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Abstract. In previous work, Ohno [Ohn97] conjectured, and Nakagawa [Nak98] proved, relations
between the counting functions of certain cubic fields. These relations may be viewed as comple-
ments to the Scholz reflection principle, and Ohno and Nakagawa deduced them as consequences of
‘extra functional equations’ involving the Shintani zeta functions associated to the prehomogeneous
vector space of binary cubic forms.

In the present paper we generalize their result by proving a similar identity relating certain
degree ℓ fields with Galois groups Dℓ and Fℓ respectively, for any odd prime ℓ, and in particular we
give another proof of the Ohno–Nakagawa relation without appealing to binary cubic forms.

1. Introduction

Let N3(D) denote the number of cubic fields of discriminant D. The starting point of this paper
is the following theorem of Nakagawa [Nak98], which had been previously conjectured by Ohno
[Ohn97].

Theorem 1.1. [Nak98, Ohn97] Let D 6= 1,−3 be a fundamental discriminant. We have

(1.1) N3(D
∗) +N3(−27D) =

{
N3(D) if D < 0 ,

3N3(D) + 1 if D > 0 ,

where D∗ = −3D if 3 ∤ D and D∗ = −D/3 if 3 | D.

Their result is closely related to that which can be derived from the classical reflection principle
of Scholz [Sch32], which omits the terms N3(−27D) and provides for two possibilities for each term

on the right. The significance of D∗ is that Q(
√
D∗) is the mirror field of Q(

√
D), the quadratic

subfield of Q(
√
D, ζ3) distinct from Q(

√
D) and Q(ζ3).

Nakagawa deduced his result from a careful study of the arithmetic of binary cubic forms, which
yielded an ‘extra functional equation’ for the associated Shintani zeta functions. It appears that
such ‘extra functional equations’ might be a common feature in the theory of prehomogeneous vec-
tor spaces; for example, in unpublished work Nakagawa and Ohno [NO] have conjectured a related
formula for the prehomogeneous vector space (Sym2Z3 ⊗ Z2)∗, which as Bhargava demonstrated
in [Bha04, Bha05], may be used to count quartic fields. Nakagawa has made substantial head-
way toward proving this formula, but it appears that there are still many technical details to be
overcome.

In this paper we demonstrate that the Ohno–Nakagawa results can be generalized in a different
direction, in which cubic fields are replaced by certain degree ℓ-fields for any odd prime ℓ, using a
framework involving class field theory and Kummer theory, and which also gives another proof of
Theorem 1.1.
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For an odd prime ℓ, we say that a degree ℓ number field is a Dℓ-field if its Galois closure is
dihedral of order 2ℓ, and an Fℓ-field if its Galois closure has Galois group Fℓ, defined by

(1.2) Fℓ := 〈σ, τ : σℓ = τ ℓ−1 = 1, τστ−1 = σg〉 ,

for a primitive root g (mod ℓ). (Note that different primitive roots give isomorphic groups, but
for our purposes it will be important to specify which primitive root is taken.) For ℓ = 3 we have
D3 = F3 = S3, so this distinction is not apparent.

We observe the convention that discriminants always specify the number of pairs of complex
embeddings. These will be indicated by powers of D and −1 (e.g., if D is negative, Dk indicates k
pairs of complex embeddings and (−D)k indicates none). Thus (−1)r2 |D|k will mean that specific
discriminant, with r2 pairs of complex embeddings (so this is different from, say, (−1)r2+2|D|k).
Subject to this convention, we write NDℓ

(D) and NFℓ
(D) for the number of Dℓ- and Fℓ-fields of

discriminant D. Our main theorems, as in Theorem 1.1, will relate NDℓ
(D) and NFℓ

(D′) for related
values of D,D′.

For ℓ > 5, our methods will not relate all Fℓ-fields of discriminant D′ to Dℓ-fields; we require an
additional Galois theoretic condition on our Fℓ-fields which we now describe. The Galois closure
E′ of each Fℓ-field E that we count will be a degree ℓ extension of a degree ℓ − 1 field K ′, cyclic
over Q. (See Theorem 2.12.) In turn, each K ′ will be a subfield of the degree 2(ℓ − 1) extension

Kz := Q(
√
D, ζℓ) (we assume thatD 6= (−1)

ℓ−1
2 ℓ); we will callK ′ the mirror field of ofK = Q(

√
D).

Choose and fix a primitive root g (mod ℓ), and define τ to be the unique element of Gal(Q(ζℓ)/Q)
with τ(ζℓ) = ζgℓ . We write also τ for the unique lift of this element to Gal(Kz/K), and for its unique
restriction to an element of Gal(K ′/Q). (We will have K ∩K ′ = Q.)

The group Gal(K ′/Q) acts on Gal(E′/K ′) by conjugation, and we require this action to match
(1.2) for the choices of τ and g already made. More precisely, suppose E′ is such an extension
of K ′, let τ denote any lift of the τ ∈ Gal(K ′/Q) from the last paragraph to Gal(E′/Q), and let
σ ∈ Gal(E′/K ′) ≤ Gal(E′/Q) be any element of order ℓ. Then we require that τστ−1 = σg. (This
is independent of the choice of lift of τ and of σ.) We write N∗

Fℓ
(D) for the number of Fℓ-fields of

discriminant D satisfying this condition.
We will show in Lemma 2.11 that any Fℓ field with the discriminants we count has a mirror

field as its Cℓ−1 subfield. With notation as above we must have τστ−1 = σg′ for some primitive
root g′ modulo ℓ, so our condition may be stated as requiring that g′ = g. Moreover, there are
many Fℓ fields whose discriminants we do not count — for example, fields of the form Q( ℓ

√
a) for

a ∈ Q× \ Q×ℓ and ℓ ≥ 5; the Cℓ−1 subfield of all these fields is Q(ζℓ). Our work raises a variety
of questions regarding the relative frequencies of the fields being counted; we expect that these
questions may be quite difficult to answer, and in any case we leave them for later investigation.

This brings us to the presentation of our main results:

Theorem 1.2. For each negative fundamental discriminant D 6= −ℓ we have
(1.3)

NDℓ
(D

ℓ−1
2 ) =





N∗
Fℓ
((−1)0ℓℓ−2|D| ℓ−1

2 ) +N∗
Fℓ
((−1)0ℓℓ|D| ℓ−1

2 ) if ℓ ∤ D ,

N∗
Fℓ
((−1)0ℓ

ℓ−3
2 |D| ℓ−1

2 ) +N∗
Fℓ
((−1)0ℓℓ|D| ℓ−1

2 ) if ℓ | D and ℓ ≡ 1 (mod 4) ,

N∗
Fℓ
((−1)0ℓ

ℓ−5
2 |D| ℓ−1

2 ) +N∗
Fℓ
((−1)0ℓℓ|D| ℓ−1

2 ) if ℓ | D and ℓ ≡ 3 (mod 4) .

