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HIGH-ORDER TIME DISCRETIZATION OF THE WAVE EQUATION BY

NABLA-P SCHEME. ∗

Hélène Barucq1, Henri Calandra2, Julien Diaz3 and Florent Ventimiglia4

Abstract. High-order Discontinuous Galerkin Methods (DGM) are now routinely used for simulation
of wave propagation, especially for geophysical applications. However, to fully take full advantage of the
high-order space discretization, it is relevant to use a high-order time discretization. Hence, DGM are
currently coupled with ADER schemes, which leads to high-order explicit time schemes, but requires
the introduction of auxiliary unknowns. The memory can thus be considerably cluttered up. In this
work, we propose a new high order time scheme, the so-called Nabla-p scheme. This scheme does
not increase the storage costs since it is a single step method which does not require introducing
auxiliary unknowns. Numerical results show that for a given accuracy, the new scheme requires less
computational burden regarding both the memory and the computational costs than the DG-ADER
scheme.

Résumé. Les méthodes de Galerkin Discontinues (DGM) d’ordre élevé sont maintenant couram-
ment utilisées pour la simulation de la propagation des ondes, en particulier pour les applications
géophysiques. Cependant, pour profiter pleinement d’une discrétisation en espace d’ordre élevé, il
est pertinent d’utiliser une discrétisation en temps d’ordre élevé. C’est pourquoi les DGM sont sou-
vent associées à des schémas ADER, ce qui conduit à des formulations en temps explicites et d’ordre
élevé. Toutefois, les méthodes DG-ADER nécessitent d’introduire des inconnue auxiliaire, ce qui peut
encombrer considérablement la mémoire. Dans ce travail, nous proposons un nouveau schéma tem-
porel d’ordre élevé, le schéma Nabla-p. Ce schéma n’augmente pas les coûts de stockage car il s’agit
d’une méthode à un pas, sans utilisation d’inconnues auxiliaires. Les résultats numériques montrent
qu’il nécessite moins d’espace mémoire et qu’il coûte moins cher que la méthode DG-ADER pour une
précision donnée.

Introduction

Numerical simulation of wave propagation in realistic domains requires the development of advanced numer-
ical methods which are capable of reproducing the effects of heterogeneities on waves. The solution of wave
problems is involved in seismic imaging processes such as the Reverse Time Migration (RTM) technique. In that
context, the accuracy of the numerical solution is not the only concern because the image of the subsurface is
produced by solving a collection of wave equations. That means that, given a level of accuracy that ensures the
quality of the image, the use of the memory and the computational time must also be considered to determine
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if the numerical method is efficient for industrial purposes. RTM is well-known to be computationally intensive
and besides the huge progresses of scientific computing, high-order numerical methods provide efficient alter-
native to decrease the computational costs. In case of heterogeneous media including topography effects, it is
relevant to handle high-order Discontinuous Galerkin Methods (DGM) which have demonstrated a high level of
flexibility by allowing the use of different orders of approximation to solve a problem. Moreover, these methods
are multi-thread oriented, which is mandatory to benefit from the last computing architectures. Now DGMs
only address the issue of discretizing the equations in space. The most widely time discretization method for
wave problems involves the Leap-Frog (LF) scheme. The Leap-Frog scheme belongs to the family of explicit
time schemes, which provide a direct representation of the wave fields as compared to implicit formulations. But
the stability is ensured under the so-called Courant Friedrichs Lewy (CFL) condition. The LF scheme is of order
two only, and it does allow to take ful advantage of the high order space discretization. It is thus interesting
to combine DGMs with high-order time schemes. This has been achieved with DG-ADER methods [3], which
are an extension of the Modified Equation Technique [4,5]. Regarding the memory use, DG-ADER schemes are
relevant because they are single step time integration procedures. Thus, they only require to store the solution
at the previous time step. Nevertheless, memory limits can be reached when solving 3D wave equations, in
particular because their implementation is based upon auxiliary unknowns. That is why we propose a new
time scheme which requires less memory than DG-ADER methods for a given level of accuracy. The construc-
tion of the new scheme is based on the fact that DGMs are well-suited for the approximation of high-order
space operators. By exploiting this property, it is relevant to construct high-order time schemes which involve
high-order space operators. This can be done by following the same approach than for the Modified Equation
technique [4, 5] but by working with the continuous problem directly. By this way, we address the time dis-
cretization directly while the classical used technique consists in applying the space discretization first and next
the time integration scheme. In this work, we show that it is possible to construct a single-step time scheme
of arbitrary order which demonstrates a high level of accuracy while requiring acceptable computational costs.
For a given accuracy, we show that the new scheme allows for using much coarser meshes than with DG-ADER
methods. The storage and the computational times are thus considerably reduced.

