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Benôıt Libert1 and Damien Vergnaud2 ? ??

1 Université Catholique de Louvain – ICTEAM, Crypto Group
Place du Levant, 3 – 1348 Louvain-la-Neuve – Belgium

2 Ecole Normale Supérieure – C.N.R.S. – I.N.R.I.A.
45, Rue d’Ulm – 75230 Paris CEDEX 05 – France

Abstract. At Crypto’07, Goyal introduced the concept of Accountable Authority Identity-Based En-
cryption (A-IBE) as a convenient tool to reduce the amount of trust in authorities in Identity-Based
Encryption. In this model, if the Private Key Generator (PKG) maliciously re-distributes users’ de-
cryption keys, it runs the risk of being caught and prosecuted. Goyal proposed two constructions: the
first one is efficient but can only trace well-formed decryption keys to their source; the second one
allows tracing obfuscated decryption boxes in a model (called weak black-box model) where cheating
authorities have no decryption oracle. The latter scheme is unfortunately far less efficient in terms of
decryption cost and ciphertext size. The contribution of this paper is to describe a new construction
that combines the efficiency of Goyal’s first proposal with a simple weak black-box tracing mechanism.
The proposed scheme is the first A-IBE that meets all security properties (although traceability is only
guaranteed in the weak black-box model) in the adaptive-ID sense.

Keywords. Identity-Based Encryption, traceability, efficiency.

1 Introduction

Identity-based cryptography, first proposed by Shamir [43], alleviates the need for digital certificates used
in traditional public-key infrastructures. In such systems, users’ public keys are public identifiers (e.g. email
addresses) and the matching private keys are derived by a trusted party called Private Key Generator (PKG).
The first practical construction for Identity-Based Encryption (IBE) was put forth by Boneh and Franklin
[10] – despite the bandwidth-demanding proposal by Cocks [19] – and, since then, a large body of work
has been devoted to the design of schemes with additional properties or relying on different algorithmic
assumptions [28, 7, 8, 39, 45, 9, 25, 15, 11].

In spite of its appealing advantages, Identity-Based Encryption has not undergone rapid adoption as a
standard. The main reason is arguably the fact that it requires unconditional trust in the PKG: the latter
can indeed decrypt any ciphertext or, even worse, re-distribute users’ private keys. The key escrow problem
can be mitigated as suggested in [10] by sharing the master secret among multiple PKGs, but this inevitably
entails extra communication and infrastructure. Related paradigms [24, 3] strived to remove the key escrow
problem but only did so at the expense of losing the benefit of human-memorizable public keys: these models
get rid of escrow authorities but both involve traditional (though not explicitly certified) public keys that
are usually less convenient to work with than easy-to-remember public identifiers.

In 2007, Goyal [29] explored a new approach to deter rogue actions from authorities. With the Accountable
Authority Identity-Based Encryption (A-IBE) primitive, if the PKG discloses a decryption key associated
with some identity over the Internet, it runs the risk of being caught and sued by the user. A-IBE schemes
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achieve this goal by means of an interactive private key generation protocol between the user and the PKG.
For each identity, there are exponentially-many families of possible decryption keys. The key generation
protocol provides the user with a single decryption key while concealing to the PKG the family that this
key belongs to. From this private key, the user is computationally unable to find one from a different family.
Hence, for a given identity, a pair of private keys from distinct families serves as evidence of a fraudulent
PKG. The latter remains able to passively eavesdrop communications but is discouraged to reveal users’
private keys. Also, users cannot falsely accuse an honest PKG since they are unable to compute a new key
from a different family using a given key.

Prior Works. Two constructions were given in [29]. The first one (that we call Goyal -1 hereafter) builds on
Gentry’s IBE scheme [25] and, while efficient, only allows tracing well-formed decryption keys. This white-
box model seems unlikely to suffice in practice since malicious parties can rather release an imperfect and/or
obfuscated program that only decrypts with small but noticeable probability. The second scheme of [29]
(let us call it Goyal -2), which is constructed from the Sahai-Waters fuzzy IBE scheme [39], has a variant
providing weak black-box traceability: even an imperfect pirate decryption box can be traced (based on its
input/output behavior) back to its source although traceability is only guaranteed against dishonest PKGs
that have no decryption oracle in the attack game. However, Goyal -2 is somewhat inefficient as decryption
requires a number of pairing calculations that is linear in the security parameter. For the usually required
security level, ciphertexts contain more than 160 group elements and decryption calculates a product of
about 160 pairings.

Subsequently, Au et al. [4] described another A-IBE scheme providing retrievability (i.e., a property
that prevents the PKG from revealing more than one key for a given identity without exposing its master
key) but remained in the white-box model. More recently, Goyal et al. [30] modified the Goyal -2 system
using attribute-based encryption techniques [39, 31] to achieve full black-box traceability: unlike Goyal -2,
the scheme of [30] preserves security against dishonest PKGs that have access to a decryption oracle in the
model. While definitely desirable in practice, this property is currently achievable only at the expense of the
same significant penalty as in Goyal -2 [29] in terms of decryption cost and ciphertext size.

Our Contributions. We present a very efficient and conceptually simple scheme with weak black-box
traceability. We prove its security (in the standard model) under the same assumption as was used to prove
the security of Goyal -2. Decryption keys and ciphertexts consist of a constant number of group elements
and their length is thus linear in the security parameter λ (instead of quadratic as in Goyal -2). Encryption
and decryption take O(λ3)-time (compared to O(λ4) in Goyal -2) with only two pairing computations being
needed for decryption (against more than 160 in Goyal -2).

The system is analyzed the adaptive-ID model of [10], as opposed to the selective-ID security model
(where adversaries must choose the identity that will be their target at the outset of the game). In contrast,
one of the security properties (i.e., the infeasibility for users to frame innocent PKGs) was only established
in the selective-ID setting for known schemes in the black-box model (i.e., Goyal -2 and its fully black-box
extension [30]). Among such schemes, ours thus appears to be the first one that can be tweaked so as to
achieve adaptive-ID security against dishonest users.

Our scheme performs almost as well as Goyal -1 (the main overhead being a long master public key à la
Waters [45] to obtain the adaptive-ID security). In comparison with Goyal -1, that was only analyzed in a
white-box model of traceability, our system provides several other advantages.

As an extension to the proceedings version of this paper [36], we also show how to apply the idea of
our weak black-box tracing mechanism to Gentry’s IBE scheme. The resulting A-IBE system is obtained
by making a simple modification to the key generation protocol of Goyal -1 so as to perfectly hide the user’s
key family from the PKG’s view while preserving the efficiency of the whole scheme. Since the resulting
system inherits the efficiency of Gentry’s IBE scheme and the Goyal -1 white-box A-IBE scheme, it turns out
to be the most efficient weakly black-box A-IBE construction to date. Its (adaptive-ID) security is moreover
proved under a tight reduction (albeit under a strong assumption).

Finally, since detecting misbehaving PKGs is an equally relevant problem in IBE primitives and their
generalizations, we show how the underlying idea of previous schemes can be applied to one of the most prac-
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tical Identity-Based Broadcast Encryption (IBBE) realizations [12]. We also argue that the same technique
similarly applies in the context of attribute-based encryption [39, 31].

Organization. In the rest of the paper, Section 2 recalls the A-IBE security model defined in [29]. We first
analyze the basic version of our scheme in Section 3. Sections 4 and 5 describe and analyze the extensions
of our method to Gentry’s IBE scheme and the Boneh-Hamburg IBBE scheme, respectively.

2 Background and Definitions

Syntactic definition and security model. We recall the definition of A-IBE schemes and their security
properties as defined in [29].

Definition 1. An Accountable Authority Identity-Based Encryption scheme (A-IBE) is a tuple

(Setup,Keygen,Encrypt,Decrypt,Trace)

of probabilistic polynomial-time algorithms or protocols such that:

– Setup takes as input a security parameter and outputs a master public key mpk and a matching master
secret key msk.

– Keygen(PKG,U) is an interactive protocol between the public parameter generator PKG and the user U:
· the common input to PKG and U are: the master public key mpk and an identity ID for which the

decryption key has to be generated;
· the private input to PKG is the master secret key msk.

Both parties may use a sequence of private coin tosses as additional inputs. The protocol ends with U
receiving a decryption key dID as his private output.

– Encrypt takes as input the master public key mpk, an identity ID and a message m and outputs a
ciphertext.

– Decrypt takes as input the master public key mpk, a decryption key dID and a ciphertext C and outputs
a message.

– Trace given the master public key mpk, a decryption key dID, this algorithm outputs a key family number
nF or the special symbol ⊥ if dID is ill-formed.

Correctness requires that, for any outputs (mpk,msk) of Setup, any plaintext m and any identity ID, when-
ever dID ← Keygen(PKG(msk),U)(mpk, ID), we have

Trace
(
mpk, dID

)
6=⊥,

Decrypt
(
mpk, dID,Encrypt(mpk, ID,m)

)
= m.

The above definition is for the white-box setting. In a black-box model, Trace takes as input an identity
ID, the corresponding user’s well-formed private key dID and a decryption box D, modeled as a probabilistic
polynomial time algorithm, that successfully opens a non-negligible fraction ε of ciphertexts encrypted under
ID. The output of Trace is either “PKG” or “User” depending on which party is found guilty for having
crafted D.

Goyal formalized three security properties for A-IBE schemes. The first one is the standard notion of
privacy [10] for IBE systems. As for the other ones, the DishonestPKG game captures the intractability for
the PKG to create a decryption key of the same family as the one obtained by the user during the key
generation protocol. Finally, the DishonestUser game models the infeasibility for users to generate a key d(2)

ID

outside the family of the legally obtained one d(1)
ID .

Definition 2. An A-IBE scheme is deemed secure if all probabilistic polynomial time (PPT) adversaries
have negligible advantage in the following games.

1. The IND-ID-CCA game. For any PPT algorithm A, the model considers the following game, where
λ ∈ N is a security parameter:
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GameIND-ID-CCA
A (λ)

(mpk,msk)← Setup(λ)
(m0,m1, ID

?, s)← ADec,KG(find,mpk)∣∣∣∣∣∣∣∣
Dec - Input : (C, ID)

Output : Decrypt
(
mpk, dID, ID, C

)
KG - Input : ID 6= ID?