For positive discriminants we obtain the following close analogue, reflecting the difference between
positive and negative D in the Ohno–Nakagawa relation.
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Theorem 1.3. For each positive fundamental discriminant D 6= 1, ℓ we have
(1.4)

ℓNDℓ
(D

ℓ−1
2 )+1 =





N∗
Fℓ
((−1)

ℓ−1
2 ℓℓ−2D

ℓ−1
2 ) +N∗

Fℓ
((−1)

ℓ−1
2 ℓℓD

ℓ−1
2 ) if ℓ ∤ D ,

N∗
Fℓ
((−1)

ℓ−1
2 ℓ

ℓ−3
2 D

ℓ−1
2 ) +N∗

Fℓ
((−1)

ℓ−1
2 ℓℓD

ℓ−1
2 ) if ℓ | D and ℓ ≡ 1 (mod 4) ,

N∗
Fℓ
((−1)

ℓ−1
2 ℓ

ℓ−5
2 D

ℓ−1
2 ) +N∗

Fℓ
((−1)

ℓ−1
2 ℓℓD

ℓ−1
2 ) if ℓ | D and ℓ ≡ 3 (mod 4) .

Nakagawa’s Theorem 1.1 is the case ℓ = 3 of these results.
In fact we prove something slightly stronger: The right-hand sides of (1.3) and (1.4) list two

possibilities ℓb and ℓb
′

for the power of ℓ in the discriminants of Fℓ-fields, but they do not rule out
other powers of ℓ that may occur in Fℓ-field discriminants with the desired Galois condition. Our
proof (see Proposition 3.10) shows that in fact there are no Fℓ-fields with the given Galois condition
and exponents of ℓ between 0 and 3ℓ−1

2 other than the ones that appear on the right-hand sides
of (1.3) and (1.4). (Larger exponents do occur, and they do not appear to correspond to Dℓ-fields.)

A special consideration arises when ℓ ≡ 1 (mod 4). Suppose that d 6= 1 is a fundamental

discriminant not divisible by ℓ. Then, Dℓ-fields of discriminant D
ℓ−1
2 with D = d and D = dℓ

respectively correspond to Fℓ-fields enumerated on the first and second lines on the right of (1.3)
or (1.4). It is easily checked that the discriminants and signatures of Fℓ-fields enumerated in the
first terms on these two lines (for D = d and D = dℓ respectively) are identical, so that the only
difference between them consists of the condition implied by the star.

It will be proved later that Q(
√
d) and Q(

√
ℓd) have the same mirror field when ℓ ≡ 1 (mod 4).

However, our definition of τ ∈ Gal(K ′/Q) involved lifting an element of Gal(Q(ζℓ)/Q) to Gal(Kz/K)

and therefore depends on K. Writing τ ′ and τ ′′ for the elements τ determined when K = Q(
√
d)

and K = Q(
√
ℓd) respectively, we will see later (in Remark 3.9) that the condition τ ′′στ ′′−1 = σg of

(1.2) is equivalent to τ ′στ ′−1 = σ−g. (Note that for a primitive root g (mod ℓ) with ℓ ≡ 1 (mod 4),
−g is also a primitive root.)

When ℓ = 5 there are only two primitive roots, so letting g be either of them we find that all
F5-fields satisfy τ ′στ ′−1 = σg or τ ′στ ′−1 = σ−g. Therefore, by counting D5-fields of discriminant
with D = d and D = ℓd together we obtain a corresponding count of F5-fields without any Galois
condition:

Corollary 1.4. If D is a negative fundamental discriminant coprime to 5, we have

(1.5) ND5

(
D2

)
+ND5

(
5D2

)
= NF5

(
(−1)053|D|2

)
+NF5

(
(−1)055|D|2

)
+NF5

(
(−1)057|D|2

)
.

and if D 6= 1 is a positive fundamental discriminant coprime to 5, we have

(1.6) 5
(
ND5

(
D2

)
+ND5

(
(5D)2

))
+2 = NF5

(
(−1)253D2

)
+NF5

(
(−1)255D2

)
+NF5

(
(−1)257D2

)
.

Another (immediate) corollary of our results is that Fℓ-fields of certain discriminants must exist.

Corollary 1.5. For each positive fundamental discriminant D coprime to ℓ − 1, there exists at

least one Fℓ-field with discriminant of the form (−1)
ℓ−1
2 ℓaD

ℓ−1
2 , for some a as described above. If

ℓ ≡ 1 (mod 4), there exist at least two.

Further directions. There are multiple directions in which one might ask for extensions of our
results. The most obvious is to drop the requirement that D be a fundamental discriminant. How-
ever, as was observed by Nakagawa, no simple relation appears to hold even for ℓ = 3. Examining
a table of cubic fields suggests that any result along these lines would need to account for more
subtle information than simply counts of field discriminants.
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Similarly, one could attempt to allow additional factors of ℓ in our counts for Dℓ-fields. This
might involve generalizations of the results of Section 3, some of which are carried out in Section 8
of [CT13b], along with further study of the sizes of various groups appearing in these results.

Motivated by Nakagawa’s results, one might try to prove a result counting ring discriminants. In
this context, Ohno and Nakagawa did obtain beautiful and simple relations among all discriminants,
by considering (equivalently): cubic rings (including reducible and nonmaximal rings); binary cubic
forms up to SL2(Z)-equivalence; or the Shintani zeta functions associated to this lattice of binary
cubic forms.

The equivalences among these objects do not naturally generalize to ℓ > 3, and in particular
there is no naturally associated zeta function which is known (to the authors, at least) to have
good analytic properties. Therefore, it seems that the Ohno–Nakagawa relations for cubic rings
may be special to the prime ℓ = 3. However, it is not out of the question that our work could be
extended to an Ohno–Nakagawa relation counting appropriate subsets of the set of rings of rank
ℓ. In any case work of Nakagawa [Nak96] and Kaplan, Marcinek, and Takloo-Bighash [KMTB13]
(among others) suggests that enumerating such rings is likely to be quite difficult.

Remark 1.6. As F. Calegari explained to us, alternative proofs of our results can also be given in
the language of cohomology and Galois representations, as a consequence of Poitou-Tate duality
[Poi67, Tat63] and a formula of Greenberg [Gre89] and Wiles [Wil95] (see also Theorem 2.18 of
[DDT97]).

