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Abstract

In this note we prove the following results:

• If a finitely presented group G admits a strongly aperiodic SFT, then
G has decidable word problem.

• For a large class of group G, Z × G admits a strongly aperiodic
SFT. In particular, this is true for the free group with 2 generators,
Thompson’s groups T and V , PSL2(Z) and any f.g. group of rational
matrices which is bounded.

While Symbolic Dynamics [LM95] usually studies subshifts on Z, there has
been a lot of work generalizing these results to other groups, from dynamicians
and computer scientists working in higher dimensions (Zd [Lin04]) to group
theorists interested in characterizing group properties in terms of topological or
dynamical properties [CSC10].

In this note, we are interested in the existence of aperiodic SFTs, or more
generally of aperiodic effective shifts.

There has been a lot of work proving how to build aperiodic SFTs in a
large class of groups, and more generally tilings on manifolds. The most well
known is probably Berger’s construction [Ber64] of an aperiodic SFTs in the
two-dimensional lattice Z2, but construction on wilder groups or symmetric
spaces may be found [Moz97, Coh14].

It is an open question to characterize groups that admit strongly aperiodic
SFTs.

Cohen[Coh14] showed that f.g. groups admitting strongly aperiodic SFTs
are one ended and asked whether it is a sufficient condition. Our first result
proves that it is not: If G is finitely presented, then it also must have decidable
word problem. This is proven in section 2. This is true more generally for f.g.
groups admitting strongly aperiodic effective subshifts, that is subshifts given
by a list of forbidden patterns we can enumerate by a program.

In fact, we also do not need strongly aperiodic subshifts, but something
weaker, that we call weakly strongly aperiodic subshifts: Strongly aperiodic
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subshifts ask that the stabilizer of each point is finite. Here we ask that the
stabilizer of each point does not contain a normal subgroup. The notation for
this new object is quite unfortunate and better names are welcome.

This result may be generalized to any f.g. group, without any assumption
about a finite or recursive presentation: the existence of a strongly aperiodic
SFTs implies some structure on the word problem on G, namely that we can
enumerate the non-identity elements of the group from the identity elements of
the group. The latter property is for example true of any simple group. This
generalization is the core of section 3, and might be omitted by any reader not
familiar with recursion theory.

In the last section, we will remark how a variation on a technique by Kari
gives aperiodic SFTs on Z×G for a large class of group G. We do not know if
there exists an easier proof of this statement.

1 Effective sets on Groups

We first give definitions of effective sets, which are some particular closed
subsets of the Cantor Space AG and AFp . The reader fluent with symbolic
dynamics should remark that the sets we consider are not supposed to be
translation(shift)-invariant in this section.

1.1 Effective sets on the free group

Let Fp denote the free group on p generators. Let G be a finitely generated group
with p generators that we see as a quotient of Fp. Unless specified otherwise,
the identity on G and on Fp will be denoted by λ, and the symbol 1 will be used
only for denoting a number. Let φ be the natural map from Fp to G, and R the
kernel of this map. Hence G = Fp/R = 〈x1 . . . xp|R〉.

Let A be a finite alphabet.
A pseudo-word is a map w from a finite part of Fp to A. A pseudo-word is

a G-word if wg = wh whenever φ(g) = φ(h) and both sides are defined.
A configuration x ∈ AFp disagrees with a pseudo-word w if there exists g

so that xg 6= wg and both sides are well defined. A configuration x ∈ AG

disagrees with a pseudo-word w if there exists g ∈ Fp so that xφ(g) 6= wg and
both sides are well defined. Note that a configuration in AG always disagree
with a pseudo-word which is not a G-word.

Let L be a list of pseudo-words. The set defined by L is the subset S
Fp

L of
AFp of all configurations x that disagree with all words in L. The G-set defined
by L is the subset SG

L of AG of all configurations x that disagree with all words
in L.

It is easy to see that a set defined by L is a closed set for the prodiscrete
topology on AFp . Conversely, any closed set can be defined by some L.

If L has an effective enumeration (can be enumerated by a program, or a

Turing machine), S
Fp

L and SG
L are said to be effective.
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It is important to note that our definition of effectivity differs from the notion
of Z-effectivity proposed in [AaS]. The definition are identical for finitely and
recursively presented groups, but the definition we take here makes more sense
for general groups, with presentation of arbitrary complexity.

We will use in the following a basic but important result:

Proposition 1.1. There exists an algorithm that, given an effective enumera-

tion L, halts iff S
Fp

L is empty.

Proof. For a finite set L, it is easy to test if S
Fp

L is empty: just test all possible
words of AFp defined on the union of the supports of all words in L.

Furthermore, by compactness, for an infinite L′, S
Fp

L′ is empty iff there exists

a finite L ⊆ L′ so that S
Fp

L is empty.
Now, if L is effective, consider the following algorithm: enumerate all ele-

ments wi in L, and test at each step if S
Fp

{w1,...,wn}
is empty. By the first remark,

it is indeed an algorithm. By the second remark, this algorithm halts iff S
Fp

L is
empty.

1.2 The Relation between S
Fp

L and SG
L

Recall that G = Fp/R for some normal subgroup R.
Denote by PerR the set of all configurations of AFp which are R-periodic,

that is xhg = xg for all h in R and all g in Fp.
Note that if x ∈ PerR, and φ(g) = φ(g′) then xg = xg′ . Indeed, if φ(g) =

φ(g′), then g′g−1 ∈ R, hence xg′g−1g = xg by definition of PerR. Conversely, if
for all g, g′, φ(g) = φ(g′) implies that xg = xg′ , then x ∈ PerR.

Hence there is a natural map ψ from PerR to G defined by ψ(x) = y where
yφ(g) = xg. ψ is invertible with inverse defined by ψ−1(y) = x where xg = yφ(g).

PerR can be given by a forbidden set of words: For two group elements g in
Fp and h in R and two letter a 6= b ∈ A, denote by wg,h,a,b the word w defined

over {g, gh} by wg = a and wgh = b. Then it is easy to see that PerR = S
Fp

LR

where LR is the set of all words of the form wg,h,a,b for h ∈ R and g ∈ Fp.