Output : Keygen(PKG(msk),A)(mpk, ID)
d?

$← {0, 1}
C? ← Encrypt(mpk, ID?,md?)
d← ADec,KG(guess, s, C?)∣∣∣∣∣∣∣∣

Dec - Input : (C, ID) 6= (C?, ID?)
Output : Decrypt

(
mpk, dID, ID, C

)
KG - Input : ID 6= ID?

Output : Keygen(PKG(msk),A)(mpk, ID)
return 1 if d = d? and 0 otherwise.

A’s advantage is
AdvIND-ID-CCA

A (λ) = |Pr[GameIND-ID-CCA
A = 1]− 1/2|.

The A-IBE scheme is termed IND-ID-CCA-secure if for all PPT algorithms A, the advantage of A defined
by the following experiment is a negligible function of λ.

The weaker definition of chosen-plaintext security (IND-ID-CPA) is formalized in the same way in [10] but
A is not granted access to a decryption oracle. In [16], Canetti, Halevi and Katz suggested relaxed notions
of IND-ID-CCA and IND-ID-CPA security where the adversary has to choose the target identity ID? ahead of
time (even before seeing the master public key mpk). This relaxed model is called “selective-ID” model (or
IND-sID-CCA and IND-sID-CPA for short).

2. The DishonestPKG game. Let A be a PPT algorithm. We consider the following games, where λ ∈ N is
a security parameter and ε is a second parameter (also given as input):

GameDishonestPKG-WB-CPA
A (λ)

(mpk, ID, s1)← A(setup, λ)
(d(1)

ID , s2)← Keygen(A(s1),·)(mpk, ID)
d
(2)
ID ← A(findkey, s1, s2)
return 1 if Trace(mpk, d

(1)
ID )

= Trace(mpk, d
(2)
ID )

0 otherwise.

GameDishonestPKG-wBB
A (λ)

(mpk, ID, s1)← A(setup, λ)
(dID, s2)← Keygen(A(s1),·)(mpk, ID)
D← A(findkey, s1, s2)
return 1 if TraceD(mpk, dID? , ID) = “User′′

and D is ε-useful for ID and mpk
0 otherwise.

GameDishonestPKG-WB-CCA
A (λ)

(mpk, ID, s1)← A(setup, λ)
(d(1)

ID , s2)← Keygen(A(s1),·)(mpk, ID)
d
(2)
ID ← ADec(findkey, s1, s2)∣∣∣∣Dec - Input : C

Output : Decrypt
(
mpk, d

(1)
ID , ID, C

)
return 1 if Trace(mpk, d

(1)
ID )

= Trace(mpk, d
(2)
ID )

0 otherwise.

For ω ∈ {WB-CPA,WB-CCA,wBB}, A’s advantage is

AdvDishonestPKG-ω
A (λ) = Pr[GameDishonestPKG-ω

A = 1].
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The A-IBE scheme is termed DishonestPKG-ω-secure if for all PPT algorithms A and all ε = 1/poly(λ),
the advantage of A defined by the corresponding experiment is a negligible function of λ.

Here, the adversary A acts as a cheating PKG and the challenger emulates the honest user. Both parties
engage in a key generation protocol where the challenger obtains a private key for an identity ID chosen
by A. The latter aims at producing a private key corresponding to ID and belonging to the same family as
the key obtained by the challenger in the key generation protocol. Such a successful dishonest PKG could
disclose user keys without being caught.

Note that, at the beginning of the experiment, A generates mpk without revealing the master key msk
and the challenger runs a sanity check on mpk.

As noted in [29, 30], it makes sense to provide A with a decryption oracle that undoes ciphertexts us-
ing d(1)

ID (and could possibly leak information on the latter’s family). We call this enhanced security notion
DishonestPKG-WB-CCA security (as opposed to the weaker one which we call DishonestPKG-WB-CPA secu-
rity).

Finally, in the black-box model, instead of outputting a new key d(2)
ID , the dishonest PKG comes up with

a decryption box D which is ε-useful for ID and mpk, i.e. such that

Pr[D(Encrypt(mpk, ID,m)] = m

with probability ε taken over the plaintext and the random coins used by the Encrypt algorithm. The
dishonest PKG wins if the tracing algorithm returns “User” when run on d

(1)
ID and with oracle access to D.

We call this enhanced notion DishonestPKG − wBB security when A is not3 given access to a decryption
oracle that undoes ciphertexts using d(1)

ID .

3. The DishonestUser game. Let A be a PPT algorithm. We consider the following games, where λ ∈ N is
a security parameter and ε is a second parameter (also given as input):

GameDishonestUser-ID-WB
A (λ)

(mpk,msk)← Setup(λ)
(d(1)

ID? , d
(2)
ID? , ID?)← AKG(mpk)∣∣∣∣KG - Input : ID

Output : Keygen(PKG(msk),A)(mpk, ID)
return 1 if Trace(mpk, d

(1)
ID?) 6=⊥ and

Trace(mpk, d
(2)
ID?) /∈ {⊥,Trace(mpk, d

(1)
ID?)}

0 otherwise.

GameDishonestUser-ID-BB
A (λ)

(mpk,msk)← Setup(λ)
(d(1)

ID? ,D, ID?)← AKG(mpk)∣∣∣∣KG - Input : ID

Output : Keygen(PKG(msk),A)(mpk, ID)
return 1 if TraceD(mpk, d

(1)
ID? , ID

?) = “PKG′′

and D is ε-useful for ID? and mpk
0 otherwise.

For ω ∈ {ID-WB, ID-BB}, A’s advantage is AdvDishonestUser-ω
A (λ) = Pr[GameDishonestUser-ω

A = 1]. The
A-IBE scheme is termed DishonestUser-secure if for all PPT algorithms A and all ε = 1/poly(λ), the
advantage of A defined by the following experiment is a negligible function of λ.

3 If A has access to the decryption oracle, one obtain the strong black-box security notion. Therefore, using intuitive
naming conventions, the strong-security notion is the DishonestPKG-BB-CCA whereas DishonestPKG-wBB is the
DishonestPKG-BB-CPA security notion.
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The DishonestUser-ID-WB game involves an adversary interacting with a PKG in executions of the key gen-
eration protocol and obtaining private keys associated with distinct identities of her choosing. The adversary
is declared successful if, for some identity that may have been queried for key generation, she is able to find
two private keys from distinct families. Such a pair would allow her to trick a judge into wrongly believing
that the PKG has misbehaved.

In the black-box scenario (DishonestUser-ID-BB), the output of the dishonest user consist of a key d
(1)
ID?

and a pirate decryption box D which is ε-useful for ID? and mpk, i.e. such that

Pr[D(Encrypt(mpk, ID?,m)] = m

with probability ε taken over the plaintext and the random coins used by the Encrypt algorithm. In this
case, the adversary wins if the output of TraceD(mpk, d

(1)
ID? , ID

?) is “PKG”.
Finally, the relaxed “selective-ID” model can be naturally extended to the DishonestUser security notion

(DishonestUser-sID-WB and DishonestUser-sID-BB).

Bilinear Maps and Complexity Assumptions. In the following, we review the definition of crypto-
graphic bilinear maps and we do not pin down any particular generator, but instead parameterize definitions
and security results by a choice of generator. For simplicity, we restrict our attention to so-called symmetric
bilinear groups [23] however our constructions extend readily to the asymmetric bilinear group setting.

Definition 3. A bilinear-group generator is a PPT that takes as input λ ∈ N and outputs a tuple (G,GT , e, p)
satisfying the following conditions:

1. p is a prime with 2λ−1 < p < 2λ;
2. (G, ·) and (GT , ·) are groups of order p;
3. e : G×G→ GT satisfies the following properties:

(a) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
(b) e is non degenerate ( i.e. e(g, g) 6= 1GT

for some g ∈ G);
(c) there exists an efficient algorithm to compute e.

In such bilinear groups, we assume the hardness of the (now classical) Decision Bilinear Diffie-Hellman
problem that has been widely used in the recent years. The Decision Bilinear Diffie-Hellman Problem
(DBDH) is to distinguish the distributions of tuples (g, ga, gb, gc, e(g, g)abc) and (g, ga, gb, gc, e(g, g)z) in
G4 ×GT for random values a, b, c, z $← Z∗p. The advantage of a distinguisher A is defined as follows:

Definition 4. Let G be a bilinear-group generator and let A be a 0/1-valued PPT algorithm. We consider
the following random experiments, where λ ∈ N is a security parameter:

GameDBDH
A (λ)

(G,GT , e, p)
$← G(λ)

g
$← G; (a, b, c, z) $← (Z∗p)4

T0 ← e(g, g)abc; T1 ← e(g, g)z

d?
$← {0, 1}

d← A((G,GT , e, p), g, ga, gb, gc, Td?)
return 1 if d = d? and 0 otherwise.

A’s advantage is defined as AdvDBDH
A (λ) = Pr[GameDBDH

A = 1]. The bilinear-group generator G is said
DBDH-secure if, for all PPT algorithms A, A’s advantage is a negligible function of λ. In this case, we say
that the DBDH assumption holds for G.

For convenience, we use an equivalent formulation – called modified DBDH – of the problem which is to
distinguish e(g, g)ab/c from random given (g, ga, gb, gc).
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3 The Scheme

The scheme mixes ideas from the “commutative-blinding” [7] and “exponent-inversion” [40] frameworks.
Private keys have the same shape as in commutative-blinding-based schemes [7, 8, 45, 15]. At the same time,
their first element is a product of two terms, the first one of which is inspired from Gentry’s IBE scheme
[25].

Following a technique applied in [29], private keys contain a family number t that cannot be tampered
with while remaining hidden from the PKG. This family number t is determined by combining two random
values t0 and t1 respectively chosen by the user and the PKG in the key generation protocol. The latter
begins with the user sending a commitment R to t0. Upon receiving R, the PKG turns it into a commitment
to t0 + t1 and uses the modified commitment to generate a “blinded” private key d′ID. The user obtains his
final key dID by “unblinding” d′ID thanks to the randomness that was used to compute R.