Methods of proof and summary of the paper. The proofs involve the use of class field theory and
Kummer theory, along the lines developed by the first author and a variety of collaborators (see,
e.g., [CDyDO06, Coh04, CM11, CT14, CT13a, CT13b]) to enumerate fields with fixed resolvent.
Especially relevant is work of the first and third authors [CT13b], giving an explicit formula for
the Dirichlet series

∑
K |Disc(K)|−s, where the sum is over all Dℓ-fields K with a fixed quadratic

resolvent. The results of the present paper (or, for ℓ = 3, of Nakagawa) are required to put this
formula into its most explicit form, as a sum of Euler products indexed by Fℓ-fields. Our main
theorem precisely determines the indexing set of Fℓ-fields, and yields the constant term of the main
identity of [CT13b].

Our work has an earlier antecedent in the proof of the Scholz reflection principle, as presented
for example in Washington’s book [Was97]. Let K,Kz, and K ′ be as described previously. The
technical heart of this paper is the Kummer pairing of Corollary 3.2, together with its consequence
Proposition 3.5. Our variant of the pairing relates the ray class group Clb(Kz)/Clb(Kz)

ℓ (for an
ideal b to be described) with a subgroup of K×

z /(K×
z )ℓ known as an arithmetic Selmer group.

Applying a theorem of Hecke will allow us to conclude, in contrast to the situation in [Was97], that
this pairing is perfect.

It is also Galois equivariant, so we can isolate pieces of the ray class group and Selmer group
which ‘come from’ subfields of Kz: the Selmer group comes from K (Proposition 3.4), and the ray
class group comes from K ′ (Proposition 3.6). In Proposition 3.7 we will see directly that this ray
class group counts Fℓ-fields. On the Selmer side our argument will be less direct: computations from
previous work yield Proposition 3.5, relating the size of this Selmer group to |Cl(K)/Cl(K)ℓ|. This
latter class group counts the Dℓ-fields enumerated in our main theorems, as we recall in Lemma
2.8.

In Section 2 we establish a variety of preliminary results on the arithmetic of Dℓ and Fℓ-
extensions. The most involved result is Theorem 2.12, which guarantees that the Galois closure E′

of each Fℓ-field E we count contains K ′, as required for our main theorems to make sense.
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In Section 3 we study the Kummer pairing as described above. We wrap up the proofs in Section
4; essentially the only part remaining is to compute the discriminants of the Fℓ-fields being counted.
Finally, in Section 5 we describe some numerical tests of our results, accompanied by a comment
on the Pari/GP program (available from the third author’s website) used to generate them.
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2. Preliminaries

In this section we introduce some needed machinery and notation, and prove a variety of results
about the Dℓ- and Fℓ-fields counted by our theorems. Throughout, ℓ is a fixed odd prime.

2.1. Group theory. We write Cr for the cyclic group of order r and Dr for the dihedral group of
order 2r. When r = ℓ is an odd prime, we write Fℓ for the Frobenius group defined in (1.2). The
Frobenius group may be realized as the group of affine transformations x 7→ ax + b over Fℓ with
a ∈ F×

ℓ and b ∈ Fℓ. The subgroup generated by σ (equivalently, the subgroup of translations) is
normal, and all nontrivial proper normal subgroups contain 〈σ〉.

The following results are standard and easily checked (granting the basic results of class field
theory), and so we omit their proofs.

Lemma 2.1. Suppose that K ⊂ K ′ ⊂ K ′′ is a tower of field extensions, with K ′/K, K ′′/K ′, and
K ′′/K all Galois, and write τ and σ for elements of Gal(K ′/K) and Gal(K ′′/K ′) respectively.
Then:

(1) Gal(K ′/K) acts on Gal(K ′′/K ′) by conjugation; for τ ∈ Gal(K ′/K), σ ∈ Gal(K ′′/K ′), the
action is defined by τστ−1 := τ̃στ̃−1 for an arbitrary lift τ̃ of τ to Gal(K ′′/K).

(2) If further K ′′ corresponds via class field theory to an ℓ-torsion quotient Cla(K
′)/B of a ray

class group of K ′, on which τ ∈ Gal(K ′/K) acts by τ(x) = xa for some a ∈ F×
ℓ , then the

conjugation action of Gal(K ′/K) on Gal(K ′′/K ′) is given by τστ−1 = σa.

2.2. Background on conductors. We recall some basic facts about conductors of extensions of
local and global fields, following [Ser67].

Definition 2.2. Let L/K be a finite abelian extension of local fields. Let p be the maximal ideal of
ZK . We define the local conductor f(L/K) to be the least integer n so that

1 + pn ⊆ NL/K(L×) .

The local conductor thus gives us information about the ramification type of L/K. In particular:

Proposition 2.3. (1) L/K is unramified if f(L/K) = 0, tamely ramified if f(L/K) = 1, and
wildly ramified if f(L/K) > 1.

(2) If M/L/K is a tower of extensions of local fields with M/K abelian and L/K unramified,
then f(M/K) = f(M/L).

If K = Qp, we will sometimes write f(L) rather than f(L/Qp). Also, if L/K is an abelian
extension of global fields, p a prime of K and P a prime of L above p, we will sometimes write
fp(L/K) for f(LP/Kp), since this does not depend on P. Here, LP and Kp denote the P-adic and
p-adic completions of L and K, respectively.
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Definition 2.4. Let L/K be a finite abelian extension of global fields, set

f0(L/K) =
∏

p

pfp(L/K) ,

and let f∞(L/K) denote the set of real places of K ramified in L. The global conductor of L/K is
defined to be the modulus f(L/K) = f0(L/K)f∞(L/K).

Proposition 2.5. If L/Q is a finite abelian extension, then f0(L/Q) is the ideal of Z generated by
the least number n so that L ⊆ Q(ζn).

Proposition 2.6. If L/K be a quadratic extension of global fields, then f0(L/K) = Disc(L/K).

2.3. The field diagram. We fix a primitive ℓth root of unity ζℓ and a primitive root g (mod ℓ).

Let ℓ∗ = (−1)
ℓ−1
2 ℓ, so that Q(

√
ℓ∗) is the unique quadratic subfield of Q(ζℓ).

Let D be a fundamental discriminant, and let K = Q(
√
D), where we assume that D 6= ℓ∗

(although we could presumably handle this case as well).
Write Kz = K(ζℓ), with [Kz : Q] = 2(ℓ− 1) and Γ = Gal(Kz/Q) ∼= C2 × (Z/ℓZ)×. By Kummer

theory, degree ℓ abelian extensions of Kz are all of the form Kz(α
1/ℓ) for some α ∈ Kz. Write τ

and τ2 for the elements of Γ fixing K and Q(ζℓ) respectively, with τ(ζℓ) = ζgℓ , and τ2 nontrivial on
K. We also write

(2.1) T = {τ − g, τ2 + 1}, T ∗ = {τ − 1, τ2 + 1} ⊆ Fℓ[Γ] .