Fact 1.2. ψ(S
Fp

L ∩ PerR) = SG
L

(There is a natural bijection between configurations in Fp that are R-periodic
and forbid the set L, and configurations in G that forbid the set L)

While S
Fp

L is always effective if L can be enumerated, it might be possible

for S
Fp

L ∩ PerR to not be effective. In fact:

Proposition 1.3. Let A be an alphabet of size at least 2.
PerR is effective iff G has a recognizable word problem.

A recognizable word problem means that there is an algorithm that, given
a word w in Fp, halts iff w ∈ R (hence w codes the identity element of G). This
is equivalent to saying that G is recursively presented.

3



Proof. IfG has a recognizable word problem, we may enumerate all words g ∈ Fp

that belong to R, and thus enumerate LR, hence PerR = S
Fp

LR
is effective.

Conversely, suppose that PerR = S
Fp

L for some effective L.
Let g ∈ G. For any letter a ∈ A, consider the word wa over {λ, g} defined

by wa
λ = a, wa

g = a. Let L′ = L ∪ {wa, a ∈ A}.

Then S
Fp

L′ is empty iff g ∈ R. Indeed, it is clear that if g ∈ R, then S
Fp

L′

is empty. Conversely, suppose that g 6∈ R and wlog {c, d} ⊆ A. Define x by

xh = c if h ∈ R and xh = d otherwise. Then x ∈ PerR and x ∈ S
Fp

L′ , hence S
Fp

L′

is nonempty.
As emptyness of effective sets is recognizable in Fp, this gives the result.

Corollary 1.4. If G has a recognizable word problem and SG
L is effective, then

S
Fp

L ∩ PerR is effective.

2 Effective subshifts on Groups

If x ∈ AG, denote by gx the configuration of AG defined by (gx)h = xg−1h. This
defines an action of G on AG.

Definition 2.1. A closed set X of AG is said to be a subshift if x ∈ X, g ∈ G
implies that gx ∈ X.

X is an effectively closed subshift if X is effective, and a subshift.
X is a SFT if there exists a finite set L so that X = S{g−1w,g∈G,w∈L} =

S{g−1w,g∈Fp,w∈L}. In particular a SFT is always effective.

Fact 2.2. If X is a subshift, ψ−1(X) ∩ PerR is a subshift.

Hence any subshift of AG lifts up to a subshift of AFp .
Let X≤1 denote the subset of {0, 1}G of configurations that contains at most

one symbol 1. It is easy to see that X≤1 is closed, and a subshift.

Proposition 2.3. Suppose that G has a recognizable word problem.
If X≤1 is effective then the word problem on G is decidable.

Proof. X≤1 lifts up to a subshift Y on Fp with the property that (a) Y is
effective (as G is recursively presented) (b) Y consists of all configurations so
that xg = xh = 1 =⇒ gh−1 ∈ R.

Now let g ∈ Fp. Let w be the word defined by wλ = 0 and w′ the word

defined by wg = 0, and consider Y ′ = Y ∩S
Fp

{w,w′}. That is, any configuration x

of Y ′ must have xλ = 1 and xg = 1. Thus Y ′ is empty iff g 6∈ R.
Emptyness is recognizable, hence the complement of the word problem is

recognizable, therefore decidable.

Definition 2.4. For x ∈ AG denote by Stab(x) = {g|gx = x}.
A (nonempty) subshift X is strongly aperiodic iff for every x ∈ X, Stab(x)

is finite.
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A (nonempty) subshift X is weakly strongly aperiodic iff for every x ∈ X,
∩h∈GStab(hx) is finite.

Both properties are equivalent for commutative groups. ∩h∈GStab(hx) will
be called the normal stabilizer of x. It is indeed a normal subgroup of G, and
the union of all normal subgroups of Stab(x).

Our first result states that a strongly aperiodic effective subshift (and in
particular a strongly aperiodic SFT) forces the group to have a decidable word
problem in the class of torsion-free recursively presented group. The next pro-
position strenghtens the result by deleting the torsion-freeness requirement.

Proposition 2.5. Let G be a torsion-free recursively presented group.
If G admits a strongly aperiodic effective subshift, then G has decidable word

problem.

Proof. LetX be the strongly aperiodic effective subshift. X lifts up to a subshift
Y on AFp .

Note that if ψ(y) = x, then Stab(y) = Stab(x)R = RStab(x). Furthermore,
if G is torsion-free, then Stab(x) = {λ}, hence for all y ∈ Y , Stab(y) = R.

Now let g ∈ Fp. Let Z = {x|∀t, xgt = xt} = {x ∈ AFp |g ∈ Stab(x)}.
Z is effective. Furthermore Y ∩ Z = ∅ iff g 6∈ R.
Emptyness is recognizable, hence the complement of the word problem is

recognizable, hence decidable.

Proposition 2.6. Let G be a recursively presented group.
If G admits a weakly strongly aperiodic effective subshift, then it admits a

weakly strongly aperiodic effective subshift X where for all x ∈ X, ∩h∈GStab(hx) = λ.

Proof. Let X be weakly strongly aperiodic.
The proof is in two steps. In the first step, we will prove that there exists a

finite normal subgroup H of G and a nonempty effective subshift Y so that for
all x ∈ Y , ∩g∈GStab(gx) = H .

Let H0 = {λ}. Suppose that there exists x ∈ X so that H0 ( ∩h∈GStab(hx).
Then let’s denote H1 ⊃ H0 the normal subgroup on the right.

We do the same for H1, building progressively a chain of normal subgroups
H1 . . . Hn . . . .

It is impossible however to obtain an infinite chain this way. Indeed, as for
all i, there exists xi so that ∩g∈GStab(gxi) = Hi, a limit point x of xi would
verify ∩g∈GStab(gx) ⊇ ∪iHi, hence x would be a configuration with an infinite
normal stabilizer, impossible by definition.

Hence this process will stop, and we obtain some finite normal subgroup H
of G and a point x0 so that ∩h∈GStab(hx) = H and no point x has a larger
normal stabilizer.

