Asymptotic analysis of the transmission eigenvalue problem for a Dirichlet obstacle coated by a thin layer of non-absorbing media

Fioralba Cakoni 1 Houssem Haddar 2 Nicolas Chaulet 2
2 DeFI - Shape reconstruction and identification
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7641
Abstract : We consider the transmission eigenvalue problem for an impenetrable obstacle with Dirichlet boundary condition surrounded by a thin layer of non-absorbing inhomogeneous material. We derive a rigorous asymptotic expansion for the first transmission eigenvalue with respect to the thickness of the thin layer. Our convergence analysis is based on a Max–Min principle and an iterative approach which involves estimates on the corresponding eigenfunctions. We provide explicit expressions for the terms in the asymptotic expansion up to order 3.
Type de document :
Article dans une revue
IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2014, pp.36. 〈10.1093/imamat/hxu045〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01109975
Contributeur : Houssem Haddar <>
Soumis le : mardi 27 janvier 2015 - 11:44:36
Dernière modification le : jeudi 10 mai 2018 - 02:04:06

Lien texte intégral

Identifiants

Collections

Citation

Fioralba Cakoni, Houssem Haddar, Nicolas Chaulet. Asymptotic analysis of the transmission eigenvalue problem for a Dirichlet obstacle coated by a thin layer of non-absorbing media. IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2014, pp.36. 〈10.1093/imamat/hxu045〉. 〈hal-01109975〉

Partager

Métriques

Consultations de la notice

298