Detection number of bipartite graphs and cubic graphs

Abstract : For a connected graph G of order |V(G)| ≥3 and a k-labelling c : E(G) →{1,2,…,k} of the edges of G, the code of a vertex v of G is the ordered k-tuple (ℓ1,ℓ2,…,ℓk), where ℓi is the number of edges incident with v that are labelled i. The k-labelling c is detectable if every two adjacent vertices of G have distinct codes. The minimum positive integer k for which G has a detectable k-labelling is the detection number det(G) of G. In this paper, we show that it is NP-complete to decide if the detection number of a cubic graph is 2. We also show that the detection number of every bipartite graph of minimum degree at least 3 is at most 2. Finally, we give some sufficient condition for a cubic graph to have detection number 3.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress) (3), pp.333-342
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01110978
Contributeur : Frederic Havet <>
Soumis le : mercredi 4 novembre 2015 - 14:39:57
Dernière modification le : lundi 4 décembre 2017 - 15:14:19
Document(s) archivé(s) le : vendredi 5 février 2016 - 11:29:58

Fichier

dmtcs-16-3-20.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01110978, version 1

Collections

Citation

Frédéric Havet, Nagarajan Paramaguru, Rathinaswamy Sampathkumar. Detection number of bipartite graphs and cubic graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 3 (in progress) (3), pp.333-342. 〈hal-01110978〉

Partager

Métriques

Consultations de la notice

325

Téléchargements de fichiers

209