterations (Griewank
and Walther, 2008). See figure 0.9. This is a crucial improvement to adjoint AD of

0 62606056

5857

5651

545352

5145

49484746

4538

4342414039

3830

363534333231

3016

2827262524222219

20

19

16

17

160

141312111096

7

63

4

3

0

1

0

Fig. 0.9 Optimal binomial checkpointing on 64 time steps

most unsteady simulation codes. It is more powerful than multi-level checkpointing.
Basically, binomial checkpointing recursively divides sequences of time steps into two
sub-sequences of unequal length given by a binomial law. The peak memory required
by the tape, as well as the slowdown factor coming from recomputations, only grow
like the logarithm of the number of time steps. Binomial checkpointing is somewhat
intricate to implement in general, so it must be provided by the AD tool. However the
tool cannot discover the time-stepping loops, and the end-user must designate them
with a directive to the AD tool.

Linear solvers are better differentiated by hand. Both in tangent and adjoint
modes, there are simple formulae that propagate derivatives through them very effi-
ciently. In contrast, standard AD will probably do a very poor job differentiating all
the minute irrelevant details that are found in an optimized linear solver routine. Here
also, there is no hope that an AD tool can detect automatically that a subroutine is

✶✹ Contents

a linear solver. This is probably undecidable anyway. So the AD tool must be guided
by user directives. The AD tool will then either apply some predefined differentiation
strategy to the linear solver, or just leave a “hole” in the adjoint code and ask the
user to fill the hole with the very short differentiated subroutine for the linear solver.
This last approach is often referred to as the black-box approach and is not limited to
linear solvers: it applies to any procedure for which there is a clever differentiation, or
to external routines for which the source code is unavailable.

0.5 AD tools

Here is our (partial) view of available AD tools and of how one might classify them.
The best source is the www.autodiff.org site, which is the portal managed by our
colleagues in Aachen and Argonne in the name of the AD community. It turns out
that plenty of experiments were made that adapt the concepts of AD to particular
environments. There was for instance a clever introduction of tangent AD into Mi-
crosoft’s Excel. However in the present context, we will focus on the tools that we feel
can be applied to inverse problems and data assimilation of industrial size.

As we saw, some AD tools rely on program overloading rather than program
transformation. In general this makes the tool easier to implement. However some
overloading-based AD tools can become very sophisticated and efficient, and represent
a fair bit of hard work too. Overloading-based AD tools exist only for target languages
that permit some form of overloading, e.g. C++ and Fortran95. Overloading-based AD
tools are particularly adapted for differentiations that are mostly local to each state-
ment, i.e. no fancy control flow rescheduling is allowed. On the other hand, these local
operations can be very sophisticated, more than what transformation-based AD tools
generally provide. For instance, overloading-based AD tools can generally compute not
only first, but also second, third derivatives and so on, as well as Taylor expansions or
interval arithmetic. Adol-C (Walther and Griewank, 2012), is an excellent example
of overloading-based AD tool. FADBAD/TADIFF are other examples.

The AD tools based on program transformation parse and analyze the original pro-
gram and generate a new source program. These tools share their general architecture:
a front-end very much like a compiler, followed by an analysis component, a differen-
tiation component, and finally a back-end that regenerates the differentiated source.
They differ in particular in the language that they recognize and differentiate, and in
the AD modes that they provide. They also exhibit some differences in AD strategies
mostly about the adjoint mode. The best known other transformation-based AD tools
are the following:

• Tapenade (Hascoët and Pascual, 2004) provides tangent and adjoint differenti-
ation of Fortran (77 and 95) and C. Adjoint mode uses the Store-All approach
to restore intermediate values. This Store-All approach is selectively replaced by
recomputation in simple appropriate situations. Checkpointing is applied by de-
fault at the level of procedure calls, but can be triggered or deactivated at other
places through used directives.

• Adifor (Carle and Fagan, 2000) differentiates Fortran77 codes in tangent mode.
Adifor once was extended towards the adjoint mode (Adjfor), but we believe this
know-how has now been re-injected into the OpenAD framework, described below.

Conclusion ✶✺

• Adic can be seen as the C equivalent of Adifor. However, it has been lately re-
based on a completely different architecture, from the OpenAD framework. Adic
differentiates ANSI C programs in tangent mode, with the possibility to obtain
second derivatives.