Now let Y = {x ∈ X |∀g ∈ G, h ∈ H,hgx = gx}. Y is nonempty, as it
contains x0. As H is finite, Y is clearly effective. As H is normal, it is a
subshift. Furthermore, for all x ∈ Y , ∩h∈GStab(hx) = H .
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Now the second step. Take Z = {x ∈ HG|∀g ∈ G, h ∈ H \ {λ}, xhg 6= xg}.
Z is clearly effective. As H is normal, it is a subshift1. Z is also nonempty:
Write G = HI where I is a family of representatives of G/H . Then the point
z defined by zg = h if g ∈ hI is in Z, hence Z is nonempty2. Furthermore, if
z ∈ Z, then Stab(x) ∩ H = {λ} 3. As a consequence, Z × Y is a nonempty
subshift for which for all x ∈ Z × Y , ∩h∈GStab(hx) = {λ}.

Corollary 2.7. Let G be a recursively presented group.
If G admits a weakly strongly aperiodic effective subshift, G has decidable

word problem.
(As a strongly aperiodic effective subshift is also weakly strongly aperiodic,

the result is also true for groups that admits strongly aperiodic effective subshifts,
or groups that admits strongly aperiodic SFT)

Proof. This is more or less the same proof as before, with one slight difference.
Let X be the weakly strongly aperiodic effective subshift. We may suppose

by the previous proposition that for all x ∈ X , ∩h∈GStab(hx) = {λ}.
X lifts up to a subshift Y on AFp with the following property: If y ∈ Y ,

then ∩h∈Fp
Stab(hy) = R.

Now let g ∈ Fp. Let Z = {y|∀h ∈ Fp, ghy = hy} = {y|g ∈ ∩h∈Fp
Stab(hy)}.

Z is effective. Furthermore Y ∩ Z = ∅ iff g 6∈ R.
Emptyness is recognizable, hence the complement of the word problem is

recognizable, hence decidable.

The converse of the previous corollary should be true. However we were not
able to prove it for stupid reasons: We do now know how to prove that any
group admit a strongly aperiodic subshift.

Open Problem 1. Characterize groups admitting weakly strongly aperiodic
subshifts.

Open Problem 2. Prove that any group admit a (weakly-?) strongly aperiodic
subshift. From the proof, deduce that every group with decidable word problem
admits a (weakly-?) strongly aperiodic effective subshift.

1Indeed, let z ∈ Z and t ∈ G. Let g ∈ G and h ∈ H \ {λ}. Then (tz)hg = zt−1hg =
zt−1htt−1g 6= zt−1g = (tz)g , hence tz ∈ Z

2Indeed, let g ∈ G and h ∈ H \ {λ}. Then zg = k where g ∈ kI for some k ∈ H. But
hg ∈ (hk)I hence zhg = hk 6= k = zg.

3Indeed, for h ∈ H \ {λ}, (hx)λ = xh−1 6= xλ, hence h 6∈ Stab(x).
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3 Enumeration degrees

In this section, we generalize the previous results to any finitely generated
groups, whose presentation might be not recursive. We will prove in partic-
ular that if G admits a strongly aperiodic SFT, then the word problem of G is
a total enumeration degree.

For this, we need to introduce enumeration degrees [FR59, Odi99].
Enumeration degrees, and enumeration reducibility, is a notion from com-

putability theory that is quite natural in the context of presented groups and
subshifts, as it captures (in computable terms) the fact that the only inform-
ation we have about these objects are positive (or negative) information: In a
subshift (effective or not), we usually have ways to describe patterns that do not
appear, but no procedure to list patterns that appear. In a presented group, we
have information about elements that correspond to the identity element of the
group, but no easy way to prove that an element is different from the identity.

We are unaware of any previous use of this reduction in the context of
symbolic dynamics. Note however that Aubrun and Sablik used a very similar
reduction (strong enumeration reducibility) in the context of subactions [AS09].

3.1 Definitions

IfA and B are two sets of numbers (or words in Fp), we say that A is enumeration
reducible to B if there exists an algorithm that produces an enumeration of A
from any enumeration of B. Formally:

Definition 3.1. A is enumeration reducible to B, written A ≤e B, if there
exists a computable function f that associates to each (n, i) a finite set Dn,i s.t.
n ∈ A ⇐⇒ ∃i,Dn,i ⊆ B.

We will first give here a few easy facts, and then examples relevant to group
theory and symbolic dynamics.

Fact 3.2. If A is recursively enumerable, then A ≤e B. If A is recursively
enumerable and A ≤e A then A is computable

(If we can enumerate A given an enumeration of A, and A is enumerable,
then A is enumerable, hence computable)

Here are some examples relevant to group theory:

Fact 3.3. (Formal version) Let G = 〈X |R〉 be a finitely generated group, with
R ⊆ Fp and N be the normal subgroup of Fp generated by R. Then N ≤e R. In
particular, if R is finite, then N (hence the word problem over G) is recursively
enumerable.

(Informal version) From a presentation R of a group, we can list all elements
that correspond to the identity element of the group (but in general we cannot
list elements that are not identity of the group) In terms of reducibility, the set of
all elements that correspond to the identity is the smallest possible presentation
of a group.
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Indeed g ∈ N iff there exists g1 . . . gk ∈ Fp, u1 . . . uk ∈ R ∪ R−1 so that
g = g1u1g

−1
1 g2u2g

−1
2 . . . gkukg

−1
k . Given any enumeration of R (and as Fp is

enumerable), we can therefore enumerate N .

Fact 3.4. (Formal version) Let G be a finitely generated simple group, seen as a
normal subgroup N of Fp. Then N ≤e N (the complement of the word problem
is enumeration reducible to the word problem)

In particular, if G is finitely presented, then G has a decidable word problem.
(Informal version) In a f.g. simple group, we may produce a list of elements

that do not correspond to the identity element from a list of those that do.

This is well known when G is finitely presented, and can be extended as a
necessary and sufficient condition [Tho80].