A difference with Goyal -1 is that, at the end of the key generation protocol, the private key component
t0 + t1 is perfectly hidden from the PKG and the security against dishonest PKGs is unconditional. In the
key generation protocol, the user’s first message is a perfectly hiding commitment that comes along with a
witness-indistinguishable (WI) proof of knowledge of its opening. In Goyal -1, users rather send a deterministic
(and thus non-statistically hiding) commitment and knowledge of the underlying value must be proven in
zero-knowledge because a proof of knowledge of a discrete logarithm must be simulated (by rewinding the
cheating verifier) in the proof of security against dishonest PKGs. In the present scheme, the latter proof
does not rely on a specific assumption and we do not need to simulate knowing the solution of a particular
problem instance. Therefore, we can dispense with perfectly ZK proofs and settle for a more efficient 3-move
WI proof (such as Okamoto’s variant [37] of Schnorr [42]) whereas 4 rounds are needed using zero-knowledge
proofs of knowledge.

3.1 Description of A-IBE1

Let G be a bilinear-group generator.

Setup(λ, n): given λ ∈ N, the PKG selects bilinear groups (G,GT , e, p) of prime order p > 2λ (by running
G(λ)) and a random generator g $← G. It chooses h, Y $← G, a vector Z = (Z0, Z1, . . . , Zn) $← Gn+1 and
x

$← Z∗p at random. It defines the master public key as mpk :=
(
X = gx, Y, h, {Zi}ni=0

)
while the master

secret key is msk := x.
.Keygen(PKG,U) : to obtain a private key for his identity ID = i1 . . . in ∈ {0, 1}n, a user U interacts with the
PKG in the following key generation protocol, where the notationHZ(ID) denotesHZ(ID) = Z0·

∏n
j=1 Z

ij
j .

1. The user U draws t0, θ
$← Z∗p, provides the PKG with a commitment R = ht0 ·Xθ and also runs an

interactive witness indistinguishable proof of knowledge of the pair (t0, θ) with the PKG, which he
retains for later use.

2. The PKG outputs ⊥ if the proof of knowledge fails to verify. Otherwise, it picks r′, t1
$← Z∗p and

returns

d′ID = (d′1, d
′
2, d
′
3) =

(
(Y ·R · ht1)1/x ·HZ(ID)r

′
, Xr′ , t1

)
. (1)

3. U picks r′′ $← Z∗p and computes dID = (d′1/g
θ ·HZ(ID)r

′′
, d′2 ·Xr′′ , d′3 + t0) which should equal

dID = (d1, d2, d3) =
(

(Y · ht0+t1)1/x ·HZ(ID)r, Xr, t0 + t1

)
(2)

where r = r′ + r′′. Then, U checks whether dID satisfies the relation

e(d1, X) = e(Y, g) · e(h, g)d3 · e(HZ(ID), d2). (3)

If so, he sets his private key as dID and the latter belongs to the family of decryption keys identified
by d3 = t0 + t1. He outputs ⊥ otherwise.
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Encrypt: to encrypt m ∈ GT given mpk and ID = i1 . . . in ∈ {0, 1}n, define HZ(ID) = Z0 ·
∏n
j=1 Z

ij
i , choose

s
$← Z∗p and compute

C =
(
C1, C2, C3, C4

)
=
(
Xs, HZ(ID)s, e(g, h)s, m · e(g, Y )s

)
.

Decrypt: given C =
(
C1, C2, C3, C4

)
and dID = (d1, d2, d3), compute

m = C4 ·
( e(C1, d1)
e(C2, d2) · Cd33

)−1

(4)

The correctness of the scheme follows from the fact that well-formed private keys always satisfy relation
(3). By raising both sides of (3) to the power s ∈ Z∗p, we see that the quotient of pairings in (4) actually
equals e(g, Y )s.

The scheme features about the same efficiency as classical IBE schemes derived from the commutative-
blinding framework [7]. Encryption demands no pairing calculation since e(g, h) and e(g, Y ) can both be
cached as part of the system parameters. Decryption requires the computation of a quotient of two pairings
which is significantly faster than two independent pairing evaluations when optimized in the same way as
modular multi-exponentiations [27].

In comparison with the most efficient standard model scheme based on the same assumption (which is
currently the first scheme of [7]), the only overhead is a slightly longer ciphertext and an extra exponentiation
in GT in encryption and decryption processes.

Now, we describe a black-box tracing mechanism that protects the user from a dishonest PKG as long as
the latter is withheld access to a decryption oracle. The tracing strategy is close to the one used by Kiayias
and Yung [33] in 2-user traitor tracing schemes, where the tracer determines which one out of two subscribers
produced a pirate decoder. In our setting, one rather has to decide whether an ε-useful decryption device
stems from the PKG or the user himself.

TraceD(mpk, dID, ε): given a well-formed private key dID = (d1, d2, d3) belonging to a user of identity ID and
oracle access to a decoder D that decrypts ciphertexts encrypted for ID with probability ε, conduct the
following steps.
a. Initialize a counter ctr ← 0 and repeat the next steps L = 8λ/ε times:

1. Choose two distinct random exponents s, s′ $← Z∗p, compute C1 = Xs, C2 = HZ(ID)s and
C3 = e(g, h)s

′
.

2. Calculate C4 = m · e(C1, d1)/
(
e(C2, d2) · Cd33

)
for a randomly chosen message m ∈ GT .

3. Feed the decryption device D with (C1, C2, C3, C4). If D outputs m′ ∈ GT such that m′ = m,
increment ctr.

b. If ctr = 0, incriminate the PKG. Otherwise, incriminate the user.

3.2 IND-ID-CPA Security

We first prove the IND-ID-CPA security of A-IBE1 under the modified DBDH assumption (mDBDH).

Theorem 1. The scheme A-IBE1 is IND-ID-CPA secure under the mDBDH assumption in G. More precisely,
assuming that an adversary running in time t has advantage ε in the IND-ID-CPA game after q key generation
queries, there exists an algorithm solving the mDBDH problem with advantage ε/(16(n + 1)q) within time
t+O(ε−2 ln(ε−1)η−1 ln(η−1)), where η = 1/(4(n+ 1)q).

Proof. We show how a simulator B can interact with the IND-ID-CPA adversary A to solve a mDBDH
instance (g, Ta = ga, Tb = gb, Tc = gc, T

?= e(g, g)ab/c). To prepare the master public key mpk, B chooses
γ, t∗

$← Z∗p and sets X = Tc = gc, h = Tb = gb, Y = Xγ · h−t∗ .
The vector Z ∈ Gn+1 remains to be defined. To do so, B picks κz ∈ {0, . . . , n}. Let τz be an integer such

that τz(n+1) < p (a convenient choice is τz = 2q, where q is the number of key generation queries, as in [45]).

8



The simulator randomly selects a vector (αz,0, αz,1, . . . , αz,n) of elements with αz,j ∈ Zτz
for all 0 ≤ j ≤ n.

It also draws another vector (βz,0, βz,1, . . . , βz,n), with βz,j
$← Zp for all j. The vector Z = (Z0, Z1, . . . , Zn)

is chosen to be

Z0 = gαz,0−κzτz ·Xβz,0 Zj = gαz,j ·Xβz,j for 1 ≤ j ≤ n. (5)

For any string ID = i1 . . . in ∈ {0, 1}n, it will be convenient to define the functions

J(ID) = αz,0 +
n∑
j=1

ijαz,j − κzτz, K(ID) = βz,0 +
n∑
j=1

ijβz,j ,

so that HZ(ID) = gJ(ID) ·XK(ID), that will be useful in later games.
The adversary’s view is then simulated as follows.

Queries: at any time, A may trigger an execution of the key generation protocol for an identity ID of her
choosing. In the event that J(ID) = 0, B aborts and outputs a random bit. Otherwise, the query can be
answered as follows. First, A supplies an element R = ht0 ·Xθ along with a WI proof of knowledge of
(t0, θ). The simulator B verifies the proof but does not need to rewind the adversary as it can answer
the query without knowing (t0, θ). To do so, it picks t1

$← Z∗p at random and defines W = Y · R · ht1 ,
d′3 = t1. Elements d′1 and d′2 are generated as

(d′1, d
′
2) =

(
HZ(ID)r

′
·W−

K(ID)
J(ID) , Xr′ ·W−

1
J(ID)

)
(6)

using a random r′
$← Z∗p. If we set r̃′ = r′ − w

cJ(ID) , where w = logg(W ), we observe that (d′1, d
′
2) has the

correct distribution since

W 1/c ·HZ(ID)r̃
′

= W 1/c · (gJ(ID) ·XK(ID))r̃
′

= W 1/c ·HZ(ID)r
′
· (gJ(ID))−

w
cJ(ID) ·X−

wK(ID)
cJ(ID)

= HZ(ID)r
′
·W−

K(ID)
J(ID)

and X r̃′ = Xr′ ·(gc)−
w

cJ(ID) = Xr′ ·W−
1

J(ID) . Finally, the “partial private key” (d′1, d
′
2, d
′
3) is returned to A.

Note that the above calculation can be carried out without knowing w = logg(W ) or the representation
(t0, θ) of R w.r.t. to (h,X).

Challenge: when the first stage is over, A outputs messages m0,m1 ∈ GT and a target identity ID?. At
this point, B aborts and outputs a random bit if J(ID?) 6= 0. Otherwise, B picks r? $← Z∗p and defines a
private key (d1, d2, d3) = (gγ ·XK(ID?)·r?

, Xr?

, t∗) for the identity ID∗. It flips a fair coin d? $← {0, 1} and
encrypts md? as

C?1 = Ta = ga C?2 = TK(ID?)
a C?3 = T C?4 = md? · e(C?1 , d1)

e(C?2 , d2) · C?3
d3
.

We see that (d1, d2, d3) is a valid key for the identity ID?. Since HZ(ID?) = XK(ID?) = T
K(ID?)
c and h = gb,

C? = (C?1 , C
?
2 , C

?
3 , C

?
4 ) is a valid encryption of md? (with the exponent s = a/c) if T = e(g, g)ab/c. If T

is random, we have T = e(g, h)s
′

for some random s′ ∈ Z∗p and thus C?4 = md? · e(Y, g)s · e(g, h)(s−s
′)t∗ ,

which means that md? is perfectly hidden since t? is independent of A’s view.

At this stage the adversary’s probability of success could be correlated with the probability that B needs
to “naturally” abort (i.e., because J(ID) = 0 in some key generation query or J(ID?) 6= 0 in the challenge
phase). As in [45], one way to compensate this possible dependency is to introduce an artificial abort step
that forces B to always abort with the maximal probability, regardless of the particular set of queries made
by A.