The mirror field K ′ of K is the fixed field of τ2τ
ℓ−1
2 ; more explicitly,

(2.2) K ′ = Q
(
(ζℓ − ζ−1

ℓ )
√
D
)
= Q(ζℓ + ζ−1

ℓ )
(√

−D
(
4− (ζℓ + ζ−1

ℓ )2
))

.

In particular, K ′ is a quadratic extension of the maximal totally real subfield of Q(ζℓ), it is cyclic
of degree ℓ − 1 over Q, with Galois group generated by the restriction of τ to K ′, and its unique
quadratic subfield is equal to Q(

√
ℓ∗) if ℓ ≡ 1 (mod 4) and to Q(

√
Dℓ∗) if ℓ ≡ 3 (mod 4).

We thus have the following diagrams of fields in the ℓ ≡ 1 (mod 4) and ℓ ≡ 3 (mod 4) cases
respectively.

Kz = K(ζℓ)

τ

τ
ℓ−1
2 τ2

τ2

ττ2

Kz = K(ζℓ)

τ

τ
ℓ−1
2 τ2

τ2

K ′ Q(ζℓ)

τ

K ′ Q(ζℓ)

τ
Q(

√
Dℓ∗) K = Q(

√
D) Q(

√
ℓ∗) K = Q(

√
D) Q(

√
Dℓ∗) Q(

√
ℓ∗)

Q Q

The mirror field of Q(
√
Dℓ∗) is fixed by (ττ2)

ℓ−1
2 τ2, which is equal to τ

ℓ−1
2 τ2 if ℓ ≡ 1 (mod 4) and

to τ
ℓ−1
2 if ℓ ≡ 3 (mod 4). Hence if ℓ ≡ 1 (mod 4) then the fields K and Q(

√
Dℓ∗) share the same

mirror field, and if ℓ ≡ 3 (mod 4) they do not. If ℓ = 3 then K ′ = Q(
√
Dℓ∗) and Q(ζℓ) = Q(

√
ℓ∗),

so the second row of the diagram should be identified with the third.
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Notation for splitting types. We write (as is fairly common) that a prime p of a field K has
splitting type (f e1

1 f e2
2 . . . f

eg
g ) in L/K if pZL = Pe1

1 Pe2
2 · · ·Peg

g with f(Pi|p) = fi for each i.

2.4. Selmer groups of number fields. In Section 3 our results will be phrased in terms of the
ℓ-Selmer group, which measures the failure of the local-global principle for local ℓth powers to be
global ℓth powers. We recall the relevant terminology here; see also [Coh00], §5.2.2.

Definition 2.7. Let L be a number field. The group of ℓ-virtual units Vℓ(L) consists of all u ∈ L×

for which uZL = aℓ for some fractional ideal a of L, or equivalently all u ∈ L× for which vp(u) is
divisible by ℓ for all primes p of L. The ℓ-Selmer group is the quotient Sℓ(L) = Vℓ(L)/L

×ℓ.

If L = Kz then the ℓ-Selmer group is a finite ℓ-group, and it fits into a split exact sequence

(2.3) 1 → U(Kz)

U(Kz)ℓ
→ Sℓ(Kz) → Cl(Kz)[ℓ] → 1

of Fℓ[Γ]-modules.

In addition we write b = (1−ζℓ)
ℓZKz , and for each Γ-invariant ideal c of ZKz dividing b we write

(2.4) Rc = Clc(Kz)/Clc(Kz)
ℓ, Gc = Rc[T ] ,

where T has been defined above. (For any Fℓ[Γ]-module M , M [T ] denotes the subgroup annihilated
by all the elements of T .) Because ℓ is totally ramified in Kz, any such c must be of the form
(1− ζℓ)

aZKz for some integer a ≤ ℓ.

2.5. The arithmetic of Dℓ-extensions. Our main theorems relate counts ofDℓ- and Fℓ-extensions
of given discriminant. These fields will be constructed as subfields of their Galois closures, and our
next results (and Proposition 3.7) establish the connection between these two ways of counting
fields.

Lemma 2.8. Let D be a fundamental discriminant. Then the set of Dℓ-fields of discriminant D
ℓ−1
2

is equal to the set of degree ℓ subfields of unramified cyclic degree ℓ extensions L/Q(
√
D), and each

prime dividing ℓ has splitting type (1212 · · · 121) in each such Dℓ-field.

In particular, if k = Q(
√
D), then up to isomorphism there are 1

ℓ−1 |Cl(k)/Cl(k)ℓ| of them.

Recall that our convention of writing discriminants in the form Disc(F ) = (−1)r2(F )|Disc(F )|
specifies the number of complex embeddings of each such field.

Proof. This can be extracted from Theorem 9.2.6, Proposition 10.1.26, and Theorem 10.1.28 of
[Coh00]. �

Remark 2.9. Our lemma does not count Dℓ-fields of discriminant (4D)
ℓ−1
2 arising from degree ℓ

extensions of Q(
√
D) which are ramified at 2. An example of such a field is the field generated by

a root of x3 − x2 − 3x+ 5 of (non-fundamental) discriminant −2267.
Related considerations also occur on the Fℓ side; for example, the F5-field generated by a root

of x5 − 2x4 + 4x3 + 12x2 − 24x+ 10, of discriminant (−1)22453532, in which 2 is totally ramified,
is a non-example of a field counted by our results.
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2.6. The arithmetic of Fℓ-extensions. We now study the arithmetic of Fℓ-extensions as well as
the mirror fields K ′. The section concludes with Theorem 2.12, which states that if E is an Fℓ-field
of appropriate discriminant then its Galois closure must contain K ′.

Lemma 2.10. Let D 6= 1,±ℓ be a fundamental discriminant, and let K ′ be the mirror field of
K := Q(

√
D). Then we have

eℓ(K
′/Q) =

{
ℓ− 1 if ℓ ∤ D or ℓ ≡ 1 (mod 4) ,

(ℓ− 1)/2 if ℓ | D and ℓ ≡ 3 (mod 4) ,

Disc(K ′) =





ℓℓ−2(−D)(ℓ−1)/2 when ℓ ∤ D ,

ℓℓ−2(−D/ℓ)(ℓ−1)/2 when ℓ | D and ℓ ≡ 1 (mod 4) ,

ℓℓ−3(−D/ℓ)(ℓ−1)/2 when ℓ | D and ℓ ≡ 3 (mod 4) ,

and ep(K
′/Q) = 2 for each prime p 6= ℓ dividing D.