Proof. Fix a 6∈ N . Then by simplicity, g ∈ N iff a is in the normal subgroup
generated by g and N iff there exists g1 . . . gk ∈ Fp, u1 . . . uk ∈ N ∪ {g, g−1}
such that a = g1u1g

−1
1 g2u2g

−1
2 . . . gkukg

−1
k . Then with any enumeration of N ,

we can therefore enumerate N
Formally, let (D(g, i))i∈N be an enumeration of all finite sets D ⊆ Fp for

which there exists g1 . . . gk ∈ Fp, u1 . . . uk ∈ D ∪ {g, g−1} such that we have
a = g1u1g

−1
1 g2u2g

−1
2 . . . gkukg

−1
k . Then g ∈ N ⇐⇒ ∃i,D(g, i) ⊆ N .

Here are some examples relevant to symbolic dynamics or topology.

Fact 3.5. (Formal version) Let S = SL be any closed set. Let L(S) be the set
of words that disagree with every element of S (remark that S = SL(S))

Then L(S) ≤e L.
In particular if L is computable then L(S) is recursively enumerable.
(Informal version) From any description of a closed set in terms of some

forbidden words, we may obtain a list of all words that do not appear (but usually
not of patterns that appear). In terms of reducibility, the set of all words that
do not appear is the smallest possible description of a closed set.

Subshifts are particular closed sets, so this is also true for subshifts. In
particular the set of patterns that do not appear in a SFT (over Z, or Fp) is
recursively enumerable.

Proof. Let w be any word, defined over a finite set B. For each position g ∈ B
and each letter a 6= wg, consider the word vg,a defined only on position g, with
value a, and take Fw the finite set of all such words. Then it is easy to see that
SFw

is exactly the set of all configurations that agree with w.
Hence w ∈ L(S) iff SFw

∩ S = ∅. By compactness, w ∈ L(S) iff there exists
a finite subset L′ ⊆ L such that SFw∪L′ = ∅

Thus, if (F (n,w))n∈N is a computable enumeration of all finite sets of words
so that SF (n,w)∪Fw

= ∅, then w ∈ L(S) iff ∃n, F (n,w) ⊆ L.
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Fact 3.6. (Formal version) Let S be a minimal subshift of AZ. Then L(S) ≤e

L(S). In particular, if S is effective, then L(S) is computable.
(Informal version) In a minimal subshift, we may produce of list of patterns

that do appear from a list of patterns that don’t.

(The theorem also holds of course for subshifts over Fp, or any group with
a decidable word problem)

This result is well known in the effective case, see [Hoc09, Prop 9.6] or [BJ08,
Cor 4.9].

Proof. In a minimal subshift S, a pattern p appears in S iff adding p to the list
of forbidden patterns would result in an empty subshift. But by compactness,
a finite part of the list would suffice to obtain an empty shift, thus providing
the reduction.

Formally, for a pattern p, let (F (n, p))n∈N be a computable enumeration of
all finite sets of patterns so that SF (n,p)∪{p} = ∅, then w 6∈ L(S) iff ∃n, F (n, p) ⊆
L(S).

Note that the result is assymmetric: This does not mean that we can produce
a list of patterns that don’t appear from a list of patterns that do, and it is indeed
possible, using methods from [BJ10], to produce counterexamples. Intuitively,
the list of forbidden patterns of a minimal subshift contain something more: We
can compute (enumerate) from it the quasiperiodicity function of the minimal
subshift. An exact theorem about this will be given in a subsequent paper.

3.2 Generalizations

Now we explain how this concept gives generalizations of the previous theorems.
First, we look at subsets of AFp that are effective given an enumeration of

B. This definition is nonstandard:

Definition 3.7. A set S ⊆ AFp is B-enumeration-effective if S = SL for some
set of words L so that L ≤e B.

Here are a few examples:

• {x ∈ {0, 1}Fp|∀h ∈ B, xh = 1} is B-enumeration effective

• {x ∈ {0, 1}Fp|∀g ∈ Fp, ∀h ∈ B, xgh = xh} is B-enumeration effective

• {x ∈ {0, 1}Fp|∀h 6∈ B, xh = 1} is usually not B-enumeration effective.
It is B-enumeration effective iff the complement of B is enumeration re-
ducible to B. It happens for example whenever the complement of B is
enumerable, regardless of the status B.

Definition 3.8. If G = Fp/R for a normal subgroup R of Fp, we will say that
X ∈ AFp is G-enumeration effective whenever X is R-enumeration effective.
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Proposition 3.9 (Analog of Prop 1.3). Let A be an alphabet of size at least 2.
PerR is G-enumeration effective. Furthermore, if PerR is B-enumeration

effective for some set B, then R ≤e B.

This is obvious, as the set of words incompatible with PerR is enumeration
reducible to R, and R is enumeration reducible to the set of words incompatible
with PerR if A is of size at least 2.

Corollary 3.10 (Analog of Cor. 1.4). If SG
L is effective, then S

Fp

L ∩ PerR is
G-enumeration effective.

Proposition 3.11 (Analog of Prop. 2.3). If X≤1 is effective (in particular if
X≤1 is an SFT) then the complement of R is enumeration reducible to R.

Proof. X≤1 lifts up to a subshift X of AFp which is G-enumeration effective, i.e.
the set of all words that disagrees with X is enumeration reducible to R. Write
X = SL for some L ≤e R.

By the proof of Prop. 2.3, there exists a uniform family wg of words so that
g 6∈ R iff X ∩ S{wg} = ∅.

Let (F (n, g))n∈N be a computable enumeration of all finite sets F so that
SF∪{wg} = ∅.

Then g 6∈ R iff ∃nF (n, g) ⊆ L, hence R ≤e L ≤e R

Proposition 3.12 (Analog of Cor. 2.7). If G admits a weakly strongly aperiodic
effective subshift, then the complement of R is enumeration reducible to R. (As
a strongly aperiodic effective subshift is also weakly strongly aperiodic, the result
is also true for groups that admits strongly aperiodic effective subshifts, or groups
that admits strongly aperiodic SFT)

Proof. From the proof of Cor. 2.7, there exists aG-enumeration effective subshift
X on Fp, and a family of effective subshifts Xg so that X ∩Xg = ∅ iff g 6∈ R.
Write X = SL, where L ≤e R, and Xg = SLg

.
Let (F (n, g))n∈N be a computable enumeration of all finite sets F for which

there exists G ⊆ Lg so that SF∪G = ∅ (this can indeed be enumerated as Lg

can be enumerated).
Then g 6∈ R iff ∃nF (n, g) ⊆ L, hence R ≤e L ≤e R
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4 On a Construction of Kari

4.1 Definitions

Kari provided a way in [Kar07] to convert a piecewise affine map into a tileset
simulating it. We give here the relevant definitions. First, we introduce a
formalism for Wang tiles that will be easier to deal with.