Namely, with τz = 2q, the same analysis as [45] shows that B’s probability not to abort for any set of
queries is at least η = 1/(4(n+ 1)q).
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Lemma 1. The probability that the simulator does not abort for any set of queries is at least 1/(4(n+ 1)q).

Proof. If ID? denotes the challenge identity and if A queries private keys for the identities (ID1, . . . , IDq),
we have Pr[J(ID?) = 0 mod p] = 1

τz(n+1) = 1
2q(n+1) . Indeed, recall that A has no information on the values

(αz,0, αz,1, . . . , αz,n) and she can only come up with ID? such that J(ID?) = 0 mod p by chance so that

Pr[J(ID?) = 0 mod p]

= Pr[J(ID?) = 0 mod p|J(ID?) = 0 mod τu] · Pr[J(ID?) = 0 mod τz] =
1

τz(n+ 1)
.

Also, a sufficient condition to have J(IDj) 6= 0 mod p is to have J(IDj) 6= 0 mod τz and we thus consider this
condition. We have

Pr
[ q∧
j=1

J(IDj) 6= 0 mod τz|Pr[J(ID?) = 0 mod τz
]

= 1− Pr
[ q∨
j=1

J(IDj) = 0 mod τz|J(ID?) = 0 mod τz
]

≥ 1−
q∑
j=1

Pr
[
J(IDj) = 0 mod τz|J(ID?) = 0 mod τz

]
≥ 1− q

τz
.

ut

At the end of the game, B considers the sequence of queries (ID1, . . . , IDq, ID
?) made by A and estimate

the probability that it causes the simulation to abort. This does not require new executions of A but rather
involves repeatedly sampling vectors (αz,0, αz,1, . . . , αz,n) $← Zn+1

τz
and assess J(ID1), . . . , J(IDq) and J(ID?)

accordingly. Once the estimated probability η′ has been obtained after O(ε−2 ln(ε−1)η−1 ln(η−1)) samples, if
η′ > η, the simulator B artificially aborts and outputs a random bit with probability 1− η/η′ (and continues
with probability η/η′).

Eventually, if B did not naturally or artificially abort, it outputs 1 (meaning that T = e(g, g)ab/c) if A
successfully guesses d′ = d? and 0 otherwise. Using exactly the same analysis as in [45], we obtain that, if
A’s advantage is ε, B breaks the mDBDH assumption with probability ε/(16(n+ 1)q). ut

As in [45], the proof of theorem 1 makes use of the artificial abort step to ensure that the simulator’s
probability to abort is independent of the particular set of queries made by the adversary. The technique of
Bellare and Ristenpart [6] can be applied to avoid this step and obtain an improved concrete security.

3.3 DishonestPKG and DishonestUser Security

The soundness of the tracing algorithm is proved using a similar technique to [1]. To ensure the independence
of iterations, we assume (as in [1]) that pirate devices are stateless, or resettable, and do not retain information
from prior queries: each decryption query is answered as if it were the first one and, in particular, the pirate
device cannot self-destruct.

Theorem 2. The scheme A-IBE1 is DishonestUser-ID-BB-secure under the mDBDH assumption in G. More
precisely, the advantage of any adversary A, running in time t, in building a ε(λ)-useful decryption box, after
q key generation queries, is at most AdvDishonestUser-ID-BB

A (λ) ≤ 16 · q2 · (n+ 1) · (AdvmDBDH(λ) + exp(−λ))
for all algorithms B running in time at most t+O(Adv−2

A ln(Adv−1
A )η−1 ln(η−1)), where η = 1/(4(n+ 1)q).

Proof. We consider a DishonestUser-ID-BB adversary A and we construct a mDBDH algorithm B that will
play the role of the DishonestUser-ID-BB challenger. Algorithm B gets a mDBDH instance (g, ga, gb, gc, T )
and generates the master public key as X = gc, h = gb, Y = Xγ ·h−t? , for some γ, t? $← Zp, and the vector Z
is set up so as to have HZ(ID) = gJ(ID) ·XK(ID) for efficiently computable functions J,K : {0, 1}n → G. Then,
A is given the master public key and starts making key generation queries that the simulator B handles as
follows. It will have to guess upfront (with probability 1/q) which key generation query will involve the target
identity ID?. At the outset of the game, B thus picks a random index j? $← {1, . . . , q} and eventually aborts
if the target identity did not appear in the j?th key generation query. During the game, it also aborts if one
of the following events occurs.
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A. The jth query (with j 6= j?) involves an identity IDj such that J(IDj) = 0.
B. The j?th query involves an identity IDj? such that J(IDj?) 6= 0.

For each query j ∈ {1, . . . , q}\{j?}, B can generate a private key as in the proof of Theorem 3.2 as long as
event A does not occur. At the j?th query, B first checks that J(IDj?) = 0 (i.e., that event B does not occur),
in which case it computes a private key by first rewinding A to extract (t0, θ) such that R = ht0Xθ. Then,
B picks a random r?

$← Zp, defines d′3 = t? − t0 and can compute a partial private key d′ID? = (d′1, d
′
2, d
′
3) as

(d′1, d
′
2, d
′
3) =

(
gγ+θ ·XK(ID?)·r?

, Xr?

, t∗ − t0
)

for the identity IDj∗ .
At the end of the game, A outputs a decryption box D that correctly decrypts a fraction ε of ciphertexts

for the identity ID? and the master public key mpk. At this point, B aborts and outputs a random bit if
ID? 6= IDj? . Otherwise, it necessarily knows a valid full private key dID? = (d1, d2, d3) = (gγ ·HZ(ID?)r, Xr, t?)
for the identity ID?. At this stage, an artificial abort step is needed to make sure that B always aborts with
the maximal probability regardless of the specific set of queries (ID1, . . . , IDq) made by A. This time, the
lower bound for B’s probability not to abort for any set of queries is η = 1/(4q2(n+ 1)) (in comparison with
the proof of Theorem 1, an additional factor of 1/q is lost due to the random choice of j? $← {1, . . . , q} at
the beginning of the game).

Algorithm B then holds a ε-useful decryption box D for the identity ID? and mpk and it will use it to
determine whether T is equal to e(g, g)ab/c or random.

It uses the decryption key dID? to construct L = 8λ/ε random ciphertexts C(i) = (C(i)
1 , C

(i)
2 , C

(i)
3 , C

(i)
4 )

for i ∈ {1, . . . , L} as

C
(i)
1 = gaρi · gcνi , C

(i)
2 = (gaρi · gcνi)K(ID?), C

(i)
3 = T ρi · e(g, gb)νi , C

(i)
4 = m(i) · e(C(i)

1 , d1)

e(C(i)
2 , d2) · (C(i)

3 )t?

where T ∈ GT is part of the mDBDH instance and (m(i), ρ(i), ν(i)) ∈ GT × (Z∗p)2 are picked independently
and uniformly at random for each i ∈ {1, . . . , L}. Algorithm B simulates the tracing algorithm with these
ciphertexts C(1), . . . , C(L). If T = e(g, g)ab/c, all ciphertexts are properly formed encryptions of plaintexts
m(i) with the encryption exponents si = νi + (a/c) · ρi and D correctly decrypts with probability ε. If
T 6= e(g, g)ab/c (say, T = e(g, g)δ+ab/c for some random δ 6= 0), D is given ciphertexts C(i) where each C

(i)
3

has been tampered with and C(i) thus corresponds to a ciphertext produced by the tracing algorithm with
the encryption exponents si = νi + (a/c) · ρi and s′i = νi + (δ+ a/c) · ρi (observe that, since δ 6= 0, these look
independent to the adversary).

The tracing algorithm (simulated by B) points to the PKG if it ends up with ctr = 0. If T = e(g, g)ab/c,
the variable ctr can be seen as the sum of L independent random variables Xi ∈ {0, 1} having the same
expected value ε. We have µ = E[ctr] = Lε = 8λ. The Chernoff bound tells us that, for any real number ω
such that 0 ≤ ω ≤ 1, Pr[ctr < (1−ω)µ] < exp(−µω2/2). With ω = 1/2, the Chernoff bound guarantees that

Pr[ctr < 1] < Pr[ctr < 4λ] = Pr[ctr < µ/2] < exp(−µ/8) = exp(−λ).

If T = e(g, g)ab/c, conditionally on the simulator not aborting, the decoder D must output the correct
plaintext m(i) at some iteration with overwhelming probability 1 − exp(−λ). In other words, if we call E
the event of the tracing procedure ending up with ctr = 0, we have Pr[E] < exp(−λ) when T = e(g, g)ab/c.
Moreover, if E occurs with substantially higher probability when T = e(g, g)ab/c is replaced by T ∈R GT ,
there must be a distinguisher for the mDBDH assumption. Since the advantage ofA is precisely the probability
Pr[E] when T ∈R GT , it comes that A cannot frame the PKG if the mDBDH assumption holds.

Taking the artificial abort step (which is conducted by B exactly as in the proof of theorem 1) into
account, it eventually comes that AdvDishonestUser-ID-BB

A (λ) ≤ 16 · q2 · (n+ 1) · (AdvmDBDH(λ) + exp(−λ)). ut

The system turns out to be the first scheme that achieves weak black-box traceability against dishonest
users in the adaptive-ID sense. Due to their reliance on attribute-based encryption techniques (for which
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only selective-ID adversaries were dealt with until very recently), earlier (weak) black-box A-IBE proposals
[29, 30] are only known to provide selective-ID security against dishonest users.

As for the security against dishonest PKGs, we observe that, in the DishonestPKG-wBB game, the last
part d3 = t of the user’s private key is perfectly hidden to the malicious PKG after the key generation
protocol. Then, a pirate decoder D made by the PKG has negligible chance of decrypting ciphertexts where
C3 is random in the same way as the user would. When the user comes across D and takes it to the court,
the latter runs the tracing algorithm using D and the user’s well-formed key dID = (d1, d2, d3) for which d3

is independent of D.

Lemma 2. In the DishonestPKG-wBB game, one iteration of the tracing algorithm increases ctr with prob-
ability at most 1/p.