1. Discretization of the wave equation

1.1. DG space discretization

To simplify the presentation, we focus on the acoustic wave equation but the method can be applied to
the elastodynamic wave equation too. We consider the following system in a bounded domain Ω ⊂ Rn, with
boundary ∂Ω, n=1,2,3:















ρ(x)
∂ v(x, t)

∂t
+∇p(x, t) = 0 in Ω× [0, T ]

1

µ(x)

∂p(x, t)

∂t
+∇ · (v(x, t)) = 0 in Ω× [0, T ]

(1)

where ρ and µ are respectively the density and the compressibility modulus of Ω, p is the scalar pressure and
v the velocity vector. We do not discuss here the regularity properties of ρ and µ and we simply assume that
these two functions are positive, bounded and piecewise continuous. For the sake of simplicity, we omit the
source function.The initial condition is taken such that p(x, t) = sin(2π(x − t)) and we use periodic boundary
conditions. Now we consider a triangulation Th of Ω composed of triangles or tetrahedra K with edges Γ and
we use a Discontinuous Galerkin Method similar to the one proposed in [2]. Let Vh be the space defined by :

Vh = {v ∈ L2(Ω), v|K ∈ Pp(K), ∀K ∈ Th}
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where Pp is the space of polynomials of degree ≤ p. The DG formulation of (1) reads : Find (ph(t),vh(t)) ∈
Vh × V d

h , such that, ∀(q,w) ∈ Vh × V d
h























∑

K∈Th

∫

K

ρ
∂vh

∂t
·w −

∑

K∈Th

∫

K

∇ph ·w +
∑

Γ∈Γint

∫

Γ

[[w]] {{ph}} · n = 0.

∑

K∈Th

∫

K

1

µ

∂ph
∂t

q −
∑

K∈Th

∫

K

vh ·∇q +
∑

Γ∈Γint

∫

Γ

[[q]] {{vh}} · n = 0,
(2)

In (2) we use classical DG notations. Let Γint be the set of interior edges. The terms [[•]], {{•}} stand for the
jump and the mean of a function over an interior edge Γ. To define these quantities, we denote arbitrarily by
K+ and K− the two elements sharing Γ. n is the normal to Γ pointing from K+ to K− . We then have

[[q]] = q+ − q− and {{w}} =
1

2

(

w+ + w−
)

.

To obtain 2, we have used the fact that the solution to the continuous problem v(x, t) and p(x, t) satisfy
[v · n] = 0 and [p] = 0 on each edge. Using for instance the classical Lagrange basis functions, we obtain the
semi-discretized scheme :















Mv
d V

dt
+Kp P = 0

Mp
dP

dt
+Kv V = 0

(3)

where the mass matrices Mv, Mp are easily invertible since they are block diagonal and the stiffness matrices
Kp, Kv are sparse. By multiplying by M−1

v and M−1
p , we get a simpler formulation :















d V

dt
−Ap P = 0

dP

dt
−Av V = 0

(4)

which is more convenient to exhibit the time scheme integration process.

1.2. DG-ADER Time discretization

A classical way to compute the time derivative of first-order system consists in using the classical second-order
Leap-Frog scheme which leads to the following system:



















Vn+1 − Vn

∆t
−Ap Pn+ 1

2 = 0

Pn+ 3

2 − Pn+ 1

2

∆t
−Av Vn = 0

(5)

This scheme is second-order accurate only, which limits the level of convergence of the numerical method. That
is why DG-ADER [3] schemes have been developed. DG-ADER method is equivalent to the Modified Equation
Technique (MET) [4, 5], when using the same time step and the same order for the time discretization in the
whole domain. The principle of the method is based on the use of a Taylor expansion in which the time
derivatives are replaced thanks to (4). Using a 4th-order Taylor expansion of the pressure and the velocity, we
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obtain:

V (tn +∆t)− Vn(tn)

∆t
= ∂t V

(

tn + ∆t
2

)

+
∆t2

24
∂3
t V

(

tn + ∆t
2

)

+O(∆t4)

P
(

tn + 3∆t
2

)