Definition 4.1. Let G be a f.g. group with a set S of generators.
A set of Wang tiles over G is a tuple (C, (φh)h∈S , (ψh)h∈S) where, for each

h, φh, ψh are maps from C to some finite set.
The subshift generated by C is

XC = {x ∈ CG|∀g ∈ G, ∀h ∈ S, φh(xg) = ψ(xgh−1 )}
= {x ∈ CG|∀g ∈ G, ∀h ∈ S, φh((gx)e) = ψ((gx)h−1)}

(The last definition proves it is indeed a subshift, and in fact a subshift of
finite type). If G has one generator (in particular if G = Z = 〈1〉), we will write
φ and ψ instead of φ1 and ψ1.

Definition 4.2. Let cont : {0, 1}Z → [0, 1] defined by cont(x) = lim supn

∑
i∈[−n,n] xi

2n+1

and disc : [0, 1] → {0, 1}Z defined by disc(y)n = ⌊(n+ 1)x⌋ − ⌊nx⌋.
Remark that cont(disc)(y) = y.

Theorem 1 ([Kar07]). Let a, b be rational numbers and f(x) = ax+ b.
Then there exists a set of Wang tiles (C, φ, ψ) over Z and two maps out, in

from C to {0, 1} so that the two following properties hold

• For any configuration x of XC, f(cont(in(x)) = cont(out(x))

• For any y ∈ [0, 1] so that f(y) ∈ [0, 1], there exists a configuration x of
CG so that in(x) = disc(y) and out(x) = disc(f(y))

C is usually seen as a set of Wang tiles over Z2 rather than Z but this
formalism is better for our purpose.

Two examples are given in Figure 1.

Corollary 4.3. Let f1 . . . fk be a finite family of affine maps with rational
coordinates.

Then there exists a set of Wang tiles (C, φ, ψ) over Z and maps in et
(outi)1≤i≤k from C to {0, 1} so that the two following properties hold

• For any configuration x of XC, fi(cont(in(x)) = cont(outi(x))

• For any y ∈ [0, 1] so that fi(y) ∈ [0, 1] for all i, there exists a configuration
x of CG so that in(x) = disc(y) and outi(x) = disc(fi(y))
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C1 :

0 1
1

0
1 0
0

0
1 2
1

0
2 1
0

0
2 3
1

0
2 0
1

1
3 2
0

0
3 1
1

1

C2 :

0 1
0

0
0 3
1

0
0 2
1

1
1 2
0

0
1 4
1

1
2 4
0

0
2 0
0

1
2 5
1

1

3 4
0

1
4 5
0

0
4 1
0

1
4 3
1

1
5 3
0

0
5 2
0

1

Figure 1: Two set of Wang tiles corresponding respectively to the maps
f(x) = (2x − 1)/3 and f(x) = (4x + 1)/3. The colors on each tile c ∈ C
on east,west,north,south represent respectively φ(c), ψ(c), in(c), out(c).

Proof. let (Ci, φi, ψi) be the set of Wang tiles over Z corresponding to fi, with
maps outi and ini.

Let C = {y ∈
∏

Ci|∃x ∈ {0, 1}, ∀i, ini(yi) = x}. Let pi denote the projec-
tion from C to Ci and define

φ =
∏

(φi ◦ pi)

ψ =
∏

(ψi ◦ pi)

in = in1 ◦ p1 = in2 ◦ p2 = · · · = ink ◦ pk

outi = outi ◦ pi

It is clear that C satisfies the desired properties.

Corollary 4.4. Theorem 3 still holds when f is a piecewise affine rational
homeomorphism from [0, 1]/0∼1. As a consequence, the previous corollary also
holds for a finite familiy of piecewise affine rational homeomorphisms.

Let’s define precisely what we mean by a piecewise affine rational homeo-
morphism from [0, 1]/0∼1 to [0, 1]/0∼1.

We first define a relation ≡: x ≡ y if x = y or {x, y} = {0, 1}. Then a
piecewise affine homeomorphism from [0, 1]/0∼1 to [0, 1]/0∼1 is given by a finite
family [pi, pi+1]i<n of n intervals with rational coordinates, with p0 = 0 and
pn = 1, and a family of affine maps fi(x) = aix+ b so that

• fi and fi+1 agrees on their common boundary:

∀i ∈ Z/nZ, fi(pi+1) ∼ f(i+1)(pi+1)

12



• f = ∪ifi is injective: f(x) ∼ f(y) =⇒ x ∼ y

These properties imply that f is invertible, and its inverse is still piecewise affine

Proof. We give a proof of this easy result to prepare for another proof later on.
Let F be the class of relations on [0, 1]× [0, 1] for which the theorem is true.

F contains all rational affine maps.
It is clear from the formalism that if f and g are in F , then f ∪ g ∈ F , by

taking (C∪C′, φ∪φ′, ψ∪ψ) once the range of φ and φ′ have been made disjoint.
In the same way, we may prove f ◦g ∈ F and f ; g ∈ F , where f ◦g(x) = f(g(x))
and f ; g(x) = g(f(x)).

Let i ∈ {0 . . . n− 1}. The function fi is the composition of 5 functions in F :

• g1 = id ∪ (x→ x− 1) ∪ (x→ x+ 1) (g1 is exactly the relation ≡)

• g2 = (x→ pi+1 − x) ◦ (x→ pi+1 − x) (g2(x) = x, defined on [0, pi+1])

• g3 = (x→ x+ pi) ◦ (x→ x− pi) (g2(x) = x, defined on [pi, 1])

• g4 = x→ aix+ bi

• g5 = g1

Hence fi ∈ F , and f ∈ F .

