Skip to Main content Skip to Navigation
Directions of work or proceedings

CMA-ES: A Function Value Free Second Order Optimization Method

Nikolaus Hansen 1
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We give a bird's-eye view introduction to the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and emphasize relevant design aspects of the algorithm, namely its invariance properties. While CMA-ES is gradient and function value free, we show that using the gradient in CMA-ES is possible and can reduce the number of iterations on unimodal, smooth functions.
Complete list of metadata

Cited literature [7 references]  Display  Hide  Download
Contributor : Nikolaus Hansen Connect in order to contact the contributor
Submitted on : Thursday, January 29, 2015 - 8:05:56 PM
Last modification on : Thursday, July 8, 2021 - 3:49:59 AM
Long-term archiving on: : Wednesday, May 27, 2015 - 1:41:48 PM


Files produced by the author(s)


  • HAL Id : hal-01110313, version 1


Nikolaus Hansen. CMA-ES: A Function Value Free Second Order Optimization Method. PGMO COPI 2014, Oct 2014, Paris, France. 2014. ⟨hal-01110313⟩



Record views


Files downloads