Proof. After the key generation protocol, a dishonest PKG has no information on part d3 ∈ Zp of the user’s
private key. This follows from the perfectly hiding property of Pedersen’s commitment [38] and the perfect
witness indistinguishability of the protocol [37] for proving knowledge of a discrete logarithm representation.
Since the commitment R = ht0 ·Xθ and the proof of knowledge of (t0, θ) perfectly hide t0 to the PKG, all
elements of Z∗p are equally likely values of d3 = t0 + t1 as for the last part of the user’s eventual private key.

In an iteration of the tracing stage, D is given C = (C1, C2, C3, C4) such that C1 = Xs, C2 = (gID · Z)s,
C3 = e(g, h)s

′
and C4 = m · e(g, Y )s · e(g, h)(s−s

′)t for distinct s, s′ $← Z∗p. Since D has no information on
d3 = t, for any plaintext m ∈ GT , there is a value d3 that explains C4 and it comes that D returns the one
chosen by the tracer with probability 1/p. ut

We note that a pirate device D generated by the dishonest PKG is able to recognize invalid ciphertexts in the
tracing stage (as it may contain the master secret x). However, as long as D is assumed stateless, it cannot
shutdown or self-destruct when detecting a tracing attempt. Moreover, with all but negligible probability, it
will never be able to decrypt such invalid ciphertexts in the same way as the owner of dID would.

Theorem 3. The scheme A-IBE1 is statistically DishonestPKG-wBB-secure. More precisely, the advantage
of any adversary A in building a ε(λ)-useful decryption box is at most AdvDishonestPKG-wBB(λ) ≤ 8λ/(2λε(λ)).

Proof. The dishonest PKG is not detected if it outputs a decryption box for which the tracing algorithm
ends with a non-zero value of ctr. However, this can only happen with negligible probability. Indeed, from
Lemma 2, it easily comes that Pr[ctr 6= 0] = Pr[ctr ≥ 1] ≤ L/p = 8λ/(εp) ≤ 8λ/(2λε). ut

To secure the scheme against chosen-ciphertext attacks and preserve the weak black-box property, we
can use the Canetti-Halevi-Katz [17] technique or its optimizations [13, 14] that do not affect the tracing
algorithm.

4 Extension to Gentry’s IBE scheme

In this section, we show how to apply the weak black-box tracing mechanism of Section 3 to Gentry’s IBE
scheme. The resulting A-IBE scheme, called A-IBE2, system is obtained by bringing a simple modification
to the key generation protocol of Goyal’s first scheme [29] so as to perfectly hide the user’s key family from
the PKG’s view while preserving the efficiency of the whole scheme.

The advantage of this scheme is to directly provide adaptive-ID security against dishonest users and
under reductions that are just as tight as in Gentry’s system. On the other hand, as in [25], a stronger
assumption is needed in security proofs.

The q-Decision Augmented Bilinear Diffie-Hellman Exponent Problem (q-ADBDHE) is to dis-
tinguish e(g, h)(α

q+1) from a random element in GT given
(
g, gα, . . . , g(αq), h, h(αq+2)

)
for a random triple

(g, h, α) ∈ G2 × Z∗p.

Definition 5 ([25]). Let G be a bilinear-group generator and let A be a 0/1-valued PPT algorithm. We
consider the following experiment, where λ ∈ N is a security parameter:
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Gameq-ADBDHE
A (λ)

(G,GT , e, p)
$← G(λ)

(g, h) $← G2; (α, β) $← (Z∗p)2

T0 ← e(g, h)(α
q+1); T1 ← e(g, h)β

d?
$← {0, 1}

d← A
(
(G,GT , e, p), g, gα, · · · , g(αq), h, h(αq+2), Td?

)
return 1 if d = d? and 0 otherwise.

A’s advantage is measured by Advq-ADBDHE
A (λ) = Pr[Gameq-ADBDHE

A = 1]. Analogously to definition 4, the
bilinear-group generator G is said q-ADBDHE-secure if, for all PPT algorithms A, the advantage of A is a
negligible function of λ. In this case, we say that the q-ADBDHE assumption holds for G.

4.1 Description of A-IBE2

In the description hereafter, the encryption and decryption algorithms are exactly as in [25]. Since the key
generation protocol perfectly conceals the user’s key family, we can apply the same weak black-box tracing
mechanism as in Section 3. The resulting system turns out to be the most efficient adaptive-ID secure weakly
black-box A-IBE scheme to date.

Let G be a bilinear-group generator.

Setup: given a security parameter λ ∈ N, the PKG selects bilinear groups (G,GT , e, p) of prime order p > 2λ

(by running G(λ)) and a generator g $← G. It picks h, g $← G and α
$← Z∗p at random. It defines the

master key as msk := α and the master public key is defined to be mpk := (g, g1 = gα, h).

Keygen(PKG,U) : the user U and the PKG interact in the following protocol.
1. U picks t0, θ

$← Z∗p and sends a commitment R = g−t0 · (g1 · g−ID)θ to the PKG. He also gives an
interactive witness indistinguishable proof of knowledge of the pair (t0, θ).

2. The PKG outputs ⊥ if the proof of knowledge is invalid. Otherwise, it picks t1
$← Z∗p and returns

d′ID = (d′, t′ID) =
(

(h ·R · g−t1)1/(α−ID), t1

)
. (7)

3. U computes dID = (d′/gθ, t′ID + t0) which should equal

dID = (d, tID) =
(

(h · g−(t0+t1))1/(α−ID), t0 + t1

)
. (8)

Then, U checks whether dID satisfies the relation

e(d, g1 · g−ID) = e(h, g) · e(g, g)−tID . (9)

If so, he sets his private key as dID, which belongs to the key family identified by tID = t0 + t1. He
outputs ⊥ otherwise.

Encrypt: to encrypt m ∈ GT given mpk and ID, choose s $← Z∗p and compute

C =
(
C1, C2, C3

)
=
((
g1 · g−ID

)s
, e(g, g)s, m · e(g, h)s

)
.

Decrypt: given C =
(
C1, C2, C3

)
and dID = (d, tID), compute

m = C3 ·
(
e(C1, d) · CtID2

)−1

TraceD(mpk, dID, ε): given a valid private key dID = (d, tID) belonging to user ID and a ε-useful pirate decoder
D, conduct the following steps.
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a. Set ctr ← 0 and repeat the next steps L = 8λ/ε times:

1. Choose s, s′ $← Z∗p such that s 6= s′ and set C1 = (g1 · g−ID)s and C2 = e(g, g)s
′
.

2. Compute C3 = m · e(C1, d) · CtID2 for a random message m ∈ GT .
3. Feed the decryption device D with (C1, C2, C3). If D outputs m′ ∈ GT such that m′ = m,

increment ctr.

b. If ctr = 0, incriminate the PKG. Otherwise, incriminate the user.

4.2 Security

The IND-ID-CPA security of the scheme A-IBE2 can be simply reduced to that of Gentry’s IBE scheme as
shown in the proof of the next theorem.

Theorem 4. Any IND-ID-CPA adversary against A-IBE2 implies an IND-ID-CPA attacker against Gentry’s
IBE scheme.

Proof. Let us assume an IND-ID-CPA adversary A in the game described by definition 2. We show that A
gives rise to an IND-ID-CPA adversary B against Gentry’s IBE scheme.

Our adversary B receives a master public key mpk = (g, g1, h) from her challenger. When the A-IBE
adversary A makes a key generation request for an identity ID, B queries her own challenger to extract a
private key dID = (d, tID) =

(
(h · g−tID)1/(α−ID), tID

)
and starts executing the key generation protocol with

in interaction with A. The latter first supplies a commitment R = g−t0 · (g1 · g−ID)θ and an interactive WI
proof of knowledge of the pair (t0, θ). Using the knowledge extractor of the proof of knowledge, B extracts
(t0, θ) by rewinding A and returns dID = (d′, t′ID), where t′ID = tID − t0 and d′ = dID · gθ.

In the challenge phase, A chooses a target identity ID? and messages (m0,m1), which B forwards to her
own challenger. The latter provides B with a challenge ciphertext (C1, C2, C3) which is relayed to A. After
a second series of key generation queries, A outputs a bit d ∈ {0, 1}, which is also B’s output. It is easy to
see that, if A is successful, so is B. ut

We now turn to prove the weak black-box traceability property.

Theorem 5. In the Adaptive-ID DishonestUser-ID-BB game and for a ε-useful device D, the probability that
the tracing algorithm accuses the PKG is at most AdvDishonestUser-ID-BB

A (λ) < Advq-ADBDHE
G,GT

(λ) + exp(−λ),
where q is the number of key generation queries.

Proof. The proof is very similar to the proof of IND-ID-CPA security in [25]. For the sake of contradiction,
let us assume that the dishonest user gets the tracing algorithm to accuse the PKG with non-negligible
probability. Then, we can construct a distinguisher B for the q-ADBDHE assumption.

The distinguisher B takes as input (g, gα, . . . , g(αq), h, h(αq+2), T ) and aims at deciding if T = e(g, h)(α
q+1).

It generates the master public key in such a way that g1 = gα and h = gf(α), for some random polynomial
f(X) ∈ Zp[X] of degree q. At each key generation query, B first computes a valid private key dID = (d, tID)
for the identity ID, by setting tID = f(ID) as in the proof of Theorem 1 in [25]. Then, in the interactive
key generation protocol, A sends a commitment R = g−t0 · (g1 · g−ID)θ and proves knowledge of the pair
(t0, θ), which B extracts by rewinding A as in the proof of Theorem 4. As in the latter, B replies with a
well-distributed pair d′ID = (d′, t′ID), where t′ID = tID − t0 and d′ = d · gθ.

The game ends with A outputting an identity ID∗, a private key dID? = (d?, t?ID?) and a ε-useful device.
In the tracing stage, B first expands F (X) = (Xq+2− ID?q+2)/(X − ID?) = Xq+1 +FqX

q + · · ·+F1X +F0.
Then, B chooses a plaintext m(1), . . . ,m(L) $← GT and, for i = 1 to L, computes C(i) = (C(i)

1 , C
(i)
2 , C

(i)
3 ) as

C
(i)
1 =

( h(αq+2)

h(ID?q+2)

)ρi

· (g1 · g−ID)νi C
(i)
2 = T ρi · e

(
hρi ,

q∏
j=0

(g(αj)Fj )
)
· e(g, g)νi

C
(i)
3 = m(i) · e(C(i)

1 , d?) · C(i)
2

t?ID?