− Pn
(

tn + ∆t
2

)

∆t
= ∂t P (tn +∆t) +

∆t2

24
∂3
t P (tn +∆t) +O(∆t4)

(6)

Using (4),we then get the 4th-order ADER scheme:



















Vn+1 − Vn

∆t
= Ap Pn+ 1

2 +
∆t2

24
ApAvAp Pn+ 1

2

Pn+ 3

2 − Pn+ 1

2

∆t
= Av Vn +

∆t2

24
AvApAvV

n

(7)

In practice, this scheme is solved by applying the following algorithm :

• Computation of P

– Q = Ap Pn+ 1

2

– W = AvQ

– Vn+1 = Vn +∆t

(

Q+
∆t2

24
ApW

)

• Computation of V

– W = Av Vn+1

– Q = ApW

– Pn+ 3

2 = Pn+ 1

2 +∆t

(

W +
∆t2

24
AvQ

)

Note that we two auxiliary variables Q and W are introduced. This scheme requires also three times more
multiplications by the stiffness matrices than the LF scheme, but the stability condition is multiplied by 2.8 [6,7].
There is thus a offsetting effect. However, if we use higher-order time schemes, the improved stability condition
does not counterbalance rising multiplications.

1.3. Nabla-p Time discretization

We propose here an alternative to DG-ADER scheme by applying the MET to the continuous wave equation
(1). For a 4th-order scheme, we apply (6) on the continuous variables and we replace the derivative terms ∂t
and ∂3

t thanks to the continuous equation (2). We then obtain the semi-discretized time scheme:















vn+1 − vn

∆t
= −∇pn+

1

2 −
∆t2

24
∇∇ ·∇pn+

1

2

pn+
3

2 − pn+
1

2

∆t
= −∇ · vn+1 −

∆t2

24
∇ ·∇∇ · vn+1

(8)

This method has already been applied to the second-order formulation of the acoustic wave equation [1] and
it performs very well. Using a Green formula three times, with test functions q and w regular enough, we then
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obtain the following system :































































































































































∑

K

∫

K
ρ(x)

v
n+1

h − vn
h

∆t
·w =

∑

K

∫

K
ph

n+ 1

2 ∇ ·w+
µ(x)

ρ(x)

∆t2

24

∑

K

∫

K
ph

n+1/2
∇ ·∇∇ ·w

−
∑

Γint

∫

Γ

{{

ph
n+1/2

}}

[[w]] · n−
∆t2

24

∑

Γint

∫

Γ

{{

µ(x)

ρ(x)
∇ ·∇ph

n+1/2

}}

[[w]] · n

+
∆t2

24

∑

Γint

∫

Γ

{{

1

ρ(x)
∇ph

n+1/2

}}

· n [[µ(x)∇ ·w]]

−
∆t2

24

∑

Γint

∫

Γ

{{

ph
n+1/2

}}

[[

µ(x)

ρ(x)
∇∇ ·w

]]

· n

∑

K

∫

K

1

µ(x)

ph
n+3/2 − ph

n+1/2

∆t
· q =

∑

K

∫

K
v
n+1

h ∇q +
µ(x)

ρ(x)

∆t2

24

∑

K

∫

K
v
n+1

h ∇∇ ·∇q

−
∑

Γint

∫

Γ

{{

vh
n+1

}}

· n [[q]]−
∆t2

24

∑

Γint

∫

Γ

{{

µ(x)

ρ(x)
∇∇ · vh

n+1

}}

· n [[q]]

+
∆t2

24

∑

Γint

∫

Γ

{{

µ(x)∇ · vh
n+1/2

}}

[[

1

ρ(x)
∇q

]]

· n

−
∆t2

24

∑

Γint

∫

Γ

{{

vh
n+1/2

}}

· n

[[

µ(x)

ρ(x)
∇ ·∇q

]]

(9)

System (9) admits then the overall representation:



















Vn+1 − Vn

∆t
=

(

Ap +
∆t2

24
Bp

)

Pn+1/2 = A∗
p Pn+1/2

Pn+ 3

2 −Pn+ 1

2

∆t
=

(

Av +
∆t2

24
Bv

)

Vn+1 = A∗
v Vn+1,

(10)

where A∗
p and A∗

v are the matrices containing original DG stiffness matrices Ap and Av plus additional 4th-
orders terms Bp and Bv. By construction, the number of non-zero elements of Bp and Bv is the same than
for Ap and Av. Hence, the computational cost of one iteration of the Nabla scheme is the same than for one
iteration of the LF. Moreover, concerning the CFL, that we are not able to define theoretically, it is in practice
more or less equal to 95% of the LF CFL. Then compared to DG-ADER, the Nabla-p CFL will not allows us
to counterbalance any overcost induced by the method, as we will see in the next Section.