Proof. Any prime p 6= ℓ dividing D is unramified in both Kz/K and Kz/K
′, so the formula for

vp(Disc(K ′)) follows by transitivity of the discriminant.
If ℓ ∤ D, primes above ℓ are totally ramified in Q(ζℓ)/Q, hence in Kz/K, hence not in Kz/K

′,

hence in K ′/Q. If ℓ | D and ℓ ≡ 1 (mod 4), this argument with K replaced by Q(
√
ℓ∗D) yields

the same result. Finally, if ℓ | D and ℓ ≡ 3 (mod 4), then Q(
√
Dℓ∗) is unramified at ℓ and is

a subextension of K ′, so eℓ(K
′/Q) = (ℓ − 1)/2. In each of these cases, vℓ(Disc(K ′)) is uniquely

determined by (2.5) below.

The power of −1 in Disc(K ′) follows from the formula K ′ = Q((ζℓ−ζ−1
ℓ )

√
D); since K ′ is Galois,

it is either totally real or totally complex. �

Lemma 2.11. Suppose that F/Q is a Cℓ−1-field, with |Disc(F )| equal to |D| ℓ−1
2 times some (positive

or negative) power of ℓ for a fundamental discriminant D. Then F is equal to the mirror field of

Q(
√
D) or Q(

√
ℓ∗D), with discriminant given by Lemma 2.10.

In other words, if F has the same discriminant and signature as a mirror field K ′, then F ∼= K ′.
If local exceptions are allowed at ℓ and infinity, then F must be one of the fields K ′ enumerated in
Lemma 2.10, and knowing the discriminant and signature suffices to determine which.

Proof. First of all, we claim that ep(F/Q) is uniquely determined by Disc(F ) for each prime p. If
p 6= 2, then p is not wildly ramified in F , and ep(F/Q) may be determined from the formula

(2.5) vp(Disc(F )) = (ℓ− 1)
(
1− 1

ep(F/Q)

)
.

If p = 2 is ramified in F , then v2(Disc(F )) equals either ℓ−1 or 3(ℓ−1)/2 and the ramification is
wild. There is a unique intermediate field Q ⊆ F ′ ⊆ F with [F : F ′] = 2 containing the inertia field.
We claim that v2(Disc(F ′)) = 0: if not, by transitivity of the discriminant v2(Disc(F ′)) = (ℓ−1)/4,
which would imply that 2 is ramified in F ′ with e2(F

′/Q) = 2 by the analogue of (2.5), which is
absurd as 2 | [F ′ : Q]. Therefore v2(Disc(F ′)) = 0 and e2(F/Q) = 2.

We also note that each other prime p 6∈ {2, ℓ} which ramifies in F satisfies ep(F/Q) = 2 and p is
unramified in F ′.

The inertia groups generate Gal(F/Q) because they generate a subgroup of Gal(F/Q) whose
fixed field is everywhere unramified. If ℓ ≡ 1 (mod 4) the inertia group at ℓ must therefore be all
of Cℓ−1. If ℓ ≡ 3 (mod 4) the inertia group could be the full Galois group or its index 2 subgroup,
and these two cases may be distinguished by vℓ(Disc(F )).
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Write D1 = ℓ|D| if ℓ ∤ D and D1 = |D| if ℓ | D. By Proposition 2.5 we have F ⊆ Q(ζD1), as we
see by computing local conductors: each prime p 6= ℓ is unramified in F ′, so that by Propositions
2.3 and 2.6 and transitivity of the discriminant we have fp(F ) = vp(Disc(FP/F

′
p)) = vp(D), where p

and P are primes of F ′ and F above p and p respectively. Moreover, the prime ℓ is tamely ramified
in F so that fℓ(F ) = 1 by Proposition 2.3.

Write Gal(Q(ζD1)/Q) as
∏

pap ||D1
(Z/pap)× and Gal(Q(ζD1)/F ) = A ⊂ Gal(Q(ζD1)/Q). For each

p, A ∩ (Z/pap)× is the inertia group of primes above p in Q(ζD1/F ), so that multiplicativity of
ramification degrees implies that [(Z/pap)× : A ∩ (Z/pap)×] = ep(F/Q).

Write Bp := (Z/pap)× and B′
p := A ∩ Bp for each p. For p 6∈ {2, ℓ} B′

p is the unique index 2
subgroup of Bp, and B′

ℓ is either trivial or the unique order 2 subgroup of Bℓ, as determined above
by vℓ(Disc(F )). B′

2 is of index 2 in B2; if 4 || D, then B′
2 is uniquely determined, and if 8 || D there

are two possibilities for B′
2. We claim that this information uniquely determines A, except in the

8 || D case where both possibilities can occur. Since the mirror fields of Lemma 2.10 satisfy all the
same properties, this claim establishes the lemma.

The claim is easily checked: There is a unique subgroup B ⊆ ∏
p 6=ℓBp of index 2 containing∏

p 6=ℓB
′
p; it consists of vectors (bp)p 6=ℓ for which bp 6∈ B′

p for an even number of p. Moreover,

Bℓ contains a unique element bℓ of order 2. If eℓ = ℓ − 1, then A must consist of {1} × B and
{bℓ} ×

(∏
p 6=ℓBp − B

)
. If eℓ = ℓ−1

2 , then A = {1, bℓ} × B; to see that no other ℓ-component is

possible, we use the fact that ℓ ≡ 3 (mod 4) to see that Bℓ contains no elements of order 4. �

At this point we highlight the Brauer relation (see [FT93, Theorems 73 and 75]): If E/Q is a
degree ℓ extension with Galois closure E′ with Gal(E′/Q) ∼= Fℓ, and F is the Cℓ−1 subextension of
E′, then

(2.6) ζ(s)ℓ−1ζE′(s) = ζE(s)
ℓ−1ζF (s) ,

which implies that

(2.7) Disc(E′) = Disc(E)ℓ−1Disc(F ) .

(This relation also holds true for the infinite place.) This follows from a computation involving the
characters of Fℓ.

This relation also implies that Disc(E) = Disc(F )N (f(E′/F )), where f(E′/F ) is the conductor
of the abelian extension E′/F .

We can now conclude that, given suitable conditions on Disc(E), F must be a mirror field. Later
we will apply this to count these Fℓ-fields using class field theory.

Theorem 2.12. Suppose that E/Q is an Fℓ-field with Disc(E) equal to (−D)
ℓ−1
2 times an arbitrary

power of ℓ for a fundamental discriminant D. Let E′ be the Galois closure of E, and let F/Q be
the unique subextension of degree ℓ− 1.

Then E′/F is unramified away from the primes dividing ℓ, and F is equal to the mirror field K ′

of Q(
√
D).

Proof. For the first claim, it suffices to prove that no prime p 6= ℓ can totally ramify in E/Q. This
is immediate for primes p 6∈ {2, ℓ}, as vp(E) < ℓ − 1. However, the case p = 2 is more subtle:
Remark 2.9 illustrates that it cannot be treated by purely local considerations.