Kari first used this construction [Kar96] to obtain a aperiodic SFT of Z2:
Start with a piecewise rational homeomorphism f with no periodic points (f
should be indeed over [0, 1]/0∼1 and not over [0, 1] for this to work, as any
continuous map from [0, 1] to [0, 1] has a fixed point by the intermediate value
theorem). For example, take

f(x) =

{

(2x− 1)/3 if 1/2 ≤ x ≤ 1
(4x+ 1)/3 if 0 ≤ x ≤ 1/2

Take the set of Wang tiles over Z given by the theorem, and consider it
as a set of Wang tiles over Z × Z by mapping in and out to φ(0,1) and ψ(0,1).
For the specific function f above, we obtain the set of 22 tiles presented in
Fig. 1 (where horizontal colors corresponding to different sets are supposed to
be distinct). Then it is easy to see that this indeed gives a SFT over Z2 with
no periodic points. The same construction can be refined [Kar96] to obtain
aperiodic tilesets with fewer tiles, but that is not our purpose here.

The important point is that this construction may be easily generalized:
There is no need to tile Z×Z, we may use the exact same idea to obtain a SFT
over Z×G for some groups G.

13



Definition 4.5. A f.g. group G is PA-recognizable iff there exists a finite set
F of piecewise affine rational homeomorphisms of [0, 1]/0∼1 so that

• (A) The group generated by the homeomorphisms is isomorphic to G

• (B) For any t ∈ [0, 1]/0∼1, if gf(t) = f(t) for all f , then g = e

Note that by the property (A) every PA-recognizable group has decidable
word problem.

Theorem 2. If G is PA-recognizable and infinite, there exists a SFT over Z×G
which is strongly aperiodic.

Proof. Let S be a set of generators for G. Let (fh)h∈S be generators for G as
a group of piecewise affine maps. And consider the set of Wang tiles (C, φ, ψ)
and maps in, outh, corresponding to them by Corollaries 4.3 and 4.4.

Now we look at the set of Wang tiles (C′, (φi), (ψi)) over Z ×G (with gen-
erators 1 and S) defined by C′ = C and:

φ1 = φ

ψ1 = ψ

ψh = in

φh = outh

We will prove that (a) XC′ mimics the behaviour of the piecewise affine
maps and (b) gives a strongly aperiodic SFT.

For an element x ∈ XC′ , g ∈ G, let xg : Z → C where xg(n) = x(n,g). Now
let zg = cont(in(xg)). Note that xg ∈ XC .

Note that by definition, for any h,

fh(zg) = fh(cont(in(xg)))
= cont(outh(xg))
= cont(φh(xg))
= cont(ψh(xgh−1 ))
= cont(in(xgh−1))
= zgh−1

This implies that for any g = g1 . . . gk, we have z(g1...gk)−1 = fg1(fg2 . . . fgk(zλ) . . . ).
That is, for all g ∈ G, zg−1 = fg(zλ).

Now, by the second part of theorem 3, for any collection (zg)g∈G that satisfy
zg−1 = fg(zλ), there exists a corresponding configuration in XC′ . This proves
that the SFT is nonempty, by starting e.g. with zg−1 = fg(0).

Now suppose that x ∈ XC′ is weakly periodic, that is Stab(x) is infinite.
Let (n, h) ∈ Z × G be in the stabilizer of x, that is for all (m, g) ∈ Z × G, we
have ((n, h)x)(m,g) = x(m,g). This implies that zgh−1 = zg for all g. Hence,
fhfg(zλ) = fg(zλ) for all g. By PA-recognizability, this implies h = λ.

14



It remains to prove that n = 0. If n 6= 0, this means that for each g, the word
xg is periodic of period n. There are finitely many periodic words of length n,
which means that zg will take only finitely many values: zg ∈ Z for some finite
set Z, which is closed under all maps fh.

Then each element of G acts as a permutation on Z. Furthermore, by PA-
recognizability, any element ofG that acts like the identity on Z must be equal to
the identity. This implies that any element of G is identified by the permutation
of Z it induces, hence that G is finite.

4.2 Applications

Proposition 4.6. Z is PA-recognizable. Hence Z×Z admits a strongly aperiodic
subshift of finite type

Proof. The function f seen previously provides a proof.

f(x) =

{

(2x− 1)/3 if 1/2 ≤ x ≤ 1
(4x+ 1)/3 if 0 ≤ x ≤ 1/2

To understand better what f does, we will look at f ′ = hfh−1 where h(x) =
x+ 1. Then it is easy to see that

f ′(x) =

{

2x/3 if 3/2 ≤ x ≤ 2
4x/3 if 1 ≤ x ≤ 3/2

from which it is easy to see that the orbit of f is infinite, (hence the group
generated by f is isomorphic to Z), and that if fn(t) = t for some n and some
t, then n = 0 (hence property (B)). Therefore G is PA-recognizable.

Proposition 4.7. Thompson group T is PA-recognizable. Hence Z× T admits
a strongly aperiodic subshift of finite type

Proof. T is the quintessential PA-recognizable group: It is formally the sub-
group of all piecewise affine maps of [0, 1]/0∼1 where each affine map has dyadic
coordinates and positive slope.

T is indeed finitely generated, more precisely it is generated by the three
following functions [CFP96]:

a(x) =







x/2 0 ≤ x ≤ 1/2
x− 1/4 1/2 ≤ x ≤ 3/4
2x− 1 3/4 ≤ x ≤ 1

b(x) =















x 0 ≤ x ≤ 1/2
x/2 + 1/4 1/2 ≤ x ≤ 3/4
x− 1/8 3/4 ≤ x ≤ 7/8
2x− 1 7/8 ≤ x ≤ 1

c(x) =







x/2 + 3/4 0 ≤ x ≤ 1/2
2x− 1 1/2 ≤ x ≤ 3/4
x− 1/4 3/4 ≤ x ≤ 1

From the definition of T , it is easy to see that the orbit of any z ∈ [0, 1] is
dense, hence property (B) is true, and T is PA-recognizable.
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Note that it is not clear if Thompson group F is PA-recognizable: F is the
subgroup of T generated by a and b, and fixes 0: As a consequence, this particu-
lar representation does not satisfy property (B). Whether another representation
of Thompson group F exists with this property is open.