It should be noted that ADER scheme can also be rewritten as in (10), with A∗
p = Ap +

∆t2

24
ApAvAp and

A∗
v = Av +

∆t2

24
AvApAv. However, the use of auxiliary unknowns should be preferred, because the stencils of

the matrices ApAvAp and AvApAv are much larger than the stencils of the matrices Ap and Av. To be more
specific, after a half an iteration of the Leap-Frog and the Nabla scheme, the values of the pressure (resp. the
velocity) on one element are modified by the values of the velocity (resp. the pressure) on the element and
on its neighbor; after half an iteration of the ADER scheme, the values of the pressure (resp. the velocity)
are also modified by the the values of the of velocity (resp. the pressure) on the second-level neighbors (the
neighbors of the neighbors) and of the third-level neighbors. Hence the number of non-zero elements of the global
matrix can be multiplied by a factor 5 in 2D and 10 in 3D compared with the original matrix, which increases
dramatically the storage cost. The cost of three multiplications by the original matrix is not larger than the cost
of one multiplication by the global matrix. Moreover, in a parallel framework, where the information should be
communicated from one processor to another, we ADER schemes requires to communicate to one processor not
only the values of its neighbors, but also the values of its second- and third- level neighbors.
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2. 2D Numerical Results

We have performed a 2D comparison between the LF scheme, the 4th order DG-ADER scheme and Nabla
scheme using P3,P4 and P5-elements in space. The domain is a 1000m by 1000m homogeneous square, the
simulation duration is 60 seconds. We consider a regular mesh composed of isosceles right-angled triangles. The
size of the legs of the triangles is denoted by h and is initially equal to 100m. We then refine the mesh by a
factor δ varying from 1 to 16 (6.25m being the smallest space step). We consider periodic boundary conditions
and the initial data are such that:

p(x, t) = sin(2π(x− t)).

In Fig. 1,(resp. Fig. 2 and Fig. 3), we represent the relative L2-error as a function of the space step h for
P3 (resp P4 and P5) polynomials. Table 1 (resp 2 and 3) provides the relative L2-error and the time step for
a given refinement factor δ as well as the convergence order (CV) between two refinements. Note that, for P3

polynomials, we do not obtain the expected fourth order convergence. This is due to the fact that the original
DG method does not converge with the optimal order [2,6,7]. To obtain the fourth order convergence, we need
to use at least P4 polynomials. Table 2 and Table 3, indicate even a higher convergence rate for coarser meshes.
For a given space step, Nabla and ADER clearly outperform LF, whatever the polynomial degree. For P3

elements, DG-ADER and Nabla exhibit the same level of performance, but Nabla provides better results than
DG-ADER when the polynomial degree is increased. Indeed for P5 polynomials the error delivered by Nabla is
ten times smaller than the one delivered by DG-ADER. However, comparing the error for a given mesh is not
sufficient to claim Nabla scheme performs better. We also need to take into account the computational cost.

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

h

E
rr

P3

 

 

LF
Nabla
ADER

h3

Figure 1. L2-error with P3-elements

Leap-Frog
δ Error Time Step CV
1 8.8 10−2 6.2 10−2

2 2.1 10−2 3.1 10−2 2.0
4 5.4 10−3 1.5 10−2 2.0
8 1.3 10−3 7.7 10−3 2.0
16 3.4 10−4 3.9 10−3 2.0

Nabla-3
Error Time Step CV

1.9 10−3 5.8 10−2

1.5 10−4 2.9 10−2 3.6
1.2 10−5 1.4 10−2 3.6
1.2 10−6 7.2 10−3 3.3
1.2 10−7 3.6 10−3 3.2

DG-ADER
Error Time Step CV

1.5 10−3 1.0 10−1 1
1.1 10−4 5.3 10−2 3.8
1.0 10−5 2.6 10−2 3.4
1.2 10−6 1.3 10−2 3.2
1.4 10−7 6.7 10−3 3.0

Table 1. P3 results

We focus here on the complexity of the algorithm, i.e the number of operations during the simulations,
rather than on the CPU time of the numerical code. We believe that the first criterion is more objective than
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10
1