So suppose to the contrary that 2 is totally ramified in E, so that 4 || D. We first claim that 2
is unramified in E/E′ and therefore (because ℓ and ℓ − 1 are coprime) also in F/Q. To see this,
we work locally. Any totally and tamely ramified extension of Q2 is of the form Q2(α), where α
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is a root of xe − π, where π is a uniformizer of Q2. (See [Lan94], Proposition 12 in II, §5.) Such
extensions do not ramify further when we pass to the Galois closure.

For every other prime p 6= 2, ℓ dividing D, primes above p are unramified in E′/F , so that (2.6)
and (2.5) imply that ep(F/Q) = 2.

Therefore, |Disc(F )| equals (|D|/4) ℓ−1
2 times a power of ℓ, so that Disc(F ) is determined by

Lemma 2.11. In particular, since −D/4 is a fundamental discriminant and D/4 is not, F is totally
real if −(−D/4) = D/4 is positive, and totally imaginary if D is negative. However, the condition
for Disc(E) implies that E′, and therefore F , is totally real if and only if −D is positive. We
therefore have a contradiction.

Now we conclude from (2.7) that Disc(E) = ℓcDisc(F ) for some c ≥ 0, so that F satisfies the
conditions of Lemma 2.11. This implies the second claim; when ℓ ≡ 3 (mod 4), the possibility that

K ′ is the mirror field of Q(
√
ℓ∗D) is ruled out because the signature of E determines that of F . �

3. The Kummer pairing and Fℓ-fields

In this section we introduce the Kummer pairing and use it to obtain two different expressions
for the size of the group Gb (introduced at the end of Section 2.4), each of which corresponds to
one of the field counts in the main theorems. Ideas for this section were contributed by Hendrik
Lenstra, and we thank him for his help.

We begin with the following consequence of a classical result of Hecke.

Proposition 3.1. Suppose that Nz = Kz( ℓ
√
α). Then we have f(Nz/Kz) | b if and only if α is an

ℓ-virtual unit.

Proof. See Theorem 10.2.9 of [Coh00]. �

Corollary 3.2. Let µℓ denote the group of ℓth roots of unity. There exists a perfect, Γ-equivariant
pairing of Fℓ[Γ]-modules

Rb × Sℓ(Kz) → µℓ .

Proof. This is simply the Kummer pairing: let M/Kz be the abelian ℓ-extension corresponding
by class field theory to Rb, which is the compositum of all cyclic degree ℓ extensions of Kz with
conductors dividing b. If a ∈ Rb, we denote as usual by σa ∈ Gal(M/Kz) the image of a under the
Artin map. Thus, by the above proposition, if α ∈ Sℓ(Kz) and α is virtual unit representing α, we
have Kz( ℓ

√
α) ⊂ M , and we define the pairing by

(a, α) 7→ σa(
ℓ
√
α)/ ℓ

√
α ∈ µℓ ,

which does not depend on any choice of representatives. It is classical and immediate that this
pairing is perfect and Γ-equivariant, e.g., that 〈τ1(a), τ1(α)〉 = τ1(〈a, α〉) for any τ1 ∈ Γ. �

Corollary 3.3. We have a perfect pairing

Gb × Sℓ(Kz)[T
∗] → µℓ .

In particular, we have
|Gb| = |Sℓ(Kz)[T

∗]| .
Proof. Applying the Γ-equivariance of the pairing of the preceding corollary, and recalling that
τ(ζℓ) = ζgℓ , for any j we obtain a perfect pairing

Rb[τ − gj ]× Sℓ(Kz)[τ − g1−j ] → µℓ .

Taking j = 1 yields a perfect pairing between Rb[τ − g] and Sℓ(Kz)[τ − 1], and similarly, since τ2
leaves ζℓ fixed, we obtain a perfect pairing betweenGb = Rb[τ−g, τ2+1] and Sℓ(Kz)[τ−1, τ2+1]. �



IDENTITIES FOR FIELD EXTENSIONS 11

Proposition 3.4. We have Sℓ(Kz)[T
∗] ≃ Sℓ(K).

Proof. We have an evident injection

Sℓ(K) −֒→ Sℓ(Kz)[τ − 1] ,

which is also surjective: if α ∈ Kz satisfies τ(α)/α = γℓ for some γ, x ∈ Kz, then NKz/K(γ)ℓ =
NKz/K(γ) = 1 (since ζℓ /∈ K). By Hilbert 90 applied to Kz/K there exists β ∈ Kz with γ = β/τ(β),

hence τ(αβℓ)/(αβℓ) = 1, so a = αβℓ is a virtual unit of Kz, and also of K because ([Kz : K], ℓ) = 1.
Therefore Sℓ(Kz)[T

∗] = Sℓ(Kz)[τ−1, τ2+1] ≃ Sℓ(K)[τ2+1]. On the other hand we have trivially

Sℓ(K) = Sℓ(K)[τ2 + 1]⊕ Sℓ(K)[τ2 − 1] ,

and we claim that Sℓ(K)[τ2 − 1] is trivial: if α ∈ K satisfies τ2(α) = αγℓ for some γ ∈ K, then
applying τ2 again we deduce that (γτ2(γ))

ℓ = 1 and thus γτ2(γ) = 1, so that by a trivial case of
Hilbert 90, γ = τ2(β)/β for some β ∈ K, hence τ2(α/β

ℓ) = α/βℓ. Thus α/βℓ is a virtual unit of Q
equivalent to α, and since Sℓ(Q) is trivial this proves our claim and hence the proposition. �

We therefore have the equality |Gb| = |Sℓ(K)|, which we use to obtain the following:

Proposition 3.5. We have

(3.1) |Gb| =
{
|Cl(K)/Cl(K)ℓ| if D < 0 ,

ℓ|Cl(K)/Cl(K)ℓ| if D > 0 .

Proof. By the exact sequence (2.3) and Proposition 2.12 of [CDyDO02], the proofs of which adapt
to K without change, and since dimFℓ

(U(K)/U(K)ℓ) = 1−r2(D), where (as usual) r2 = 1 if D < 0
and r2 = 0 if D > 0, we obtain

|Sℓ(K)| = ℓ1−r2(D)|Cl(K)/Cl(K)ℓ| ,
yielding the proposition. �

Note that the last statement generalizes Proposition 7.7 of [CM11].

By Lemma 2.8 it thus follows that Dℓ-fields can be counted in terms of Gb. We now show that
the same is true of Fℓ-fields. We begin by showing that Gb can be ‘descended’ to K ′, generalizing
Proposition 3.4 of [CT14]:

Proposition 3.6. Let c = (1− ζℓ)
aZKz be any Γ-invariant ideal dividing b.