Proposition 4.8. PSL2(Z) is PA-recognizable. Hence Z× PSL2(Z) admits a
strongly aperiodic subshift of finite type.

Proof. PSL2(Z) is the subgroup of T generated by a and c, see for example
[Fos11]. To see that this representation satisfies property (B), remark that this
action is conjugated by the Minkowski question mark symbol (ibid.) to the
action of PSL2(Z) over the projective line R∪{∞}. From this point of view, it
is clear that any element of PSL2(Z) different from the identity fixes at most
two points. Hence if gf(t) = f(t) for all t, then g = λ.

For this particular group, it is actually easy to work out all details and
produce a concrete aperiodic set of Wang tiles, represented in Fig 2. It is
obtained by taking d = a and e = ac as generators (rather than a and c) and
looking at them as acting on [0, 2]0∼2 (rather than [0, 1]0∼1) by the formulas:

d(x) =







x/2 0 ≤ x ≤ 1
x− 1/2 1 ≤ x ≤ 3/2
2x− 2 3/2 ≤ x ≤ 2

e(x) =

{

x+ 1 0 ≤ x ≤ 1
x− 1 1 ≤ x ≤ 2

(Of course, such details may also be provided for Thomspon group T . How-
ever the presence of the generator b produced an set of tiles too large to be
depicted here.)

4.3 Generalizations

The construction of Kari works for more than piecewise affine homeomorphisms
of [0, 1]. It works for any partial piecewise affine map from [0, 1]d to its image.

Theorem 3 ([Kar07]). Let A ∈ Mm×n(Q) be a (possibly non square) matrix
with rational coefficients, b ∈ Qm a rational vector and f(x) = Ax + b

Then there exists a set of Wang tiles (C, φ, ψ) over Z (generated by 1) and
two maps out, in from C to {0, 1}m and {0, 1}n so that the two following prop-
erties hold

• For any configuration x of XC, f(contn(in(x)) = contm(out(x))

• For any y ∈ [0, 1]n so that f(y) ∈ [0, 1]m, there exists a configuration x of
CG so that in(x) = discn(y) and out(x) = discm(f(y))

where disci and conti are the natural i-dimensional analogues of disc and cont
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1 1
0 1

0
2 2
0 1

0
1 2
0 2

1
2 1
1 2

1

3 4
0 0

1
3 4
1 1

2
4 3
1 0

1
4 5
0 0

1
4 5
1 1

2
5 4
1 0

1

6 6
2 1

2
6 7
1 1

2
7 6
1 0

1
7 7
2 1

2

α β
γ δ

ǫ

Figure 2: A strongly aperiodic set of 14 Wang tiles over Z × PSL2(Z), where

PSL2(Z) is generated by d =

(

0 −1
1 1

)

and e =

(

0 −1
1 0

)

. The rules are as

follows: Let x be the tile in position (n, g). Then the tile y in position (n+1, g)
must satisfy yα = xβ , the tile y in position (n, gd) must satisfy yǫ = xγ , the tile
y in position (n, ge) must satisfy yǫ = xδ.
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Now we will be able to prove a theorem similar to the previous one for a
larger class of maps (hence a larger class of groups). There are three directions
in which we can go:

• Go to higher dimensions

• Look at piecewise affine maps defined on compact subsets of Rd different
from [0, 1]d.

• Consider other identifications than 0 ∼ 1

In the following we will not use the full possible generalisation, and will not
identify any points in our sets. This will be sufficient for the applications and
already relatively painful to define. However, this means that the next definition
will not encompass PA-recognizable groups.

Definition 4.9. Let F = {fi : Bi 7→ B′
i, i = 1 . . . k} be a finite set of piecewise

affine rational homeomorphisms, where each Bi and B′
i is a finite union of

bounded rational polytopes of Rn.
Let SF be the closure of the set fi and f

−1
i under composition. Each element

of SF is a piecewise affine homeomorphism, whose domain is the union of finitely
many bounded rational polytopes, and may possibly be empty.

Let TF be the common domain of all functions in SF .
Then the group GF generated by F is the group {f|TF

, f ∈ SF}.

Definition 4.10. A f.g. group G is PA’-recognizable iff there exists a finite set
F of piecewise affine rational homeomorphisms so that

• (A) G is isomorphic to GF .

• (B) For any t ∈ TF , if gf(t) = f(t) for all f , then g = λ

Note that TF might not be computable in general. In particular, it is not
clear that any PA’-recognizable has decidable word problem.

Theorem 4. If G is PA’-recognizable, then the complement of the word prob-
lem on G is recognizable. In particular, if G is recursively presented, the word
problem on G is decidable

Proof. We assume that G 6= {λ}, hence TF 6= ∅.
Let g be an element of G, given by composition of some piecewise affine

maps. Let D = {t|∀f ∈ SF , f(t) is defined and g(f(t)) = f(t)}
Note that D ⊆ TF . Furthermore, g 6= λ iff D = ∅ by property (B).
This gives a semi algorithm to decide if g 6= λ.

Theorem 5. If G is PA’-recognizable, Z×G admits a strongly aperiodic subshift
of finite type.

Proof. Same proof as before.

Here a few applications:
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Proposition 4.11. Z is PA’-recognizable. Hence Z×Z admits a strongly aperi-
odic subshift of finite type.

Proof. Let A =
{

(x, y) ∈ [−1, 1]2, |x|+ |y| ≥ 1
}

. A is the union of four bounded
polytopes.

Let
f : A → f(A)

(

x
y

)

7→

(

3/5 4/5
−4/5 3/5

)(

x
y

)

And let F = {f}. f is clearly an homeomorphism. Note that f is a rotation of
angle arccos3/5.

Now it is easy to see that T{f} = S1 = {(x, y)|x2+y2 = 1}, and that G{f} is
isomorphic to Z. Furthermore, it is also clear that the orbit of any point of T{f}
is dense in T{f}, which implies property (B). Hence Z is PA’-recognizable.