10
2

10
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10
−8

10
−6

10
−4

10
−2

10
0

h

E
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LF
Nabla
ADER

h4

Figure 2. L2-error with P4-elements

Leap-Frog
δ Error Time Step CV
1 4.0 10−2 4.2 10−2

2 1.0 10−2 2.1 10−2 2.0
4 2.5 10−3 1.0 10−2 2.0
8 6.2 10−4 5.3 10−3 2.0
16 1.5 10−4 2.6 10−3 2.0

Nabla-3
Error Time Step CV

1.0 10−4 4.0 10−2

2.7 10−6 2.0 10−2 5.2
8.4 10−8 1.0 10−2 5.0
2.8 10−9 5.0 10−3 4.9
1.1 10−10 2.5 10−3 4.7

DG-ADER
Error Time Step CV

1.1 10−4 7.2 10−2

4.9 10−6 3.6 10−2 4.6
2.4 10−7 1.8 10−2 4.3
1.4 10−8 9.1 10−3 4.1
8.7 10−10 4.5 10−3 4.0

Table 2. P4 results

10
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Figure 3. L2-error with P5-elements

the second one, which is sensitive to many parameters, such as the architecture of the platform, the type of
parallelism (MPI, OpenMP,...) ... The complexity depends on the number of non zero elements of the stiffness
matrices and on the number of time steps. Let us denote by N the number of triangles of the mesh and by n

the number of degrees of freedom of one element. We have N = 2

(

1000

h

)2

and n =
(p+ 1)(p+ 2)

2
. The size

of the stiffness matrices is n2N ×n2N for Ap and Bp and n2N × 2n2N for Av and Bv. The number of non zero
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Leap-Frog
δ Error Time Step CV
1 2.0 10−2 3.0 10−2 1
2 5.1 10−3 1.5 10−2 4.0
4 1.2 10−3 7.5 10−3 4.0
8 3.2 10−4 3.7 10−3 4.0
16 8.0 10−5 1.9 10−3 4.0

Nabla-3
Error Time Step CV

5.7 10−6 2.8 10−2 1
1.3 10−7 1.4 10−2 5.4
5.5 10−9 7.0 10−3 4.6
3.1 10−10 3.5 10−3 4.1
1.9 10−11 1.7 10−3 4.0

DG-ADER
Error Time Step CV

1.5 10−5 5.2 10−2 1
9.2 10−7 2.6 10−2 4.1
5.7 10−8 1.3 10−3 4.0
3.6 10−9 6.5 10−3 4.0
2.2 10−10 3.2 10−3 4.0

Table 3. P5 results

elements is 4N ×2n2. The factor 4 comes from the fact that one element communicates with itself and its three
neighbors, and the factor 2 corresponds to the two components of the velocity.

Hence the cost of one iteration of the LF and the Nabla-p scheme is approximately 2 × 8Nn2 (two multi-
plications by the stiffness matrices at each iteration). While the cost of one iteration of DG-ADER scheme is
6 × 8Nn2 (six multiplications by the stiffness matrices at each iteration). The global cost of the computation
is obtained by multiplying the previous results by the number of time steps which is given by 60/∆t.

For instance, the numerical costs for reaching an accuracy of 10−3(0.1%) are 1.2 1011 for LF-P3, 2.5 108

for Nabla-3-P3 and 4.108 for DG-ADER-P3. To reach an accuracy of 10−4(0.01%) the numerical costs are
3.2 1011 for LF-P4, 2.10

9 for Nabla-3-P3 8.1 108 for Nabla-3-P4 and 3.2 109 for DG-ADER-P3 and 1.3 109 for
DG-ADER-P4. These results indicate that the Nabla-3 scheme generates less computational costs than LF (100
times smaller) and DG-ADER (2 times smaller). This is more significant for higher accuracy levels. The Nabla
reaches an accuracy of 10−10 for a cost of 3.3 1012 (P4) or 1.2 1012 (P5) while DG-ADER requires 1.5 1013 (P5).

Conclusion

We have proposed a new high-order time scheme, the Nabla-p scheme, which involves high-order space
operators. These operators are easily discretized using DG methods and the cost of one time iteration is the
same as the LF scheme. Numerical results show that, for a given accuracy, Nabla-p scheme generates less
computational burden than LF or DG-ADER schemes, especially when using high-order polynomials for the
space discretization.
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