.
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As in the security proof of [25], (C(i)
1 , C

(i)
2 , C

(i)
3 ) is a well-formed ciphertext with the encryption exponent

si = νi + ρi · logg(h)F (α) if T = e(g, h)(α
q+1). In this case, D should return mi with probability ε. In

contrast, if T = e(g, h)δ+(αq+1) for some random δ 6= 0, the ith ciphertext C(i) = (C(i)
1 , C

(i)
2 , C

(i)
3 ) can be

written as C(i) =
(
(g1 · g−ID?

)si , e(g, g)s
′
i ,m · e(C(i)

1 , d?) · C(i)
2

t?ID? )
, where si = νi + ρi · logg(h)F (α) and

s′i = si + ρi · δ · logg(h), which corresponds to a ciphertext produced by the tracing algorithm.
Using the same arguments as in the proof of theorem 2, we find that, if T = e(g, h)(α

q+1), the probability
that D never manages to return the correct plaintextm(i) is smaller than exp(−λ). Moreover, if the probability
of the latter event becomes non-negligible when T ∈R GT , there must be a distinguisher for the q-ADBDHE
assumption. In summary, if D eventually frames the PKG, it should be able to somehow distinguish valid
ciphertexts from those produced by the tracing algorithm and the q-ADBDHE assumption is broken. ut

The weak black-box security against dishonest PKGs follows from the information theoretic secrecy of
the user’s private key element tID upon termination of the key generation protocol.

Lemma 3. In the DishonestPKG-wBB game, each iteration of the tracing procedure increases ctr with prob-
ability at most 1/p.

Proof. As in the proof of lemma 2, during the key generation protocol, the dishonest PKG obtains no
information on part tID ∈ Zp of the user’s key thanks to the unconditional hiding property of Pedersen’s
commitment [38] and the perfect witness indistinguishability of the interactive proof of knowledge of a
discrete logarithm representation [37].

Let us consider what happens in one iteration of the tracing algorithm. The pirate device D is given
C = (C1, C2, C3) such that C1 = (g1 · g−ID)s, C2 = e(g, g)s

′
and C3 = m · e(g, h)s · e(g, h)(s−s

′)tID for distinct
exponents s, s′ $← Z∗p. Since the pirate device D has no information on tID, for any message m ∈ GT , there
exists a value tID that explains C3. Hence, D has probability at most 1/p to return the particular plaintext
m ∈ GT that was chosen at random by the tracer. ut

Theorem 6. In the information theoretic sense, no (computationally unbounded) adversary has non-negligible
advantage in the DishonestPKG-wBB game.

Proof. The dishonest PKG wins the DishonestPKG-wBB game if it outputs a decryption box D for which the
tracing procedure increases ctr at least once. However, this only happens with negligible probability. Indeed,
from Lemma 3, we find that Pr[ctr 6= 0] = Pr[ctr ≥ 1] ≤ L/p = 8λ/(εp) ≤ 8λ/(2λε). ut

To secure the scheme against chosen-ciphertext attacks, we cannot use hash proof systems as suggested
in [25, 34]. This technique would indeed cause the decryption algorithm to reject all invalid ciphertexts with
high probability, which would not be compatible with our weak black-box tracing mechanism.

Fortunately, CCA-security can be acquired by applying the Canetti-Halevi-Katz transformation to a two-
receiver variant of the Gentry-Waters Identity-Based Broadcast Encryption (IBBE) scheme [26], which is
very similar to Gentry’s IBE in the shape of its ciphertexts and private keys. In this section, we chose to
illustrate how the weak black-box technique can be applied to Gentry’s IBE for the sake of simplicity since
the Gentry-Waters system is substantially more complex to describe.

An IBBE scheme is an IBE scheme where the sender can encrypt a message for several receivers using
their identities (a formal definition is given in section A): the sender takes as input the master public key
mpk and a set S = {ID1, . . . , IDs} of identities and computes a ciphertext C which can be decrypted using
a private key dID for any identity ID ∈ S. The IND-ID-CPA security of IBBE schemes is defined by a game
where the adversary can obtain private keys for arbitrary identities as in the usual notion of IND-ID-CPA
security. In the challenge phase, the adversary chooses an identity set S? = {ID?

1, . . . , ID
?
s} o and obtains an

encryption of a message md? ∈ {m0,m1}, for a random bit d? $← {0, 1} which the adversary has to guess
without obtaining private keys for identities in S? at any time.

From an IND-ID-CPA security secure IBBE scheme ΠIBBE
1 = (Setup,Keygen, Encrypt,Decrypt) where

the sender can encrypt a ciphertext for up to n identities, the Canetti-Halevi-Katz transform gives a CCA2-
secure IBBE scheme ΠIBBE

2 = (Setup,Keygen,Encrypt,Decrypt) where ciphertexts can be encrypted for
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at most n−1 receivers. The setup algorithms are identical in both schemes whereas ΠIBBE
2 derives keys using

the key generation algorithm of ΠIBBE
1 as dID = ΠIBBE

2 .Keygen(msk, ID) = ΠIBBE
1 .Keygen(msk, (0||ID)).

In order to encrypt a message M for the receiver set S = {ID1, . . . , IDs}, the encryption algorithm of
ΠIBBE

2 proceeds by first generating a one-time signature key pair (VK,SK) and computing the ciphertext
C = ΠIBBE

1 .Encrypt(mpk, S) for the identity set S = {ID′0 = (1||VK), ID′1 = (0||ID1), . . . , ID′s = (0||IDs)}.
The final ciphertext consists of C ′ = (VK, C, σ), where σ = SigSK(C) is a one-time signature of the message
C. It is easy to see (as previously reported in [22] for instance) that the resulting IBBE ΠIBBE

2 is IND-ID-CCA
secure as long as ΠIBBE

1 IND-ID-CPA secure and the one-time signature is strongly unforgeable.
From a two-receiver variant of the Gentry-Waters IBBE, we can thus construct an IND-ID-CCA (single

receiver) IBE in a very simple way: one of the two receivers’ identities is set to be the verification key VK
of a strongly unforgeable one-time signature and the matching private key SK is used to sign the whole
ciphertext.

Our tracing algorithm can be combined with the latter approach since, in the Gentry-Waters IBBE
scheme [26], private keys have the same shape as in Gentry’s IBE scheme and one of the ciphertext com-
ponents lives in the group GT . As already mentioned, the CHK technique does not affect traceability as,
upon decryption, ill-formed ciphertexts only get rejected when the one-time signature verification fails. The
computational/bandwidth cost of the resulting system exceeds that of the above A-IBE construction only
by a small factor.

5 Extension to Identity-Based Broadcast Encryption

As already stressed in [29, 30], reducing the required amount of trust in PKGs is an equally important
problem in IBE schemes and their extensions such as attributed-based encryption or IBBE.

In this section, we thus show how the underlying idea of previous schemes can be applied to one of the
most efficient IBBE realizations to date.

In [12], Boneh and Hamburg showed how to turn the Boneh-Boyen-Goh hierarchical IBE scheme [9] into
an efficient IBBE system which is recalled in appendix A, where we also recall the syntax of the IBBE
primitive. This scheme features constant-size ciphertexts and linear-size private keys in the bound N on the
number of receivers per ciphertext. Their construction was shown to derive from a more general primitive
termed “spatial encryption”.

Its security (in the selective-ID sense) was established under the `-Decision Bilinear Diffie-Hellman
Exponent assumption (`-DBDHE) introduced in [9].

Definition 6. Let G be a bilinear-group generator and let A be a 0/1-valued PPT algorithm. We consider
the following random experiments, where λ ∈ N is a security parameter:

Game`-DBDHE
A (λ)

(G,GT , e, p)
$← G(λ)

(g, h) $← G2; (α, β) $← (Z∗p)2

T0 ← e(g, h)(α
`+1); T1 ← e(g, h)β

d?
$← {0, 1}

d← A((G,GT , e, p), g, gα, . . . , g(α`), g(α`+2), . . . , g(α2`), h, Td?)
return 1 if d = d? and 0 otherwise.

A’s advantage is Adv`-DBDHE
A (λ) = Pr[Game`-DBDHE

A = 1]. The bilinear-group generator G is said `-DBDHE-
secure if, for any PPT distinguisher A, A’s advantage is a negligible function of λ. In this case, we say that
the `-DBDHE assumption holds for G.

In the following, we use the same notations as in [12] and, for any vector a = (a0, . . . , aN ) ∈ ZN+1
p , ga

stands for the vector (ga0 , . . . , gaN ) ∈ GN+1.
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5.1 A weak Black-Box Accountable Authority IBBE scheme

The idea of the scheme in Section 3 applies to construct an IBBE scheme with short ciphertexts and ac-
countable authorities. The syntax of accountable authority IBBE (A-IBBE) schemes extends that of IBBE
systems in the same way as the A-IBE primitive extends IBE schemes. The resulting construction, termed
A-IBBE , goes as follows.

Setup(λ,N): given a security parameter λ ∈ N and the maximal number of receivers N ∈ N per ciphertext,
choose bilinear groups (G,GT ) of prime order p > 2λ and a generator g $← G. Choose z $← G as well a
(N + 1)-vector h = (h0, h1, . . . , hN ) $← GN+1 of random generators so that hi = gai , for i = 0 to N , with
a randomly chosen a = (a0, . . . , aN ) $← ZN+1

p . Finally, pick α
$← Z∗p, g2, g3

$← G and compute g1 = gα.
The master public key is mpk = (g, g1 = gα, g2, g3, z,h = ga) while the master secret is msk = (a, α).

Keygen(PKG,U) : the two parties conduct the following interactive steps.
1. U picks t0, θ

$← Z∗p and sends a commitment R = gt02 · gθ to the PKG and provides an interactive WI
proof of knowledge of (t0, θ).