(1) There is an isomorphism

Clc(Kz)

Clc(Kz)ℓ
[T ] → Clc′(K

′)

Clc′(K ′)ℓ
[τ − g] ,

where K ′ is the mirror field of K = Q(
√
D) and c′ = c ∩K ′.

(2) We have
(a) c′ = pa if either ℓ is unramified in K or ℓ ≡ 1 (mod 4), where p is the unique prime of K ′

above ℓ;
(b) c′ = p⌈

a
2
⌉ if ℓ is ramified in K and ℓ ≡ 3 (mod 4), where q = p or q = pp′ depending on

whether there is a unique prime p or two distinct primes p and p′ of K ′ above ℓ.

Proof. Since τ2 and τ (ℓ−1)/2 each act by −1 on Gc, τ
(ℓ−1)/2τ2 acts trivially. Writing e = 1+τ2τ (ℓ−1)/2

2 ,

decomposing 1 = e+(1−e) = 1+τ2τ (ℓ−1)/2

2 + 1−τ2τ (ℓ−1)/2

2 in Fℓ[Γ], and noting that Gc is annihilated by
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1− e, we see that the elements of Gc are exactly those elements of Clc(Kz)
Clc(Kz)ℓ

that can be represented

by an ideal of the form aτ2τ
(ℓ−1)/2(a), which we check is of the form a′ZKz for some ideal a′ of K ′.

As we check, we obtain a well-defined, injective map Gc → Cl
c′
(K′)

Cl
c′
(K′)ℓ

[τ − g]. To see that it is

surjective, observe that any class in
Cl

c′
(K′)

Cl
c′
(K′)ℓ

[τ − g] is represented by I ∼ I1+ℓ for some ideal I of

ZK′ , and with a = I(1+ℓ)/2 we have I1+ℓZKz = aτ2τ
(ℓ−1)/2(a).

For (2a), recall that ℓ is totally ramified in K ′ by Lemma 2.10, so that we must show that

c ∩K ′ = pa. As ℓ is unramified in Q(
√
D), we have eℓ(Kz/Q) = ℓ − 1, and if P is a prime of Kz

above p then vp(x) = vP(x) for any x ∈ K ′, hence the result.

For (2b), Lemma 2.10 implies that ℓ has ramification index ℓ−1
2 in K ′, and hence that each

prime of K ′ above ℓ has ramification index 2 in Kz/K
′. That is, 2vp(x) = vP(x), and the result

follows. �

We can now obtain the desired bijection for Fℓ-fields, adapting Proposition 4.1 in [CT14].

Proposition 3.7. For each Γ-invariant ideal c | b, there exists a bijection between the following
two sets:

• Subgroups of index ℓ of Gc =
Clc(Kz)
Clc(Kz)ℓ

[T ].

• Degree ℓ extensions E/Q (up to isomorphism), whose Galois closure E′ has Galois group
Fℓ and contains K ′, with the conductor f(E′/K ′) dividing c′ = c∩K ′, such that τστ−1 = σg

for any generator σ of Gal(E′/K ′).

Remark 3.8. Recall that the element τστ−1 ∈ Gal(E′/K ′) is well defined by Lemma 2.1. Also,
note that f(E′/K ′) is Γ-invariant, because E′ is fixed by τ2, courtesy of Proposition 3.6.

Proof. By Proposition 3.6, it suffices to exhibit a bijection between the set of field extensions as

above, and subgroups of index ℓ of G′
c′ :=

Cl
c′
(K′)

Cl
c′
(K′)ℓ

[τ − g], where c′ = c ∩K.

Given such a subgroup, we produce a degree-ℓ extension of the desired type. Write A′ :=
Clc′(K

′)/Clc′(K
′)ℓ, and decomposing A′ into eigenspaces for the action of τ (as we can, because

the order of τ is coprime to ℓ) write A′ ∼= G′
c′ ×A′′ where A′′ is the sum of the other eigenspaces.

Subgroups B ⊆ G′
c′ of index ℓ are in bijection with subgroups B′ = B × A′′ ⊆ A′ of index ℓ

containing A′′. For each B′, class field theory gives a unique extension E′/K ′, cyclic of degree ℓ,
of conductor dividing c′, for which the Artin map induces an isomorphism G′

c′/B
′ ∼= Gal(E′/K ′).

Furthermore, E′ is Galois over Q because Gc′ and B′ are τ -stable. Each B yields a distinct E′,
and as the action of Gal(K ′/Q) on the class group matches the conjugation action of Gal(K ′/Q)
on Gal(E′/K ′) we have Gal(E′/Q) ≃ Fℓ with presentation as in the second bullet point. The
extension E may be taken to be any of the isomorphic degree ℓ subextensions of E′.

Finally we note that all the steps are reversible, establishing the desired bijection. �

Remark 3.9. We now justify the remark made after the statement of our main results concerning
the notation * and the primitive roots ±g.

Suppose that ℓ ≡ 1 (mod 4), that ℓ ∤ D, and that τ is a generator of Gal(Kz/K), so that ττ2 is

a generator of Gal(Kz/Q(
√
Dℓ∗)). Then both K and Q(

√
Dℓ∗) = Q(

√
Dℓ) have the same mirror

field.
Replacing K with Q(

√
Dℓ) is equivalent to replacing τ with ττ2 and thus T = {τ−g, τ2+1} with

{ττ2 − g, τ2 + 1}, or equivalently, {τ + g, τ2 + 1}. Thus, if we study Dℓ-extensions with resolvent

Q(
√
Dℓ), where τ is still regarded as a generator of Gal(Kz/Q(

√
D)), we obtain the same results

with g replaced with −g. In particular, in the previous lemma we obtain field extensions E with
τστ−1 = σ−g.
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We now show that the set of conductors f(E′/K ′) that can occur in Proposition 3.7 is quite
limited.

Proposition 3.10. The conductors f(E′/K ′) of fields counted in Proposition 3.7 are restricted to
the following values:

• If ℓ ∤ D, vℓ(f(E
′/K ′)) ∈ {0, 2}.

• If ℓ | D and ℓ ≡ 1 (mod 4), vℓ(f(E
′/K ′)) ∈ {0, ℓ+3

2 }.
• If ℓ | D and ℓ ≡ 3 (mod 4), vℓ(f(E

′/K ′)) ∈ {0, 2, ℓ+5
2 }.

Proof. We work with the extensions E′′/Kz which correspond to the extensions E′/K ′ by Propo-
sition 3.6. Unraveling the definition of Gc, we see that the conductor of such an extension can be
equal to (1− ζℓ)

aZKz if and only if
1 + P a

1 + P a+1
[T ] 6= 0,

where P = (1− ζℓ)ZKz if this ideal is prime, and P is one of the two primes dividing (1− ζℓ)ZKz

otherwise. The case a = 0 is not excluded in any case listed above; so assuming that a ≥ 1, we use
the inverse Artin-Hasse logarithm and exponential maps, in exactly the same way as on p. 177 of
[CDyDO02], to conclude that

(3.2)
P a

P a+1
[T ] 6= 0.