Proposition 4.12. Any finitely generated subgroup G of rational matrices of
a compact matrix group is PA’-recognizable. Hence Z × G admits a strongly
aperiodic subshift of finite type.

Proof. We assume familiary with representation theory of linear compact groups,
see e.g. [OV90, Chap 3.4]. Let G be such a group, and let M1 . . .Mn be the
matrices of size k× k that generate G. Using elementary linear algebra we may
suppose there exists a rational vector y ∈ Rk so that gy = y implies g is the
identity, and Gy spans Rk.

Now, as G is a subgroup of a compact group, we can define a scalar product
so that all matrices of G are unitary. Let Rk = V 1 ⊕ V 2 · · · ⊕ V p be a decom-
position of Rk into orthogonal (for this scalar product) irreducible G-invariant
vector spaces, that is GV i = V i and no proper nonzero subspace of V i is
G-invariant. This is possible as G is a subgroup of a compact group hence
completely reducible. Note that the vector spaces V i might not have rational
bases.

Let P i be the orthogonal projection onto V i. For a vector x, let xi = P ix,
so that x =

∑

i x
i. For a matrix g ∈ G, let gi : V i → V i be the restriction of g

to V i, so that gx =
∑

i g
ixi.

Recall there is y so that gy = y for g ∈ G implies that g = 1. As Gy spans
Rk, yi 6= 0 for all i.

Let i ∈ {1 . . . p}. Let W i be the topological closure of Gyi. As yi is nonzero
and V i is G-invariant, W i ⊆ V i and is faraway from zero. That is, there exists
constants ri, Ri > 0 so that for all y ∈W i, |y|1 > ri and |y|1 < Ri.

Now let
T = {y|∀i, |P iy|1 > ri and |P iy|1 < Ri}

and
T0 = {y|∀i, |P iy|1 > ri/2 and |P iy|1 < 2Ri}

Note that T is a polytope with real coordinates. Let T ′ be an approximation
of T as a polytope with rational coordinates, so that T ⊆ T ′ ⊆ T0.
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Now define the maps fi as restrictions of Mi from T ′ to MiT
′. Let F be the

corresponding set of maps.
We cannot describe TF exactly, but it is clear that it contains y, as T contains

the G-orbit of y. As a consequence, GF is isomorphic to G.
Now we prove property (B). Start from t ∈ TF and g ∈ GF so that

gf(t) = f(t) for all f .
Let i ∈ {1, . . . , p} and let ti = P it so that t =

∑

i t
i. As t ∈ TF ⊆ T ′ ⊂ T0,

we have ti 6= 0. As a consequence, the orbit of Gti on Wi spans a nonzero
G-invariant subspace of Vi, which is Vi by irreducibility. Now, as gf(t) = f(t)
for all f , we conclude that g is the identity on the orbit of Gti, hence g is the
identity on V i. As this is true for all i, g is the identity matrix.

Corollary 4.13. The free group F2 is PA’-recognizable. Every finite group is
PA’-recognizable.

Proposition 4.14. Thompson’s group V is PA’-recognizable.

Proof. V is usually given [CFP96] as the generalization of T to discontinuous
maps. However, our maps in the definition need to be continuous, so we will see
V as acting on the “middle thirds” Cantor set (As a side note, V is therefore
isomorphic to the group of all revertible generalized one-sided shifts [Moo91]).

Let

C3 =







∑

i≥1

αi

3i
, α ∈ {0, 2}N

+







Let a, b, c, π0 defined on C3 by:

a(x) =







x/3 0 ≤ x ≤ 1/3
x− 4/9 2/3 ≤ x ≤ 7/9
3x− 2 8/9 ≤ x ≤ 1

b(x) =















x 0 ≤ x ≤ 1/3
x/3 + 4/9 2/3 ≤ x ≤ 7/9
x− 4/27 8/9 ≤ x ≤ 25/27
3x− 2 26/27 ≤ x ≤ 1

c(x) =







x/3 + 8/9 0 ≤ x ≤ 1/3
3x− 2 2/3 ≤ x ≤ 7/9
x− 2/9 8/9 ≤ x ≤ 1

π0(x) =







x/3 + 2/3 0 ≤ x ≤ 1/3
3x− 2 2/3 ≤ x ≤ 7/9
x 8/9 ≤ x ≤ 1

Now our definition does not permit to define a, b, c, π0 on C3, as the domain
and range of each map should be a finite union of intervals with rational co-
ordinates. So we will define them by the above formulas, but for x ∈ [0, 1] rather
than x ∈ C3. Note that they are already homeomorphisms onto their image.

Let F = {a, b, c, π0}. We claim that TF = C3, which will prove that GF is
indeed isomorphic to V . As before, any orbit is dense, from which property (B)
ensues and V will be PA’-recognizable.

It remains to prove that TF = C3. Note that clearly C3 ⊆ TF .
First note that

• Dom(a) = [0, 1/3]∪ [2/3, 7/9]∪ [8/9, 1]

• Range(a) = [0, 1/9] ∪ [2/9, 1/3]∪ [2/3, 1]
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Which implies that TF ⊆ [0, 1/9] ∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1]
Now let x ∈ TF .

• If 0 ≤ x ≤ 1/9, then 3x ∈ TF (apply a−1)

• if 2/9 ≤ x ≤ 1/3, then 3x ∈ TF (apply a−1, then c−1 then a)

• if 2/3 ≤ x ≤ 7/9, then 3x− 2 ∈ TF (apply c)

• If 8/9 ≤ x ≤ 1, then 3x− 2 ∈ TF (apply a)

This proves inductively that x ∈ C3.

Open Problems

This is only one way of generalizing Kari’s construction. There are many other
ways to generalize it, one of which providing a (weakly) aperiodic SFT on the
Baumslag Solitar group, see [AK13].

Here is an interesting open question: The construction uses representations
of reals as words in {0, 1}Z, can we use a representation in {0, 1}H, for some
other group H ? This would possibly allow to prove that H ×G has a strongly
aperiodic SFT for G PA-recognizable.
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