2. The PKG outputs ⊥ if the proof of knowledge is invalid. Otherwise, it picks r, t1
$← Z∗p and returns

K ′ID = (K ′1,K
′
2, T

′
0, . . . , T

′
N−1, t

′
ID)

=
(
(gt12 ·R · g3)α · zr, gr, hr1 · h−ID·r

0 , hr2 · h−ID·r
1 , . . . , hrN · h−ID·r

N−1 , t1
)

3. U picks r′ $← Z∗p and computes KID = (K1,K2, T0, . . . , TN−1, tID), where K1 = (K ′1/g
θ
1) · zr′ , K2 =

K ′2 · gr
′
, Ti = T ′i · (hi+1 · h−ID

i )r
′

for indices i = 0, . . . , N − 1 and t′ID + t0, so that

KID = (K1,K2, T0, . . . , TN−1, tID)

=
(

(gt0+t12 · g3)α · zr
′′
, gr

′′
, hr

′′

1 · h−ID·r′′
0 , . . . , hr

′′

N · h−ID·r′′
N−1 , t0 + t1

)
,

where r′′ = r + r′. Then, U checks whether dID satisfies the relation

e(K1, g) = e(g1, g2)tID · e(g1, g3) · e(z,K2),

and e(g, Ti) = e(K2, hi+1 · h−ID
i ) for each i ∈ {0, . . . , N − 1}.

Encrypt(mpk, S,m): to encrypt m ∈ GT for the receiver set S = {ID1, . . . , IDn}, where n ≤ N ,

1. Expand P (X) ∈ Zp[X] as

P (X) =
∏
i∈S

(X − IDi) = ρnX
n + ρn−1X

n−1 + · · ·+ ρ1X + ρ0.

2. Choose s $← Z∗p and compute

C = (C0, C1, C2, C3)

=
(
m · e(g1, g3)s, gs,

(
z · hρ00 · h

ρ1
1 · · ·hρn

n

)s
, e(g1, g2)s

)
.

Decrypt(mpk,KID, C, S): parse C as (C0, C1, C2, C3) and KID as

KID = (K1,K2, T0, . . . , TN−1, tID) ∈ GN+2 × Zp.

1. Expand PID(X) ∈ Zp[X] as

PID(X) =
∏

IDj∈S\{ID}

(X − IDj) = y
(ID)
n−1X

n−1 + y
(ID)
n−2X

n−2 + · · ·+ y
(ID)
1 X + y

(ID)
0
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and compute the decryption key

(DID, dID, tID) =
(
K1 · T

y
(ID)
0

0 · T y
(ID)
1

1 · · ·T y
(ID)
n−1

n−1 , K2, tID
)

=
(

(gtID2 · g3)α ·
(
z · hρ00 · h

ρ1
1 · · ·hρn

n

)r
, gr, tID

)
.

2. Recover the plaintext as

m = C0 · e
(
C1, DID

)−1 · e
(
C2, dID

)
· CtID3 .

TraceD(mpk,KID, ε): given a valid private key KID for the identity ID and a ε-useful decoder D, the tracing
algorithm proceeds using L = 8 · λ/ε iterations in a similar fashion to previous schemes, by feeding D
with ciphertexts C(i) = (C(i)

0 , C
(i)
1 , C

(i)
2 , C

(i)
3 ), for i = 1 to L, and receiver sets S(i) containing ID and

other randomly chosen identities. In the generation of C(i), C(i)
1 and C

(i)
2 are calculated as specified by

the encryption algorithm. On the other hand, C(i)
3 is chosen as a random element of GT and C

(i)
0 is

obtained by applying the decryption algorithm to S(i) and (C(i)
1 , C

(i)
2 , C

(i)
3 ).

The correctness of the scheme is implied the fact that the decryption key (DID, dID, tID) always satisfies the
relation e(DID, g) = e(g1, g2)tID · e(g1, g3) · e(z ·

∏n
i=0 h

ρi

i , dID) and raising both members to the power s as in
previous schemes.

To avoid repeating the work of Boneh and Hamburg, we prove the security properties of the above
A-IBBE system by reducing them to the IND-sID-CPA security of the underlying IBBE scheme.

Theorem 7. The above A-IBBE scheme is secure under the (N + 1)-DBDHE assumption. More precisely,
any IND-sID-CPA adversary against it implies an equally successful IND-sID-CPA attacker against the Boneh-
Hamburg IBBE scheme.

Proof. We show that an IND-sID-CPA adversary A against the A-IBBE scheme gives rise to a “real-or-
random” IND-sID-CPA adversary B (i.e., in which the adversary A outputs a single message m and has to
decide whether the challenge ciphertext C? encrypts m or a random message) against the Boneh-Hamburg
IBBE scheme. Hence, the security of the latter implies the security of our scheme.

When A chooses her set of target identities S? = {ID?
1, . . . , ID

?
n?}, with n? ≤ N , our adversary B forwards

S? to her own challenger and receives a master public key mpkBH = (g, g1 = gα, g2, z,h = ga). Then, B picks
t∗, β

$← Z∗p, computes g3 = g−t
∗

2 gβ and provides A with mpk = (g, g1, g2, g3, z,h).
At any time, A may request an execution of the key generation protocol for an arbitrary identity ID 6∈ S?.

At the beginning of each such protocol, A sends a commitment R = gt02 ·gθ and interactively proves knowledge
of (t0, θ), which B extracts by rewinding A. Then, B chooses t1

$← Z∗p, sets t = t0 + t1 and queries her own
IND-sID-CPA challenger to obtain a private key

K̃ID = (K̃1, K̃2, T̃0, . . . , T̃N−1) =
(
gα2 · zr, gr, hr1 · h−ID·r

0 , hr2 · h−ID·r
1 , . . . , hrN · h−ID·r

N−1

)
for the identity ID chosen by A. The latter is turned into an A-IBBE private key and re-randomized by
setting

KID = (K1,K2, T0, . . . , TN−1) =
(
gβ1 · K̃

(t−t?)
1 · zr

′
,

K̃
(t−t?)
2 · gr

′
, T̃

(t−t?)
0 · (h1 · h−ID

0 )r
′
, . . . , T̃

(t−t?)
n−1 · (hN · h−ID

N−1)r
′)
,

where r′ $← Z∗p. The new key KID is easily seen to have the same distribution as those obtained in step 3
of the key generation protocol. Finally, A obtains the “blinded key” K ′ID = (K ′1,K

′
2, T

′
0, . . . , T

′
N−1), where

K ′1 = K1 · gθ1 .
In the challenge phase, A chooses a pair of target messages (m0,m1). The adversary B chooses a random
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plaintext m? $← GT , which she sends to her own “real-or-random” challenger. The latter replies with a
challenge ciphertext

C? = (C0, C1, C2) =
(
m · e(g1, g2)s

?

, gs
?

,
(
z · hρ00 · h

ρ1
1 · · ·h

ρn?

n?

)s?)
.

for the receiver set S? = {ID∗1, . . . , ID
∗
n?}, where m is either m? or a random element of GT . The adversary B

picks a random bit d $← {0, 1} and computes C ′ = (C ′0, C1, C2, C0/m
?) where C ′0 = md·(C0/m

?)−t
∗ ·e(g1, C1)β

and C ′ is relayed to A as a challenge ciphertext. After a second series of key generation queries, A outputs
a bit d′ ∈ {0, 1}, and B outputs “real” if d′ = d and “random” otherwise. It is easy to see that, if C?

encrypts a random plaintext, then C0/m
? can be expressed as C0/m

? = e(g1, g2)s
?−s′ , where s? = logg(C1)

and for some s′ 6= 0. In this case, we obtain that C ′0 = md · e(g1, g3)s
? · e(g1, g2)s

′t? statistically hides md

(and thus Pr[d′ = d] = 1/2) since A has no information on t∗. In contrast, if C? encrypts m?, then C ′

is a valid encryption of md for the A-IBBE scheme, so that Pr[d′ = d] = 1/2 + AdvBH-IND-sID-CPA
G,GT

(λ),
where the latter advantage function denotes the maximal “real-or-random” advantage of any IND-sID-CPA
adversary against the Boneh-Hamburg IBBE. It comes that B’s advantage in the real-or-random game is
exactly AdvBH-IND-sID-CPA

G,GT
(λ). ut

Theorem 8. In the selective-ID DishonestUser-ID-BB game, any PPT adversary has negligible advantage
assuming that the (N + 1)-DBDHE assumption holds. More precisely, the probability that the honest user
outputs a ε-useful device that frames the PKG after the tracing procedure is at most

AdvDishonestUser-ID-BB
A (λ) < L ·Adv(N+1)-DBDHE

G,GT
(λ) + exp(−λ).

with L = 8λ/ε.

Proof. Let us assume that, at the end of the selective-ID DishonestUser game, the dishonest user A outputs
a device D for which the tracing algorithm declares the PKG guilty. Then, we show how to obtain an IND-
sID-CPA adversary B against the Boneh-Hamburg IBBE scheme in the sense of a real-or-random definition
of IND-sID-CPA security4.

The adversary B plays the IND-sID-CPA game against a challenger CBH for the Boneh-Hamburg IBBE and
plays A’s challenger in the selective-ID DishonestUser game. At the outset of the latter, A chooses a target
identity ID∗ and B then chooses her own sets S?1 , . . . , S

?
L of target identities as follows: for each i ∈ {1, . . . , L},

S?i is chosen as a set containing ID? and at most N −1 other random identities. When seeing the description
of S?1 , . . . , S

?
L, the IBBE challenger CBH generates a master public key mpkBH = (g, g1, g2, z,h). Then, B

chooses t?, β $← Z∗p and sets g3 = g−t
?

2 · gβ . The master public key of the A-IBBE system is defined as
mpk = (g, g1, g2, g3, z,h) and given to A.

Then, A starts making a number of key generation queries. For each key generation query involving an
identity ID 6= ID?, B proceeds by invoking her own challenger CBH, exactly as in the proof of Theorem 7.
When A queries a private key KID? for the target identity ID?, B first rewinds the proof of knowledge so as
to extract the pair (t0, θ) such that R = gt02 · gθ in the commitment. Then, it sets t1 = t?− t0 (in such a way
that t = t0 + t1 = t?). In this case, B can compute an A-IBBE private key KID? on her own (without having
to query CBH) as

(K1,K2, T0, . . . , TN−1, tID?) =
(
gβ1 · zr, gr, (h1 · h−ID?

0 )r, . . . , (hN · h−ID?