Necessary conditions for (3.2) were given in Theorem 1.2 of the first author, Diaz y Diaz, and
Olivier’s study [CDyDO03] of cyclotomic fields. In all cases P and Kz have the same meaning here
and in [CDyDO03].

• If ℓ ∤ D, then let K have the same meaning as here, and consider the τ − g eigenspace with
e(p) = 1. Then Theorem 1.2 implies that a ≡ 2 (mod ℓ− 1).

• If ℓ | D and D ≡ 1 (mod 4), let K of [CDyDO03] be Q(
√
Dℓ), so that the T -eigenspace lies

within the τ − g(ℓ+1)/2 eigenspace. Then Theorem 1.2 implies that a ≡ ℓ+3
2 (mod ℓ− 1).

• If ℓ | D and D ≡ 3 (mod 4), then again K has the same meaning in [CDyDO03] as here;
now e(p) = 2, so that a ≡ 2 (mod ℓ−1

2 ).

So, given that a ≤ ℓ − 1, we obtain respectively in these three cases for f(E′′/Kz) that a ∈ {0, 2},
a ∈ {0, ℓ+3

2 }, and a ∈ {0, 2, ℓ+3
2 }. By Proposition 3.6 the corresponding values for f(E′′/Kz) are a,

a, and 2⌈a2⌉, so a ∈ {0, 2}, a ∈ {0, ℓ+3
2 }, and a ∈ {0, 2, ℓ+5

2 } respectively. �

4. Proofs of the Main Results

Proof of Theorem 1.2. Let K = Q(
√
D) with D < 0. The key to the proof is the identity |Gb| =

|Cl(K)/Cl(K)ℓ| of Proposition 3.5. By Lemma 2.8, 1
ℓ−1(|Gb|−1) equals the number ofDℓ extensions

with discriminant (−1)
ℓ−1
2 D

ℓ−1
2 . Simultaneously, Propositions 3.6 and 3.7 imply that 1

ℓ−1(|Gb|− 1)

is the number of Fℓ extensions whose Galois closure E′ contains the mirror field K ′, with f(E′/K ′) |
b ∩K, and with τστ−1 = σg as described there. Theorem 2.12 implies that the Galois closure of
each Fℓ-field described in the theorem must contain K ′, so that it remains only to prove that the
condition f(E′/K ′) | b ∩K coincides with the discriminant conditions on the Fℓ-fields counted in
the theorem.

First assume that ℓ ≡ 1 (mod 4) or ℓ ∤ D (or both). Then Lemma 2.10 implies that Disc(K ′) =

ℓℓ−2(−D)
ℓ−1
2 or Disc(K ′) = ℓℓ−2(−D/ℓ)

ℓ−1
2 , if ℓ ∤ D or ℓ | D, respectively. Thus, we have

(4.1) vℓ(Disc(E′)) = ℓ(ℓ− 2) + (ℓ− 1)fp(E
′/K ′) ,
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where p is the unique (totally ramified) ideal of K ′ above ℓ. Writing k = fp(E
′/K ′), Propositions

3.6, 3.7, and 3.10 imply that the fields counted are precisely those with k ∈ {0, 2} or k ∈ {0, ℓ+3
2 } for

ℓ ∤ D and ℓ | D respectively, so that the Brauer relation (2.7) implies that vℓ(Disc(E)) ∈ {ℓ−2+k}
with k as above.

If instead ℓ ≡ 3 (mod 4) and ℓ | D, then we have Disc(K ′) = ℓℓ−3(−D/ℓ)
ℓ−1
2 and

(4.2) vℓ(Disc(E′)) ∈ {(ℓ− 3)ℓ+ (ℓ− 1)k : k ∈ {0, 2, (ℓ+ 5)/2} ,

with k 6= 2 because the ℓ-adic valuation of the discriminant of a degree ℓ field cannot be ℓ− 1.
For each prime q 6= ℓ dividing D, E′/K ′ is unramified at primes over q, so that by (2.7) we have

vq(Disc(E)) = vq(Disc(K ′)). Also, E must be totally real, because K ′ is and [E′ : K ′] is odd. Put

together, in all cases this shows that Disc(E) is equal to D
ℓ−1
2 times a power of ℓ as prescribed in

Theorem 1.2, finishing the proof. �

Proof of Theorem 1.3. The proof is essentially identical, now using the D > 0 case of Proposition

3.5, applying the identity ℓ · ℓa−1
ℓ−1 + 1 = ℓa+1−1

ℓ−1 , and obtaining the signature of E by (2.7). �

5. Numerical testing

Our work began with ℓ = 5, by inspecting the Jones-Roberts database of number fields [JR13]
and finding patterns which called for explanation. However, for ℓ > 5, this database does not
contain enough fields for a reasonable test, and does not include the Galois conditions featuring in
our theorems.

We therefore wrote a program using Pari/GP [PAR14] to compute the relevant number fields, for
which source code is available from the third author’s website1. A few comments on this program:

Thanks to the relation Disc(E) = Disc(F )N (f(E′/F )) given after (2.6), to enumerate Fℓ fields
(possibly with certain conditions, including discriminant and/or Galois restrictions), it is enough to
enumerate suitable Cℓ−1 fields F (which is very easy), and for each such field to enumerate suitable
conductors f of Cℓ-extensions E

′/F such that E′/Q is Galois. Luckily, these Galois conditions imply
that these suitable conductors are very restricted, since they must be of the shape f = na, where
n is an ordinary integer and a is an ideal of F divisible only by prime ideals of F which are above
ramified primes of Q, and in addition which must be Galois stable.

For each conductor f of this form, we compute the corresponding ray class group, and if it
has cardinality divisible by ℓ, we compute the corresponding abelian extension, and check which
subfields of degree ℓ of that extension satisfy our conditions.

Note that for our purposes, we only count the Fℓ-extensions that satisfy our conditions. Our
program can also compute them explicitly thanks to the key Pari/GP program rnfkummer, for
which the algorithm is described in detail in Chapter 5 of the first author’s book [Coh00].

Our numerical testing was moderately extensive for ℓ = 5 and ℓ = 7, and rather limited for
ℓ = 11 and ℓ = 13, as the complexity of our algorithms grows rapidly with ℓ. We verified our
results and found Fℓ-fields with all the powers of ℓ given in our main theorems, with the exception
of 134. The computational complexity of our algorithm severely limited the amount of testing we
could conduct with ℓ = 13; we speculate that the power of ℓ not found is uncommon but does exist.
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