• OpenAD/F (Utke et al., 2008) differentiates Fortran codes in tangent and ad-
joint modes. The general framework of OpenAD claims (like Tapenade) that only
front-end and back-end should depend on the particular language, whereas the
analysis and differentiation part should work on a language-independent program
representation. This is why OpenAD was able to host Adic. OpenAD/F is made of
Adifor and Adjfor components integrated into the OpenAD framework. Its strat-
egy to restore intermediate values in adjoint AD is extremely close to Tapenade’s.

• TAMC (Giering, 1997), through its commercial offsprings TAF and TAC++ dif-
ferentiates Fortran and C files. TAF also differentiates Fortran95 files, under
certain restrictions. TAF is commercialized by the FastOpt company in Ham-
burg, Germany. Differentiation is provided in tangent and adjoint mode, with the
Recompute-All approach to restore intermediate values in adjoint AD. Check-
pointing and an algorithm to avoid useless recomputations (ERA) are used to
avoid explosion of run-time. TAF also provides a mode that efficiently computes
the sparsity pattern of Jacobian matrices, using bit-sets.

There are also AD tools that directly interface to an existing compiler. In fact, these
are modifications to the compiler such that the compiler performs AD at compile time.
This new AD functionnality is triggered by new constructs or new directives added into
the application language. In a sense, this amounts to modifing the application language
so that it has a new “differentiation” operator. For instance the NAGWare Fortran95
compiler embeds AD facilities (Naumann and Riehme, 2005), that are triggered by user
directives in the Fortran source. To our knowledge, its adjoint mode uses a strategy
equivalent to operator overloading.

There are AD tools that target higher-level languages, such as MATLAB. We know
of ADiMat, MAD, and INTLAB. Even when they rely on operator overloading, they
may embed a fair bit of program analysis to produce efficient differentiated code.

0.6 Conclusion

We have presented Automatic Differentiation, and more precisely the fundamental
notions that are behind the AD tools that use source program transformation. We
shall use figure 0.10 as a visual support to compare AD with other ways to obtain
derivatives. Our strongest claim is that if you need derivatives of functions that are
already implemented as programs, then you should seriously consider AD. At first
thought, it is simpler to apply the Divided Differences method (sometimes known also
as “Finite Differences”), but its inaccuracy is its major drawback.

Notice that Divided Differences sometimes behave better when the implemented
function is not differentiable, because its very inaccuracy has the effect of smoothing
discontinuities of the computed function. Therefore Divided Differences can be an
option when one only has piecewise differentiability. Also, it is true that Divided
Differences may actually cost a little less than the tangent mode, which is their AD

✶✻ Contents

DERIVATIVES

Div. Diff Analytic Diff

Maths AD

Overloading Source Transfo

Multi-dir Tangent Reverse

inaccuracy

programming

control

flexibility

efficiency

Fig. 0.10 AD and other ways to compute derivatives

equivalent. Nevertheless when it is possible, it is safer to look for exact analytical
derivatives.

Divided Differences are definitely a poor choice if you need gradients.
Then again two options arise: one can consider the problem of finding the deriva-

tives as a new mathematical problem, with mathematical equations (e.g. adjoint equa-
tions) that must be discretized and solved numerically. This is a satisfying mathemat-
ical approach, but one must be aware of its development cost.

AD is a very promising alternative when the function to be differentiated has
already been implemented. In a sense, AD reuses the resolution strategy that has
been implemented for the original function into the resolution of its derivatives. When
the original model or code changes, AD can be applied again at very little cost.

There are still open questions of non-differentiability introduced by the program’s
control, or the fact that the iterative resolution of the derivatives is not always guaran-
teed to converge at the same speed as the original function resolution. But in practice,
AD returns derivatives that are just as good as those returned by the “mathematical”
approach above.

Inside the AD methods we distinguish Overloading-based approaches, which are
more flexible and can be adapted to all sorts of derivatives and similar concepts. On the
other hand, we advocate source-transformation-based tools for the well-identified goals
of tangent and adjoint first-order derivatives. Source transformation gives it full power
when it performs global analyses and transformations on the code being differentiated.