N−1)r, t?
)
,

4 Namely, the IND-sID-CPA adversary chooses L sets of challenge identities S?
1 , . . . , S?

L upfront and starts invoking
a key generation oracle (that returns private keys for arbitrary identities) and a challenge oracle that, at its ith

invocation (for i ∈ {1, . . . , L}), takes as input a plaintext m?
i and returns an IBBE encryption under the set S?

i

of either m?
i or a random plaintext depending on the value of some secret bit d? that remains constant across

all challenge queries. The adversary’s goal is then to guess d? without obtaining the private key of any identity
belonging to a set S?

i at any time. Using a classical hybrid argument (e.g. see [5, Theorem 3 ]), this notion is easily
shown equivalent (with a 1/L loss in the security reduction) to the standard IND-sID-CPA security notion for IBBE
schemes.
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which is well-formed since gt
?

2 ·g3 = gβ . Finally, B returns the “blinded key”K ′ID? =
(
gθ1 ·K1,K2, T0, . . . , TN−1, t1

)
to A.

At the end of the game, A outputs a private key KID? and a ε-useful device for the identity ID?. In
the tracing stage, B invokes L times her challenger CBH to obtain L challenge cipherexts {C?i }Li=1. At each
challenge request, B chooses a random plaintext m?

i
$← GT and a receiver set S(i) = S?i to the real-or-random

challenger CBH. For each plaintext m?
i , CBH replies with a challenge ciphertexts C?i = (C?i,0, C

?
i,1, C

?
i,2) for

i = 1 to L.
If the real-or-random challenger CBH is playing the “real” game, the obtained ciphertexts {C?i }Li=1 are

such that C?i,0 = m?
i · e(g1, g2)s

?
i and Ci,1 = gs

?
i , with s?i ∈R Zp, for i = 1 to L. On the other hand, if CBH

decides to play the “random” game, each C?i encrypts a randomly chosen element of GT . To construct L
ciphertexts for the tracing stage of the A-IBBE scheme, B proceeds as follows. For each i ∈ {1, . . . , L}, it
sets C(i)

3 = C?i,0/m
?
i (which equals e(g1, g2)s

?
i in the “real” game and e(g1, g2)s

′
i , with s′i 6= s?i in the “ran-

dom” game), C(i)
1 = C?i,1 and C

(i)
2 = C?i,2. To compute C(i)

0 , B chooses a random plaintext m(i) $← GT and
calculates

C
(i)
0 = m(i) · e

(
C

(i)
1 , DID?

)−1 · e
(
C

(i)
2 , dID?

)
· C(i)

3

t?

, (10)

where (DID? , dID? , t?) is the decryption key for the identity ID? and the receiver set S(i), which is obtained
from KID? . It is easy to see that, if CBH is playing the “real” game, C(i) = (C(i)

0 , C
(i)
1 , C

(i)
2 , C

(i)
3 ) forms a

valid encryption of m(i). If CBH is playing the “random” game, C(i) is distributed as a ciphertext produced
by the tracing algorithm.

Similarly to the proof of theorem 2, we can show that, if CBH is playing the “real” game, the probability
that D never outputs the correct plaintext m(i) at any iteration is smaller than exp(−λ). If this probability
significantly increases when CBH switches to play the “random” game, algorithm B must be able to break
the IND-sID-CPA security of the underlying IBBE scheme: at the end of the game that B plays against CBH,
it says “random” whenever the tracing algorithm points to the PKG and “real” otherwise. Since the result
of [12] implies that AdvBH-IND-sID-CPA

G,GT
(λ) ≤ Adv(N+1)-DBDHE

G,GT
(λ), the claimed result follows from the 1/L

security loss coming from the hybrid argument. ut

As in previous schemes, as long as pirate devices are stateless, no dishonest PKG can create one that
gets the tracing procedure to accuse the user and the result holds unconditionally. The proof of the following
theorem is omitted since it is completely similar to the proofs of theorems 3 and 6.

Theorem 9. In the information theoretic sense, no adversary has an advantage in the DishonestPKG-wBB
game.

It is noteworthy that other IBE-related primitives can be made accountable using the same technique. Due
to their algebraic similarities with the “commutative blinding” IBE family, the “large-universe” attribute-
based encryption schemes described in [39, 31] can easily be tweaked to support accountability in the weak
black-box model.

6 Conclusion

We described the first A-IBE system allowing for weak black-box traceability while retaining short ciphertexts
and private keys. We also suggested a white-box variant that remains secure against dishonest PKGs equipped
with a decryption oracle. In the black-box setting, it remains an open problem to achieve the latter property
without significantly degrading the efficiency.

In the setting of hierarchical IBE schemes, it would also be desirable to see how the problem can be
addressed. When a pirate decoder is found to decrypt ciphertexts intended for a node, one should be able
to determine which ancestor(s) of that node should be blamed.
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A The Boneh-Hamburg IBBE scheme

An Identity-Based Broadcast Encryption scheme, as formalized in [2], can be seen as an IBE scheme where
ciphertexts can be decrypted by more than one receiver. Syntactically, it consists of four algorithms:

– Setup: given a security parameter and a bound N on the number of receivers per ciphertext, this
algorithm outputs a master key pair (mpk,msk).

– KeyGen: is used by the PKG to derive a private key KID for an identity ID.
– Encrypt: takes as input a plaintext m, a master public key mpk and a set S = {ID1, . . . , IDn} of receivers’

identities, where n ≤ N . It outputs a ciphertext C.
– Decrypt: takes as input the master public key mpk, a ciphertext C, a set of receivers S = {ID1, . . . , IDn}

and a private key dID corresponding to some identity ID ∈ S. It outputs a plaintext m or ⊥.

The description of the Boneh-Hamburg IBBE scheme is as follows.

Setup(λ,N): given a security parameter λ ∈ N and the maximal number of receivers N ∈ N per ciphertext,
choose bilinear groups (G,GT ) of prime order p > 2λ and a generator g $← G. Choose z $← G as well
a (N + 1)-vector h = (h0, h1, . . . , hN ) $← GN+1 of random generators so that hi = gai for i = 0, . . . , N
with a randomly chosen a = (a0, . . . , aN ) $← ZN+1

p . Finally, pick α $← Z∗p, g2
$← G and compute g1 = gα.

The master public key is mpk = (g, g1 = gα, g2, z,h = ga) while the master secret key is msk = (a, α).
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Keygen(msk, ID): to generate a private key for an identity ID, choose a random r
$← Z∗p and compute

KID = (K1,K2, T0, . . . , TN−1)
=
(
gα2 · zr, gr, hr1 · h−ID·r

0 , hr2 · h−ID·r
1 , . . . , hrN · h−ID·r

N−1

)
for which the “delegation component” (T0, . . . , TN−1) ∈ GN can be expressed as gr·M

t
1·a, for some matrix

M1 ∈ Z(N+1)×N
p , which will be defined below.

Encrypt(mpk, S,m): to encrypt m ∈ GT for the receiver set S = {ID1, . . . , IDn}, where n ≤ N ,
1. Expand the polynomial

P (X) =
∏
i∈S

(X − IDi) = ρnX
n + ρn−1X

n−1 + · · ·+ ρ1X + ρ0. (11)

2. Pick s $← Z∗p and compute

C = (C0, C1, C2) =
(
m · e(g1, g2)s, gs,

(
z · hρ00 · h

ρ1
1 · · ·hρn

n

)s)
.

Decrypt(mpk,KID, C, S): parse S as {ID1, . . . , IDn}, C as (C0, C1, C2) and KID as

KID = (K1,K2, T0, . . . , TN−1) ∈ GN+2.

1. Expand the polynomial

PID(X) =
∏

IDj∈S\{ID}

(X − IDj) = y
(ID)
n−1X

n−1 + y
(ID)
n−2X

n−2 + · · ·+ y
(ID)
1 X + y

(ID)
0

and use its coefficients to compute

(DID, dID) =
(
K1 · T

y
(ID)
0

0 · T y
(ID)
1

1 · · ·T y
(ID)
n−1

n−1 , K2

)
(12)

=
(
gα2 ·

(
z · hρ00 · h

ρ1
1 · · ·hρn

n

)r
, gr

)
(13)

where ρ0, . . . , ρn are the coefficients of P (X) (calculated as per (11)).
2. Recover the plaintext as

m = C0 · e
(
C1, DID

)−1 · e
(
C2, dID

)
. (14)

To see why step 1 of the decryption algorithm works, one observes that, for any polynomials (X − ID) and
PID(X) = y

(ID)
n−1X

n−1 + y
(ID)
n−2X

n−2 + · · · + y
(ID)
1 X + y

(ID)
0 , the coefficients of P (X) = (X − ID)PID(X) =

ρnX
n + · · ·+ ρ1X + ρ0 are given by

ρ =


ρ0

ρ1

ρ2

...
ρn

 = M1 · y =



−ID
1 −ID

1 −ID
. . . . . .

1 −ID
1


·


y
(ID)
0

y
(ID)
1
...

y
(ID)
n−1

 ,

where M1 ∈ Z(n+1)×n
p . Since the latter matrix is such that

M t
1 · a|n+1 = M t

1 ·


a0

a1

...
an

 =


a1 − ID · a0

a2 − ID · a1

...
an − ID · an−1

 ,
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for each private key KID, the first n delegation components satisfy

(T0, . . . , Tn−1) =
(
hr1 · h−ID·r

0 , hr2 · h−ID·r
1 , . . . , hrn · h−ID·r

n−1

)
= grM

t
1·a.

Therefore, since ρ = M1 · y, we have

(z ·
n∏
k=0

hρk

k )r = zr · gr·ρ
t·a = zr · gry

t·Mt
1·a = zr · T y

(ID)
0

0 · · ·T y
(ID)
n−1

n−1

which explains the transition between relations (12) and (13). To explain the second step of the decryption
algorithm, we note that, for each ID ∈ S, the pair (DID, dID) satisfies

e(DID, g) = e(g1, g2) · e(z · hρ00 · h
ρ1
1 · · ·hρn

n , dID) (15)

By raising both sides of (15) to the power s ∈ Z∗p, where s is the random encryption exponent, we see why
m can be recovered as per (14).

The security of this scheme was proved [12] under the (N + 1)-DBDHE assumption in the selective-
ID model. In the context of IBBE schemes, the IND-sID-CPA model was formalized in [2]. It requires the
adversary to choose upfront (i.e., before seeing mpk) the set S? = {ID?

1, . . . , ID
?
n?} of identities under which the

challenge ciphertext C? will be generated. The adversary is then allowed to query private keys for identities
IDi 6∈ S? and eventually aims at guessing which one out of two messages of her choice was encrypted in the
generation of C?.
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