Aperiodic Subshifts of Finite Type on Groups

Emmanuel Jeandel 1, *
* Auteur correspondant
1 CARTE - Theoretical adverse computations, and safety
Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
Abstract : In this note we prove the following results: • If a finitely presented group G admits a strongly aperiodic SFT, then G has decidable word problem. More generally, for f.g. groups that are not recursively presented, there exists a computable obstruction for them to admit strongly aperiodic SFTs. • On the positive side, we build strongly aperiodic SFTs on some new classes of groups. We show in particular that some particular monster groups admits strongly aperiodic SFTs for trivial reasons. Then, for a large class of group G, we show how to build strongly aperiodic SFTs over Z × G. In particular, this is true for the free group with 2 generators, Thompson's groups T and V , P SL2(Z) and any f.g. group of rational matrices which is bounded.
Type de document :
Pré-publication, Document de travail
New version. Adding results about monster groups. 2015
Liste complète des métadonnées

Contributeur : Emmanuel Jeandel <>
Soumis le : vendredi 3 juillet 2015 - 11:04:28
Dernière modification le : mardi 18 décembre 2018 - 16:48:02
Document(s) archivé(s) le : mardi 25 avril 2017 - 22:34:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01110211, version 2
  • ARXIV : 1501.06831


Emmanuel Jeandel. Aperiodic Subshifts of Finite Type on Groups. New version. Adding results about monster groups. 2015. 〈hal-01110211v2〉



Consultations de la notice


Téléchargements de fichiers