Source Transformation AD is really the best approach to the adjoint mode of AD,
which computes gradients at a remarkably low cost. Adjoint AD is a discrete equivalent

Conclusion ✶✼

of the adjoint methods from control theory. Adjoint AD may appear puzzling and even
complex at first sight. But AD tools apply it very reliably so that a basic understanding
of it generally suffices. Adjoint AD is really the choice method to get the gradients
required by inverse problems (e.g. data assimilation) and optimization problems.

AD tools can build highly optimized derivative programs in a matter of minutes.
AD tools are making progress steadily, but the best AD will always require end-user
intervention. Moreover, one must keep in mind the limitations of AD in order to make
a sensible usage of it. Fundamentally:

• real programs are always only piecewise differentiable, and only the user can tell
if these algorithmic discontinuities will be harmful or not.

• iterative resolution of the derivatives may not converge as well as the original
program, and the knowledge of the Numerical Scientist is invaluable to study this
problem.

• adjoint AD of large codes will always require a careful profiling to find the best
storage/recomputation trade-off.

There are also a number of technical limitations to AD tools, which may be partly
lifted in the future, but which are the current frontier of AD tool development:

• Dynamic memory in the original program is a challenge for the memory restoration
mechanism of the adjoint mode.

• Object-oriented languages pose several very practical problems, because they far
more intensively use the mechanisms of overloading and dynamic allocation. Data-
Flow analysis of object-oriented programs may become harder and return less
useful results.

• Parallel communications or other system-related operations may introduce a de-
gree of randomness in the control flow, which is then hard to reproduce, duplicate,
or reverse.

References

Aho, A., Sethi, R., and Ullman, J. (1986). Compilers: Principles, Techniques and

Tools. Addison-Wesley.
Bischof, C., Bücker, M., Hovland, P., Naumann, U., and Utke, J. (ed.) (2008). Ad-

vances in Automatic Differentiation. Volume 64, Lecture Notes in Computational
Science and Engineering. Springer, Berlin.

Bücker, M., Corliss, G., Hovland, P., Naumann, U., and Norris, B. (ed.) (2005).
Automatic Differentiation: Applications, Theory, and Implementations. Volume 50,
Lecture Notes in Computational Science and Engineering. Springer, New York, NY.

Carle, A. and Fagan, M. (2000). ADIFOR 3.0 overview. Technical Report CAAM-
TR-00-02, Rice University.

Corliss, G., Faure, C., Griewank, A., Hascoët, L., and Naumann, U. (ed.) (2001).
Automatic Differentiation: from Simulation to Optimization. Computer and Infor-
mation Science. Springer, New York, NY.

Giering, R. (1997). Tangent linear and Adjoint Model Compiler, Users manual.
Technical report. http://www.autodiff.com/tamc.

Griewank, A. (1992). Achieving logarithmic growth of temporal and spatial complex-
ity in reverse Automatic Differentiation. Optimization Methods and Software, 1,
35–54.

Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation (2nd edn). Number 105 in Other Titles in
Applied Mathematics. SIAM, Philadelphia, PA.

Hascoët, L. and Pascual, V. (2004). TAPENADE 2.1 user’s guide. Rapport technique
300, INRIA.

le Dimet, F.-X. and Talagrand, O. (1986). Variational algorithms for analysis and
assimilation of meteorological observations: theoretical aspects. Tellus, 38A, 97–
110.

Madec, G., Delecluse, P., Imbard, M., and Levy, C. (1998). OPA8.1 ocean general
circulation model reference manual. Technical report, Pole de Modelisation, IPSL.

Naumann, U. and Riehme, J. (2005). Computing adjoints with the NAGWare For-
tran 95 compiler. pp. 159–169 in (Bücker, Corliss, Hovland, Naumann and Norris,
2005).

Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., and
Wunsch, C. (2008). OpenAD/F: A modular, open-source tool for Automatic Dif-
ferentiation of Fortran codes. ACM Transactions on Mathematical Software, 34(4),
18:1–18:36.

Walther, A. and Griewank, A. (2012). Getting started with ADOL-C. In Combinato-

rial Scientific Computing (ed. U. Naumann and O. Schenk), Chapter 7, pp. 181–202.
Chapman-Hall CRC Computational Science.

