M. Bhargava, Higher composition laws III: The parametrization of quartic rings, Annals of Mathematics, vol.159, issue.3, pp.1329-1360, 2004.
DOI : 10.4007/annals.2004.159.1329

M. Bhargava, The density of discriminants of quartic rings and fields, Annals of Mathematics, vol.162, issue.2, pp.1031-1063, 2005.
DOI : 10.4007/annals.2005.162.1031

H. Cohen, F. Diaz, M. Diaz, and . Olivier, On the density of discriminants of cyclic extensions of prime degree, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2002, issue.550, pp.169-209, 2002.
DOI : 10.1515/crll.2002.071

H. Cohen, F. Diaz, M. Diaz, and . Olivier, Cyclotomic extensions of number fields, Indagationes Mathematicae, vol.14, issue.2, pp.183-196, 2003.
DOI : 10.1016/S0019-3577(03)90003-6

H. Cohen, F. Diaz, M. Diaz, and . Olivier, Counting discriminants of number fields, Journal de Th??orie des Nombres de Bordeaux, vol.18, issue.3, pp.573-593, 2006.
DOI : 10.5802/jtnb.559

H. Cohen and A. Morra, Counting cubic extensions with given quadratic resolvent, Journal of Algebra, vol.325, issue.1, pp.461-478, 2011.
DOI : 10.1016/j.jalgebra.2010.08.027

URL : https://hal.archives-ouvertes.fr/hal-00463533

H. Cohen, Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics, 2000.

H. Cohen, Counting A4 and S4 number fields with given resolvent cubic In High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, volume 41 of Fields Inst, Commun. Amer. Math. Soc, pp.159-168, 2004.

H. Cohen and F. Thorne, Dirichlet series associated to quartic fields with given resolvent. ArXiv e-prints, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854664

H. Cohen and F. Thorne, On D ? -extensions of odd prime degree ?. In preparation (draft available upon request, p.2013
URL : https://hal.archives-ouvertes.fr/hal-01379473

H. Cohen and F. Thorne, Dirichlet series associated to cubic fields with given quadratic resolvent. Michigan Math, J, vol.63, issue.2, pp.253-273, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00854662

H. Darmon, F. Diamond, R. Taylorft93, ]. A. Fröhlich, M. J. et al., Fermat's last theorem In Elliptic curves, modular forms & Fermat's last theorem Algebraic number theory Iwasawa theory for p-adic representations, Algebraic number theory, pp.2-140, 1989.

N. Kaplan, J. Marcinek, and R. Takloo-bighash, Counting subrings of Z n of finite index. ArXiv e-prints, 2013.

S. Lang, Algebraic number theory, volume 110 of Graduate Texts in Mathematics, 1994.

J. Nakagawa, Orders of a quartic field, Memoirs of the American Mathematical Society, vol.122, issue.583, p.75, 1996.
DOI : 10.1090/memo/0583

J. Nakagawa, On the relations among the class numbers of binary cubic forms, Inventiones Mathematicae, vol.134, issue.1, pp.101-138, 1998.
DOI : 10.1007/s002220050259

J. Nakagawa and Y. Ohno, Unpublished preprint

Y. Ohno, A conjecture on coincidence among the zeta functions associated with the space of binary cubic forms, PAR14] PARI Group, Bordeaux. PARI/GP, version 2.6.2 (tested using version 2.5.1), 2014. Available from http, pp.1083-1094, 1997.
DOI : 10.1353/ajm.1997.0032

G. Poitou, Cohomologie galoisienne des modules finis, of Séminaire de l'Institut de Mathématiques de Lille. Dunod Uber die Beziehung der Klassenzahlen quadratischer Körper zueinander. Journal für die reine und angewandte Mathematik, pp.201-203, 1932.

J. Serre, Local class field theory, Algebraic Number Theory (Proc. Instructional Conf, pp.128-161, 1965.

J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat, pp.288-295, 1962.

C. Lawrence and . Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol.83, 1997.

A. Wiles, Modular Elliptic Curves and Fermat's Last Theorem, The Annals of Mathematics, vol.141, issue.3, pp.443-551, 1995.
DOI : 10.2307/2118559

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=